Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

Escherichia coli K-12 substr. MG1655 Compound: ATP

Synonyms: adenylpyrophosphate, adenosine-triphosphate, adenosine-5'-triphosphate

Superclasses: a nucleic acid component a nucleotide a nucleoside triphosphate a ribonucleoside triphosphate a purine ribonucleoside 5'-triphosphate
a nucleic acid component a nucleotide a purine nucleotide a purine ribonucleotide a purine ribonucleoside 5'-triphosphate
a nucleic acid component a nucleotide a ribonucleotide a purine ribonucleotide a purine ribonucleoside 5'-triphosphate
a nucleic acid component a nucleotide a ribonucleotide a ribonucleoside triphosphate a purine ribonucleoside 5'-triphosphate
a nucleic acid component
an organic heterocyclic compound an organic heterobicyclic compound a purine a purine nucleotide a purine ribonucleotide a purine ribonucleoside 5'-triphosphate
an organic heterocyclic compound an organonitrogen heterocyclic compound a purine a purine nucleotide a purine ribonucleotide a purine ribonucleoside 5'-triphosphate

Component of:
MgATP2-
DnaA-ATP transcriptional dual regulator (summary available)
MalT-Maltotriose-ATP DNA-binding transcriptional activator (extended summary available)

Chemical Formula: C10H12N5O13P3

Molecular Weight: 503.15 Daltons

Monoisotopic Molecular Weight: 506.99574515689994 Daltons

SMILES: C(C3(C(C(C(N2(C1(=C(C(=NC=N1)N)N=C2)))O3)O)O))OP(OP(=O)([O-])OP(=O)([O-])[O-])([O-])=O

InChI: InChI=1S/C10H16N5O13P3/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(26-10)1-25-30(21,22)28-31(23,24)27-29(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H,23,24)(H2,11,12,13)(H2,18,19,20)/p-4/t4-,6-,7-,10-/m1/s1

InChIKey: InChIKey=ZKHQWZAMYRWXGA-KQYNXXCUSA-J

Unification Links: CAS:56-65-5 , ChEBI:30616 , ChemSpider:4574455 , HMDB:HMDB00538 , IAF1260:33477 , KEGG:C00002 , MetaboLights:MTBLC30616 , PubChem:5461108

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -671.96

Reactions known to consume the compound:

1,4-dihydroxy-2-naphthoate biosynthesis I :
ATP + 2-succinylbenzoate + coenzyme A → AMP + 4-(2'-carboxyphenyl)-4-oxobutyryl-CoA + diphosphate

2-methylcitrate cycle I :
propanoate + ATP + coenzyme A → propanoyl-CoA + AMP + diphosphate

2-O-α-mannosyl-D-glycerate degradation , D-galactarate degradation I , D-glucarate degradation I :
ATP + D-glycerate → 2-phospho-D-glycerate + ADP + H+

4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis :
4-amino-2-methyl-5-phosphomethylpyrimidine + ATP → 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP

5-aminoimidazole ribonucleotide biosynthesis I :
ATP + N2-formyl-N1-(5-phospho-β-D-ribosyl)glycinamide + L-glutamine + H2O → ADP + 2-(formamido)-N1-(5-phospho-β-D-ribosyl)acetamidine + L-glutamate + phosphate + H+
ATP + 5-phospho-β-D-ribosylamine + glycine → ADP + N1-(5-phospho-β-D-ribosyl)glycinamide + phosphate + H+
ATP + 2-(formamido)-N1-(5-phospho-β-D-ribosyl)acetamidine → ADP + 5-amino-1-(5-phospho-β-D-ribosyl)imidazole + phosphate + H+

5-aminoimidazole ribonucleotide biosynthesis II :
ATP + N2-formyl-N1-(5-phospho-β-D-ribosyl)glycinamide + L-glutamine + H2O → ADP + 2-(formamido)-N1-(5-phospho-β-D-ribosyl)acetamidine + L-glutamate + phosphate + H+
ATP + 5-phospho-β-D-ribosylamine + glycine → ADP + N1-(5-phospho-β-D-ribosyl)glycinamide + phosphate + H+
ATP + 2-(formamido)-N1-(5-phospho-β-D-ribosyl)acetamidine → ADP + 5-amino-1-(5-phospho-β-D-ribosyl)imidazole + phosphate + H+
N1-(5-phospho-β-D-ribosyl)glycinamide + formate + ATPN2-formyl-N1-(5-phospho-β-D-ribosyl)glycinamide + ADP + phosphate + H+

