Caulobacter crescentus CB15 Pathway: folate transformations II
Inferred by computational analysis

Pathway diagram: folate transformations II

Note: a dashed line (without arrowheads) between two compound names is meant to imply that the two names are just different instantiations of the same compound -- i.e. one may be a specific name and the other a general name, or they may both represent the same compound in different stages of a polymerization-type pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Schematic showing all replicons, marked with selected genes

Superclasses: BiosynthesisCofactors, Prosthetic Groups, Electron Carriers BiosynthesisVitamins BiosynthesisFolate BiosynthesisFolate Transformations

Pathway Summary from MetaCyc:
General Background

The formation of the formyl and methyl derivatives of tetrahydrofolate (vitamin B9) directly involved in or representing sidesteps of the biosynthesis of this vital cofactors [Cossins97] [Hanson00] is displayed in this pathway. Folates are involved in a wide range of key metabolic functions in plants [Hanson02] [Jabrin03] mediating fluxes through C1-pathways with a high demand for methylated compounds such as secondary metabolites [Hanson01].

Plants prefer the polyglutamylated forms of folates (compare folate polyglutamylation, glutamate removal from folates) since the turnover rate of those compounds is markedly increased [Cossins97] [Scott00] and meets the high demands for folates as observed in plants [Hanson02]. In addition the conjugated forms of folate facilitate the retention of the vitamin within the cell and its subcellular compartments [Appling91]. The plant enzymes involved in this pathway, although essentially catalyzing the same steps, have been found to differ in many regards from their bacterial counterparts [Cossins97] [Basset04a] [Basset04].

Special information

Folates are tripartite molecules and are made up of pterin, p-aminobenzoate (pPABA) and glutamate moieties. The one-carbon units are either attached to the N-5 of the pterin moietie, to the N-10 of the pPAPA moiety or are brigded in between those two (e.g. 5,10-methenyl or methylene-THF) [Basset05]. The different forms of folates are jointly connected and easily convertible into each other through a tight network of reactions ( folate transformations I). Most of the enzymes have been identified in plants but some of them such as the formyltetrahydrofolate deformylase, presumably involved in the mutual conversion of tetrahydrofolate and its 10-formyl derivative remain to be demonstrated.

Among the many folates N5-formyl-tetrahydrofolate is the most enigmatic compound involved in the folate biosynthesis. N5-formyl-tetrahydrofolate is the only folate derivative that does not serve as a cofactor in the C1-metabolism, but it is the most frequent and stable form of folates found in plants [Stover93]. Moreover, N5-formyl-tetrahydrofolate is known to inhibit most of the folate dependent enzymes at physiological concentrations. The biological role of this compound is still poorly understood but it has been discussed as factor involved in the regulation of essential biosynthetic steps such as the formation of serine during photorespiration [Goyer05, Roje02].

The complete set of folate enzymes is only present in mitochondria. However, the recent discovery that folylpolyglutamate synthases are present in cytosol, mitochondria and plastids with each of them encoded by a different gene in Arabidopsis thaliana [Ravanel01] points to the fact that at least parts of the pathway can be carried out independently in those compartments. Interestingly, the enzyme hydrolyzing the polyglutamylated folates (γ-glutamyl hydrolase) has been found to be an extracellular enzyme in plants [Huangpu96]. Consequently, the transport and exact conversion of folates and their derivatives within the different cell compartments and their regulation pattern remains to be clarified before successfully attempting the endeavor to genetically engineer this pathway.

Variants: folate transformations I

Pathway Evidence Glyph:

Pathway evidence glyph

This organism is not in the expected taxonomic range for this pathway.

Key to pathway glyph edge colors:

  An enzyme catalyzing this reaction is present in this organism
  No enzyme catalyzing this reaction has been identified in this organism
  The reaction is unique to this pathway in MetaCyc

Created 14-Jun-2005 by Foerster H, TAIR


Appling91: Appling DR (1991). "Compartmentation of folate-mediated one-carbon metabolism in eukaryotes." FASEB J 5(12);2645-51. PMID: 1916088

Basset04: Basset GJ, Ravanel S, Quinlivan EP, White R, Giovannoni JJ, Rebeille F, Nichols BP, Shinozaki K, Seki M, Gregory JF, Hanson AD (2004). "Folate synthesis in plants: the last step of the p-aminobenzoate branch is catalyzed by a plastidial aminodeoxychorismate lyase." Plant J 40(4);453-61. PMID: 15500462

Basset04a: Basset GJ, Quinlivan EP, Ravanel S, Rebeille F, Nichols BP, Shinozaki K, Seki M, Adams-Phillips LC, Giovannoni JJ, Gregory JF, Hanson AD (2004). "Folate synthesis in plants: the p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids." Proc Natl Acad Sci U S A 101(6);1496-501. PMID: 14745019

Basset05: Basset GJC, Quinlivan EP, Gregory III JF, Hanson AD, (2005) "Folate Synthesis and Metabolism in Plants and Prospects For Biofortification." Crop Sci. (2005), 45, 449-453.

Cossins97: Cossins EA, Chen L (1997). "Folates and one-carbon metabolism in plants and fungi." Phytochemistry 45(3);437-52. PMID: 9190084

Goyer05: Goyer A, Collakova E, Diaz de la Garza R, Quinlivan EP, Williamson J, Gregory JF, Shachar-Hill Y, Hanson AD (2005). "5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves." J Biol Chem 280(28);26137-42. PMID: 15888445

Hanson00: Hanson AD, Gage DA, Shachar-Hill Y (2000). "Plant one-carbon metabolism and its engineering." Trends Plant Sci 5(5);206-13. PMID: 10785666

Hanson01: Hanson AD, Roje S (2001). "One-carbon metabolism in higher plants." Annu Rev Plant Physiol Plant Mol Biol 52;119-137. PMID: 11337394

Hanson02: Hanson AD, Gregory JF (2002). "Synthesis and turnover of folates in plants." Curr Opin Plant Biol 5(3);244-9. PMID: 11960743

Huangpu96: Huangpu J, Pak JH, Graham MC, Rickle SA, Graham JS (1996). "Purification and molecular analysis of an extracellular gamma-glutamyl hydrolase present in young tissues of the soybean plant." Biochem Biophys Res Commun 228(1);1-6. PMID: 8912628

Jabrin03: Jabrin S, Ravanel S, Gambonnet B, Douce R, Rebeille F (2003). "One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development." Plant Physiol 131(3);1431-9. PMID: 12644692

Ravanel01: Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y, Douce R, Rebeille F (2001). "Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana." Proc Natl Acad Sci U S A 98(26);15360-5. PMID: 11752472

Roje02: Roje S, Janave MT, Ziemak MJ, Hanson AD (2002). "Cloning and characterization of mitochondrial 5-formyltetrahydrofolate cycloligase from higher plants." J Biol Chem 277(45);42748-54. PMID: 12207015

Scott00: Scott J, Rebeille F, Fletcher J, (2000) "Folic acid and folates: the feasibility for nutritional enhancement in plant foods." J Sci Food Agric (2000), 80, 795-824.

Stover93: Stover P, Schirch V (1993). "The metabolic role of leucovorin." Trends Biochem Sci 18(3);102-6. PMID: 8480361

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Green04: Green ML, Karp PD (2004). "A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases." BMC Bioinformatics 5;76. PMID: 15189570

Report Errors or Provide Feedback
Page generated by SRI International Pathway Tools version 19.5 on Tue Nov 24, 2015, BIOCYC13B.