Aquifex aeolicus VF5 Pathway: ethanol degradation II

Pathway diagram: ethanol degradation II

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Schematic showing all replicons, marked with selected genes

Superclasses: Degradation/Utilization/Assimilation Alcohols Degradation Ethanol Degradation

Pathway Summary from MetaCyc:
This ethanol degradation pathway begins with conversion of ethanol to acetaldehyde by cytosolic alcohol dehydrogenase. The resulting acetaldehyde passes into the mitochondrial compartment where it is converted to acetate (by mitochondrial aldehyde dehydrogenase). Should acetate be activated to acetyl-CoA within the liver, it would not be oxidized by the Krebs cycle because of the prevailing high ratio of NADH + H / NAD+ within the liver mitochondrial matrix. Consequently, acetate leaves the mitochondrial compartment and the hepatocyte to be metabolised by extra-hepatic tissues [Salway04]. Extrahepatic tissues take up acetate where it is converted to acetyl-CoA [Yamashita01].

Four distinct human ethanol degradation pathways have been described - three oxidative pathways and one nonoxidative pathway. All oxidative pathways mediate the oxidation of ethanol to acetaldehye which is then oxidized to acetate for subsequent extra-hepatic activation to acetyl-CoA [Yamashita01]. Oxidative pathways are differentiated based on the enzyme/mechanism by which ethanol is oxidized to acetaldehyde. The present pathway utilizes cytoplasmic alcohol dehydrogenase with the other two oxidative pathways utilizing endoplasmic reticulum Microsomal Ethanol Oxidizing System (MEOS) (oxidative ethanol degradation III) and peroxisomal catalase (ethanol degradation IV), respectively. MEOS is also known as Cytochrome P450 2E1. The nonoxidative pathway is less well characterized but produces fatty acid ethyl esters (FAEEs) as primary end products [Best03].

Oxidative and nonoxidative pathways have been demonstrated in a range of tissues including gastric, pancreatic, hepatic and lung. Inhibition of oxidative ethanol degradation pathways raises both hepatic and pancreatic FAEE levels demonstrating that oxidative and nonoxidative pathways are alternative metabolically linked pathways. Pancreatic ethanol metabolism occurs predominantly by the nonoxidative pathway but oxidative routes to acetaldehyde have also been demonstrated in the pancreas - the cytochrome P450 2E1 and alcohol dehydrogenase pathways [Chrostek03].

Ethanol metabolism occurs predominantly in the liver and the resulting oxidative metabolite acetaldehyde is thought to play a role in alcohol induced liver injury. Additionally, there is now solid evidence that FAEEs also play a role in alcoholic pancreatitis [Werner02]. Blood and organ levels of FAEEs are raised by ethanol consumption with the highest concentration observed in the pancreas. FAEE generation from ethanol is greater in the pancreas than in any other organ suggesting that the pancreatic pathway contributes to raised blood and organ FAEE levels [Werner02].

Under conditions of acute ethanol consumption, the majority of ethanol is degraded by the hepatic oxidative pathways predominantly the alcohol dehydrogenase mediated pathway. However, under conditions of chronic ethanol consumption, hepatic MEOS activity and nonoxidative pathways are induced and quantitatively make a greater contribution to ethanol catabolism. The stimulatory effect of ethanol on Cytochrome P450 2E1 levels results in increased oxygen consumption, production of excess free radicals and increased metabolism of ethanol, vitamin A and testosterone - the chronic effects of which contribute to depletion of antioxidative activity. Antioxidative deficiency (glutathione, vitamin E, phosphatidylcholine) and excess free radicals are believed to subsequently contribute to the progression of alcoholic liver disease [Waluga03].

Polymorphic loci for genes encoding enzymes of ethanol degradation pathways have been identified and resulting variant isoenzymes characterized and found to exhibit distinct kinetic properties. Indeed, genetically determined differences in ethanol metabolism may, in part, account for the variability of individual susceptibility to the physical complications of alcohol abuse [Bosron].

Variants: ethanol degradation I

Pathway Evidence Glyph:

Pathway evidence glyph

Key to pathway glyph edge colors: ?

  An enzyme catalyzing this reaction is present in this organism
  No enzyme catalyzing this reaction has been identified in this organism
  The reaction and any enzyme that catalyzes it (if one has been identified) is unique to this pathway

Created in MetaCyc 16-Aug-2004 by Wagg J , SRI International
Imported from MetaCyc 08-Aug-2014 by Subhraveti P , SRI International


Best03: Best CA, Laposata M (2003). "Fatty acid ethyl esters: toxic non-oxidative metabolites of ethanol and markers of ethanol intake." Front Biosci 8;e202-17. PMID: 12456329

Bosron: Bosron WF, Li TK "Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism." Hepatology 6(3);502-10. PMID: 3519419

Chrostek03: Chrostek L, Jelski W, Szmitkowski M, Puchalski Z (2003). "Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) activity in the human pancreas." Dig Dis Sci 48(7);1230-3. PMID: 12870777

Salway04: Salway, J.G., Granner, D.K. (2004). "Metabolism at a Glance, Second Edition." Blackwell Publishing, ISBN:1405107162.

Waluga03: Waluga M, Hartleb M (2003). "[Alcoholic liver disease]." Wiad Lek 56(1-2);61-70. PMID: 12901271

Werner02: Werner J, Saghir M, Warshaw AL, Lewandrowski KB, Laposata M, Iozzo RV, Carter EA, Schatz RJ, Fernandez-Del Castillo C (2002). "Alcoholic pancreatitis in rats: injury from nonoxidative metabolites of ethanol." Am J Physiol Gastrointest Liver Physiol 283(1);G65-73. PMID: 12065293

Yamashita01: Yamashita H, Kaneyuki T, Tagawa K (2001). "Production of acetate in the liver and its utilization in peripheral tissues." Biochim Biophys Acta 1532(1-2);79-87. PMID: 11420176

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Rubio06: Rubio S, Larson TR, Gonzalez-Guzman M, Alejandro S, Graham IA, Serrano R, Rodriguez PL (2006). "An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment." Plant Physiol 140(3);830-43. PMID: 16415216

Report Errors or Provide Feedback
Page generated by SRI International Pathway Tools version 19.0 on Wed Apr 1, 2015, BIOCYC13B.