6-hydroxymethyl-dihydropterin diphosphate biosynthesis I :
6-hydroxymethyl-7,8-dihydropterin + ATP → (2-amino-4-hydroxy-7,8-dihydropteridin-6-yl)methyl diphosphate + AMP + H+

acetate conversion to acetyl-CoA :
acetate + ATP + coenzyme A → acetyl-CoA + AMP + diphosphate

adenine and adenosine salvage V :
inosine + ATP → IMP + ADP + H+

adenosine deoxyribonucleotides de novo biosynthesis II :
dATP + an oxidized flavodoxin + H2O ← ATP + a reduced flavodoxin
dADP + ATP → dATP + ADP

adenosine ribonucleotides de novo biosynthesis :
AMP + ATP ↔ 2 ADP

adenosylcobalamin salvage from cobalamin :
ATP + cob(I)alamin → coenzyme B12 + PPPi

adenosylcobalamin salvage from cobinamide I :
cobinamide + ATP → adenosylcobinamide + PPPi
adenosylcobinamide + ATP → adenosyl-cobinamide phosphate + ADP + H+

ADP-L-glycero-β-D-manno-heptose biosynthesis :
D-glycero-β-D-manno-heptose 1-phosphate + ATP + H+ → ADP-D-glycero-β-D-manno-heptose + diphosphate
D-glycero-D-manno-heptose 7-phosphate + ATP → D-glycero-β-D-manno-heptose 1,7-bisphosphate + ADP + H+

Aerotactic Two-Component Signal Transduction System , Chemotactic Two-Component Signal Transduction :
CheA + ATP → CheA-P + ADP

anhydromuropeptides recycling :
UDP-N-α-D-acetylmuramate + L-alanyl-γ-D-glutamyl-meso-diaminopimelate + ATP → UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-2,6-diaminopimelate + ADP + phosphate + H+
1,6-anhydro-N-acetyl-β-muramate + ATP + H2O → N-acetyl-β-muramate 6-phosphate + ADP + H+

ArcAB Two-Component Signal Transduction System, quinone dependent :
ArcB sensory histidine kinase[inner membrane] + ATP → ArcB sensory histidine kinase - his292 phosphorylated[inner membrane] + ADP

arginine biosynthesis I (via L-ornithine) :
2 ATP + L-glutamine + hydrogen carbonate + H2O → carbamoyl-phosphate + L-glutamate + 2 ADP + phosphate + 2 H+
L-aspartate + L-citrulline + ATP → L-arginino-succinate + AMP + diphosphate + H+

asparagine biosynthesis I :
L-glutamine + L-aspartate + ATP + H2O → L-glutamate + L-asparagine + AMP + diphosphate + H+

asparagine biosynthesis II :
L-aspartate + ammonium + ATP → L-asparagine + AMP + diphosphate + H+

AtoSC Two-Component Signal Transduction System :
AtoS[inner membrane] + ATP → AtoS-P[inner membrane] + ADP

BaeSR Two-Component Signal Transduction System :
BaeS[inner membrane] + ATP → BaeS sensory histidine kinase - phosphorylated[inner membrane] + ADP

BarA UvrY Two-Component Signal Transduction System :
BarA[inner membrane] + ATP → BarA sensory histidine kinase - his302 phosphorylated[inner membrane] + ADP

BasSR Two-Component Signal Transduction System :
ATP + BasS[inner membrane] → ADP + BasS sensory histidine kinase - phosphorylated[inner membrane]

biotin biosynthesis from 8-amino-7-oxononanoate I :
CO2 + 7,8-diaminopelargonate + ATP → dethiobiotin + ADP + phosphate + 3 H+

biotin-carboxyl carrier protein assembly :
ATP + acetyl-CoA + a carboxylated-biotinylated [BCCP dimer] + H2O → malonyl-CoA + a biotinylated [BCCP dimer] + ADP + phosphate + H+
a [biotin-carboxyl-carrier protein monomer] + biotin + ATP → a biotinylated [BCCP monomer] + AMP + diphosphate
a biotinylated [BCCP dimer] + hydrogen carbonate + ATP → a carboxylated-biotinylated [BCCP dimer] + ADP + phosphate + H+

chorismate biosynthesis from 3-dehydroquinate :
shikimate + ATP → shikimate 3-phosphate + ADP + H+

citrate lyase activation :
[a holo citrate lyase acyl-carrier protein] + acetate + ATP → an acetyl-[holo citrate lyase acyl-carrier protein] + AMP + diphosphate
3'-dephospho-CoA + ATP + H+ → 2'-(5''-triphospho-α-D-ribosyl)-3'-dephospho-CoA + adenine

CMP phosphorylation :
ATP + CMP ↔ ADP + CDP
CDP + ATP → CTP + ADP

coenzyme A biosynthesis I :
4'-phosphopantetheine + ATP + H+ → 3'-dephospho-CoA + diphosphate
3'-dephospho-CoA + ATP → ADP + coenzyme A + H+

CpxAR Two-Component Signal Transduction System :
CpxA[inner membrane] + ATP → CpxA sensory histidine kinase - phosphorylated[inner membrane] + ADP

CreCB Two-Component Signal Transduction System :
ATP + CreC[inner membrane] → ADP + CreC sensory histidine kinase - phosphorylated[inner membrane]

CusSR Two-Component Signal Transduction System :
CusS[inner membrane] + ATP → CusS sensory histidine kinase - phosphorylated[inner membrane] + ADP

D-allose degradation :
D-allopyranose + ATPaldehydo-D-allose 6-phosphate + ADP + H+

D-arabinose degradation I :
D-ribulose + ATP → D-ribulose 1-phosphate + ADP + H+

D-fructuronate degradation , D-galacturonate degradation I :
2-dehydro-3-deoxy-D-gluconate + ATP → 2-dehydro-3-deoxy-D-gluconate 6-phosphate + ADP + H+

D-galactonate degradation :
2-dehydro-3-deoxy-D-galactonate + ATP → 2-dehydro-3-deoxy-D-galactonate 6-phosphate + ADP + H+

D-gluconate degradation , L-idonate degradation :
ATP + D-gluconate → ADP + D-gluconate 6-phosphate + H+

DcuSR Two-Component Signal Transduction System, dicarboxylate-dependent :
DcuS[inner membrane] + ATP → DcuS sensory histidine kinase - phosphorylated[inner membrane] + ADP

DpiBA Two-Component Signal Transduction System :
ATP + DpiB[inner membrane] → ADP + DpiB sensory histidine kinase - phosphorylated[inner membrane]

enterobactin biosynthesis :
6 ATP + 3 L-serine + 3 2,3-dihydroxybenzoate → 6 AMP + enterobactin + 6 diphosphate + 3 H+

EnvZ Two-Component Signal Transduction System, osmotic responsive :
EnvZ sensory histidine kinase[inner membrane] + ATP → ADP + EnvZ-Phis[inner membrane]

EvgSA Two-Component Signal Transduction System :
EvgS[inner membrane] + ATP → EvgS-Phis721[inner membrane] + ADP

fatty acid β-oxidation I :
a 2,3,4-saturated fatty acid + ATP + coenzyme A → a 2,3,4-saturated fatty acyl CoA + AMP + diphosphate

fatty acid biosynthesis initiation I :
ATP + acetyl-CoA + hydrogen carbonate → malonyl-CoA + ADP + phosphate + H+

flavin biosynthesis I (bacteria and plants) :
ATP + FMN + H+ → FAD + diphosphate
riboflavin + ATP → ADP + FMN + H+

folate polyglutamylation :
methylene-tetrahydropteroyl-[γ-Glu](n) + L-glutamate + ATP → methylene-tetrahydropteroyl-[γ-Glu](n+1) + ADP + phosphate
10-formyl-tetrahydropteroyl-[γ-Glu](n) + L-glutamate + ATP → 10-formyl-tetrahydropteroyl-[γ-Glu](n+1) + ADP + phosphate
tetrahydropteroyl-[γ-Glu](n) + L-glutamate + ATP → tetrahydropteroyl-[γ-Glu](n+1) + ADP + phosphate

fructose degradation :
ATP + β-D-fructofuranose 1-phosphate → ADP + fructose 1,6-bisphosphate + H+

fructoselysine and psicoselysine degradation :
D-fructosyl-L-lysine + ATP → fructoselysine 6-phosphate + ADP + H+

fucose degradation :
L-fuculose + ATP → L-fuculose 1-phosphate + ADP + H+

galactitol degradation :
D-tagatofuranose 6-phosphate + ATP → D-tagatofuranose 1,6-bisphosphate + ADP + H+

galactose degradation I (Leloir pathway) :
α-D-galactose + ATP → α-D-galactose 1-phosphate + ADP + H+

GlrKR Two-Component Signal Transduction System :
GlrK[inner membrane] + ATP → GlrK sensory histidine kinase - phosphorylated[inner membrane] + ADP

gluconeogenesis I :
oxaloacetate + ATP → CO2 + phosphoenolpyruvate + ADP
pyruvate + ATP + H2O → phosphoenolpyruvate + AMP + phosphate + 2 H+

glucose and glucose-1-phosphate degradation , glycogen degradation I , trehalose degradation II (trehalase) :
β-D-glucose + ATP → β-D-glucose 6-phosphate + ADP + H+

glutamine biosynthesis I :
ammonium + L-glutamate + ATP → L-glutamine + ADP + phosphate + H+

glutathione biosynthesis :
L-cysteine + L-glutamate + ATP → γ-L-glutamyl-L-cysteine + ADP + phosphate + H+
glycine + γ-L-glutamyl-L-cysteine + ATP → glutathione + ADP + phosphate + H+

glutathionylspermidine biosynthesis :
spermidine + glutathione + ATP → glutathionylspermidine + ADP + phosphate + H+

glycerol degradation I :
glycerol + ATPsn-glycerol 3-phosphate + ADP + H+

glycogen biosynthesis I (from ADP-D-Glucose) :
α-D-glucose 1-phosphate + ATP + H+ → ADP-α-D-glucose + diphosphate

glycolate and glyoxylate degradation I :
D-glycerate + ATP → 3-phospho-D-glycerate + ADP + H+

glycolysis I (from glucose-6P) :
pyruvate + ATP + H2O → phosphoenolpyruvate + AMP + phosphate + 2 H+
β-D-fructofuranose 6-phosphate + ATP → ADP + fructose 1,6-bisphosphate + H+

glycolysis II (from fructose-6P) :
pyruvate + ATP + H2O → phosphoenolpyruvate + AMP + phosphate + 2 H+
β-D-fructofuranose 6-phosphate + ATP → ADP + fructose 1,6-bisphosphate + H+

guanine and guanosine salvage III :
guanosine + ATP → GMP + ADP + H+

guanosine deoxyribonucleotides de novo biosynthesis II :
dGDP + ATP → dGTP + ADP

guanosine ribonucleotides de novo biosynthesis :
GDP + ATP → GTP + ADP
L-glutamine + XMP + ATP + H2O → L-glutamate + GMP + AMP + diphosphate + 2 H+
GMP + ATP ↔ GDP + ADP

homoserine biosynthesis , lysine biosynthesis I :
L-aspartate + ATP → L-aspartyl-4-phosphate + ADP

hydroxymethylpyrimidine salvage :
4-amino-2-methyl-5-phosphomethylpyrimidine + ATP → 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
ATP + hydroxymethylpyrimidine → ADP + 4-amino-2-methyl-5-phosphomethylpyrimidine + H+

inosine-5'-phosphate biosynthesis I :
5-amino-1-(5-phospho-β-D-ribosyl)imidazole + ATP + hydrogen carbonate → N5-carboxyaminoimidazole ribonucleotide + ADP + phosphate + 2 H+
ATP + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + L-aspartate → ADP + 5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole + phosphate + H+

KdpDE Two-Component Signal Transduction System, potassium-dependent :
ATP + KdpD[inner membrane] → KdpD sensory histidine kinase - phosphorylated[inner membrane] + ADP

L-arabinose degradation I :
L-ribulose + ATP → L-ribulose 5-phosphate + ADP + H+

L-ascorbate degradation II (bacterial, aerobic) :
3-keto-L-gulonate + ATP → 3-keto-L-gulonate 6-phosphate + ADP + H+

L-carnitine degradation I :
L-carnitine + ATP + coenzyme A → L-carnitinyl-CoA + AMP + diphosphate

L-lyxose degradation :
L-xylulose + ATP → L-xylulose -5-phosphate + ADP + H+

L-rhamnose degradation I :
L-rhamnulofuranose + ATP → L-rhamnulose 1-phosphate + ADP + H+

Reactions known to produce the compound:

allantoin degradation IV (anaerobic) :
ammonium + CO2 + ATP ← carbamoyl-phosphate + ADP + 2 H+

Reactions known to both consume and produce the compound:

acetate formation from acetyl-CoA I :
acetate + ATP ↔ acetyl phosphate + ADP

adenosine ribonucleotides de novo biosynthesis :
ATP + 4 H+[cytosol] + H2O ↔ ADP + phosphate + 5 H+[periplasmic space]

gluconeogenesis I :
3-phospho-D-glycerate + ATP ↔ 1,3-bisphospho-D-glycerate + ADP

glycolysis I (from glucose-6P) :
3-phospho-D-glycerate + ATP ↔ 1,3-bisphospho-D-glycerate + ADP
pyruvate + ATP ↔ ADP + phosphoenolpyruvate + H+

glycolysis II (from fructose-6P) :
3-phospho-D-glycerate + ATP ↔ 1,3-bisphospho-D-glycerate + ADP
pyruvate + ATP ↔ ADP + phosphoenolpyruvate + H+

histidine biosynthesis :
1-(5-phospho-β-D-ribosyl)-ATP + diphosphate ↔ ATP + 5-phospho-α-D-ribose 1-diphosphate + H+

mixed acid fermentation :
pyruvate + ATP ↔ ADP + phosphoenolpyruvate + H+
acetate + ATP ↔ acetyl phosphate + ADP

sulfate activation for sulfonation :
adenosine 5'-phosphosulfate + ATP ↔ 3'-phosphoadenylyl-sulfate + ADP + H+

TCA cycle I (prokaryotic) :
succinate + ATP + coenzyme A ↔ succinyl-CoA + ADP + phosphate

threonine degradation I :
ATP + propanoate ↔ ADP + propanoyl phosphate

Not in pathways:
ATP + (polyphosphate)(n) ↔ ADP + (polyphosphate)(n+1)
an isocitrate dehydrogenase + ATP ↔ ADP + a phosphorylated isocitrate dehydrogenase
ATP + L-serine ↔ L-seryl-AMP + diphosphate

In Reactions of unknown directionality:

Not in pathways:
N6-L-threonylcarbamoyladenine37 in tRNA + ATP = cyclic N6-L-threonylcarbamoyladenosine 37 in tRNA + ADP + phosphate
a double stranded DNA + ATP = a negatively supercoiled DNA + ADP + phosphate
protein chain elongation factor EF-P + D-β-lysine + ATP = protein chain elongation factor EF-P, β-lysyl-Lys34 + AMP + diphosphate
EntB isochorismatase / aryl-carrier protein + 2,3-dihydroxybenzoate + ATP = aryl-EntB + AMP + diphosphate
a supercoiled duplex DNA + ATP = a single stranded DNA + ADP + phosphate
ATP + ATP + H+ = 5',5'''-diadenosine tetraphosphate + diphosphate
ATP + an mRNA = an mRNA + diphosphate
N-acetyl-β-D-glucosamine + ATP = N-acetyl-D-glucosamine 6-phosphate + ADP + H+
ATP + AceF + (R)-lipoate = AMP + AceF-lipoate + diphosphate
ATP + SucB + (R)-lipoate = AMP + SucB-lipoate + diphosphate
MalT + maltotriose + ATP = MalT-maltotriose-ATP
DnaA + ATP = DnaA-ATP
ThiS protein + ATP = ThiS-COAMP + diphosphate
ATP + a 1,2-diacyl-sn-glycerol = a 1,2-diacyl-sn-glycerol 3-phosphate + ADP + H+


a reduced flavodoxin + a ribonucleoside triphosphate = an oxidized flavodoxin + a deoxyribonucleoside triphosphate + H2O


a nucleoside triphosphate + RNA(n) = RNA(n+1) + diphosphate

In Transport reactions:
heme b[cytosol] + ATP + H2O → heme b[periplasmic space] + ADP + phosphate + H+ ,
lipid A-core[cytosol] + ATP + H2O → lipid A-core[periplasmic space] + ADP + phosphate + H+ ,
N-acetyl-DL-methionine[periplasmic space] + ATP + H2O → N-acetyl-DL-methionine[cytosol] + ADP + phosphate + H+ ,
L-methionine S-oxide[periplasmic space] + ATP + H2O → L-methionine S-oxide[cytosol] + ADP + phosphate + H+ ,
a glycerophosphodiester[periplasmic space] + ATP + H2O → a glycerophosphodiester[cytosol] + ADP + phosphate + H+ ,
ATP + L-alanyl-γ-D-glutamyl-meso-diaminopimelate[periplasmic space] + H2O → L-alanyl-γ-D-glutamyl-meso-diaminopimelate[cytosol] + ADP + phosphate + H+ ,
ATP + L-arabinose[periplasmic space] + H2O → ADP + L-arabinose[cytosol] + phosphate + H+ ,
ATP + D-xylose[periplasmic space] + H2O → ADP + D-xylose[cytosol] + phosphate + H+ ,
an aminoalkylphosphonate[periplasmic space] + ATP + H2O → an aminoalkylphosphonate[cytosol] + ADP + phosphate + H+ ,
methyl-β-D-galactoside[periplasmic space] + ATP + H2O → methyl-β-D-galactoside[cytosol] + ADP + phosphate + H+ ,
maltotetraose[periplasmic space] + ATP + H2O → ADP + maltotetraose[cytosol] + phosphate + H+ ,
maltotriose[periplasmic space] + ATP + H2O → ADP + maltotriose[cytosol] + phosphate + H+ ,
ATP + β-D-ribopyranose[periplasmic space] + H2O → ADP + β-D-ribopyranose[cytosol] + phosphate + H+ ,
Zn2+[cytosol] + ATP + H2O → Zn2+[periplasmic space] + ADP + phosphate + H+ ,
β-D-galactofuranose[periplasmic space] + ATP + H2O → β-D-galactofuranose[cytosol] + ADP + phosphate + H+ ,
ATP + an alkylphosphonate[periplasmic space] + H2O → ADP + an alkylphosphonate[cytosol] + phosphate + H+ ,
α-D-galactofuranose[periplasmic space] + ATP + H2O → α-D-galactofuranose[cytosol] + ADP + phosphate + H+ ,
a quaternary amine[periplasmic space] + ATP + H2O → a quaternary amine[cytosol] + ADP + phosphate + H+ ,
ATP + ferric enterobactin complex[periplasmic space] + H2O → ADP + ferric enterobactin complex[cytosol] + phosphate + H+ ,
ATP + a ferric hydroxamate complex[periplasmic space] + H2O → ADP + a ferric hydroxamate complex[cytosol] + phosphate ,
ATP + L-glutamine[periplasmic space] + H2O → ADP + L-glutamine[cytosol] + phosphate + H+ ,
ATP + L-glutamate[periplasmic space] + H2O → ADP + L-glutamate[cytosol] + phosphate + H+ ,
ATP + L-histidine[periplasmic space] + H2O → ADP + L-histidine[cytosol] + phosphate + H+ ,
maltose[periplasmic space] + ATP + H2O → maltose[cytosol] + ADP + phosphate + H+ ,
ATP + β-D-galactose[periplasmic space] + H2O → ADP + β-D-galactose[cytosol] + phosphate + H+ ,
ATP + molybdate[periplasmic space] + H2O → ADP + molybdate[cytosol] + phosphate + H+ ,
Ni2+[periplasmic space] + ATP + H2O → Ni2+[cytosol] + ADP + phosphate + H+ ,
ATP + spermidine[periplasmic space] + H2O → ADP + spermidine[cytosol] + phosphate + H+ ,
ATP + putrescine[periplasmic space] + H2O → ADP + putrescine[cytosol] + phosphate + H+ ,
ATP + phosphate[periplasmic space] + H2O → ADP + 2 phosphate[cytosol] + H+ ,
L-lysine[periplasmic space] + ATP + H2O → L-lysine[cytosol] + ADP + phosphate + H+ ,
ATP + sn-glycerol 3-phosphate[periplasmic space] + H2O → ADP + sn-glycerol 3-phosphate[cytosol] + phosphate + H+ ,
ATP + L-ornithine[periplasmic space] + H2O → ADP + L-ornithine[cytosol] + phosphate + H+ ,
ATP + L-arginine[periplasmic space] + H2O → ADP + L-arginine[cytosol] + phosphate + H+ ,
ATP + cob(I)alamin[periplasmic space] + H2O → ADP + cob(I)alamin[cytosol] + phosphate + H+ ,
ATP + thiosulfate[periplasmic space] + H2O → ADP + thiosulfate[cytosol] + phosphate + H+ ,
ATP + ferric dicitrate[periplasmic space] + H2O → ADP + ferric dicitrate[cytosol] + phosphate + H+ ,
taurine[periplasmic space] + ATP + H2O → taurine[cytosol] + ADP + phosphate + H+ ,
a lipopolysaccharide[cytosol] + ATP + H2O → a lipopolysaccharide[periplasmic space] + ADP + phosphate + H+ ,
Mg2+[periplasmic space] + ATP + H2O → Mg2+[cytosol] + ADP + phosphate + H+ ,
K+[periplasmic space] + ATP + H2O → K+[cytosol] + ADP + phosphate + H+ ,
sulfate[periplasmic space] + ATP + H2O → sulfate[cytosol] + ADP + phosphate + H+ ,
ATP + L-aspartate[periplasmic space] + H2O → L-aspartate[cytosol] + ADP + phosphate + H+ ,
ATP + an aliphatic sulfonate[periplasmic space] + H2O → an aliphatic sulfonate[cytosol] + ADP + phosphate + H+ ,
(2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran[periplasmic space] + ATP + H2O → (2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran[cytosol] + ADP + phosphate + H+ ,
selenate[periplasmic space] + ATP + H2O → selenate[cytosol] + ADP + phosphate + H+ ,
selenite[periplasmic space] + ATP + H2O → selenite[cytosol] + ADP + phosphate + H+ ,
glutathione[cytosol] + ATP + H2O → glutathione[periplasmic space] + ADP + phosphate + H+ ,
L-cysteine[cytosol] + ATP + H2O → L-cysteine[periplasmic space] + ADP + phosphate + H+ ,
ATP + arsenate[cytosol] + H2O → ADP + arsenate[periplasmic space] + phosphate + H+ ,
Cu+[cytosol] + ATP + H2O → Cu+[periplasmic space] + ADP + phosphate + H+ ,
a macrolide antibiotic[cytosol] + ATP + H2O → a macrolide antibiotic[extracellular space] + ADP + phosphate ,
glutathione[periplasmic space] + ATP + H2O → glutathione[cytosol] + ADP + phosphate + H+ ,
ATP + L-methionine[periplasmic space] + H2O → ADP + L-methionine[cytosol] + phosphate + H+ ,
ATP + D-methionine[periplasmic space] + H2O → ADP + D-methionine[cytosol] + phosphate + H+ ,
ATP + thiamin[periplasmic space] + H2O → ADP + thiamin[cytosol] + phosphate + H+ ,
D-allose[periplasmic space] + ATP + H2O → D-allose[cytosol] + ADP + phosphate + H+ ,
Zn2+[periplasmic space] + ATP + H2O → Zn2+[cytosol] + ADP + phosphate + H+ ,
ATP + a dipeptide[periplasmic space] + H2O → ADP + a dipeptide[cytosol] + phosphate + H+ ,
ATP + L-valine[periplasmic space] + H2O → ADP + L-valine[cytosol] + phosphate + H+ ,
ATP + L-leucine[periplasmic space] + H2O → ADP + L-leucine[cytosol] + phosphate + H+ ,
ATP + L-proline[periplasmic space] + H2O → ADP + L-proline[cytosol] + phosphate + H+ ,
ATP + a peptide[periplasmic space] + H2O → ADP + a peptide[cytosol] + phosphate ,
ATP + L-isoleucine[periplasmic space] + H2O → ADP + L-isoleucine[cytosol] + phosphate + H+

Enzymes activated by ATP, sorted by the type of activation, are:

Activator (Allosteric) of: ribonucleoside-triphosphate reductase [Eliasson94, Comment 1] , aspartate transcarbamylase [Ke84, Gerhart62] , thymidine kinase [Iwatsuki67, Chen78, Comment 2] , [protein-PII] uridylyltransferase

Activator (Mechanism unknown) of: tRNA C32 thiolase [Bouvier14] , inosine kinase [HoveJensen89] , guanosine kinase [HoveJensen89] , isocitrate dehydrogenase phosphatase [Nimmo84a] , homoserine dehydrogenase [Ogilvie75] , biotin-[acetyl-CoA-carboxylase] ligase [Barker81] , phosphoglycerate kinase , ribonucleoside-diphosphate reductase [Thelander78] , guanosine-3',5'-bis(diphosphate) 3'-diphosphatase [Heinemeyer77] , glycerol kinase [Pettigrew90]

Enzymes inhibited by ATP, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: malate:quinone oxidoreductase [Narindrasorasak79] , D-mannonate oxidoreductase [MandrandBerthel77] , GTP cyclohydrolase [Yim76] , tRNA(i6A37) synthase [Leung97] , methylenetetrahydrofolate dehydrogenase [Comment 3] , 6-phosphogluconate dehydrogenase [Westwood74, Comment 4] , citrate synthase , ITPase [Zheng05a]

Inhibitor (Noncompetitive) of: phosphate acetyltransferase [Suzuki69, CamposBermudez10, Comment 5]

Inhibitor (Allosteric) of: 6-phosphofructokinase [Guixe98, Kotlarz81] , adenylate cyclase [Yang83a]

Inhibitor (Mechanism unknown) of: m7GTP pyrophosphatase [Tchigvintsev13] , deoxyribonucleoside 5'-monophosphate phosphatase [Proudfoot04] , adenosine 3'-phosphate phosphohydrolase [Proudfoot04] , GTPase [Jain09] , mannose isomerase [Itoh08a] , thiamine phosphate synthase [Kayama73, Kawasaki79, Comment 6] , glutaminase B [Prusiner76] , GMP reductase [Mager60, Comment 7] , pyruvate kinase [Comment 8] , ADP-sugar pyrophosphatase [MorenoBruna01] , malate dehydrogenase, NAD-requiring [Milne79] , L-xylulose kinase [Sanchez94] , phosphoenolpyruvate carboxykinase (ATP) [Krebs80] , D-lactate dehydrogenase [Tarmy68a] , McrBC restriction endonuclease [Sutherland92] , dTMP kinase [Nelson69, Helmward89, Comment 9]

Activates: NtrC-Pasp + H2O → NtrC + phosphate

Transcription Units regulated by related protein DnaA-ATP transcriptional dual regulator (9 total):

Transcription Units regulated by related protein MalT-Maltotriose-ATP DNA-binding transcriptional activator (5 total):


References

Barker81: Barker DF, Campbell AM (1981). "The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase." J Mol Biol 146(4);451-67. PMID: 7024555

Bouvier14: Bouvier D, Labessan N, Clemancey M, Latour JM, Ravanat JL, Fontecave M, Atta M (2014). "TtcA a new tRNA-thioltransferase with an Fe-S cluster." Nucleic Acids Res. PMID: 24914049

CamposBermudez10: Campos-Bermudez VA, Bologna FP, Andreo CS, Drincovich MF (2010). "Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation." FEBS J 277(8);1957-66. PMID: 20236319

Chen78: Chen MS, Prusoff WH (1978). "Thymidine kinase from Escherichia coli." Methods Enzymol 1978;51;354-60. PMID: 357898

Dev78: Dev IK, Harvey RJ (1978). "A complex of N5,N10-methylenetetrahydrofolate dehydrogenase and N5,N10-methenyltetrahydrofolate cyclohydrolase in Escherichia coli. Purification, subunit structure, and allosteric inhibition by N10-formyltetrahydrofolate." J Biol Chem 1978;253(12);4245-53. PMID: 350870

Eliasson94: Eliasson R, Pontis E, Sun X, Reichard P (1994). "Allosteric control of the substrate specificity of the anaerobic ribonucleotide reductase from Escherichia coli." J Biol Chem 269(42);26052-7. PMID: 7929317

Gerhart62: Gerhart JC, Pardee AB (1962). "The enzymology of control by feedback inhibition." J Biol Chem 237;891-6. PMID: 13897943

Guixe98: Guixe V, Rodriguez PH, Babul J (1998). "Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2-." Biochemistry 37(38);13269-75. PMID: 9748334

Heinemeyer77: Heinemeyer EA, Richter D (1977). "In vitro degradation of guanosine tetraphosphate (ppGpp) by an enzyme associated with the ribosomal fraction from Escherichia coli." FEBS Lett 1977;84(2);357-61. PMID: 340264

Helmward89: Helmward Z "Handbook of Enzyme Inhibitors. 2nd, revised and enlarged edition." Weinheim, Federal Republic of Germany ; New York, NY, USA , 1989.

HoveJensen89: Hove-Jensen B, Nygaard P (1989). "Role of guanosine kinase in the utilization of guanosine for nucleotide synthesis in Escherichia coli." J Gen Microbiol 135(5);1263-73. PMID: 2559948

Itoh08a: Itoh T, Mikami B, Hashimoto W, Murata K (2008). "Crystal structure of YihS in complex with D-mannose: structural annotation of Escherichia coli and Salmonella enterica yihS-encoded proteins to an aldose-ketose isomerase." J Mol Biol 377(5);1443-59. PMID: 18328504

Iwatsuki67: Iwatsuki N, Okazaki R (1967). "Mechanism of regulation of deoxythymidine kinase of Escherichia coli. I. Effect of regulatory deoxynucleotides on the state of aggregation of the enzyme." J Mol Biol 1967;29(1);139-54. PMID: 4861610

Jain09: Jain N, Dhimole N, Khan AR, De D, Tomar SK, Sajish M, Dutta D, Parrack P, Prakash B (2009). "E. coli HflX interacts with 50S ribosomal subunits in presence of nucleotides." Biochem Biophys Res Commun 379(2);201-5. PMID: 19109926

Kawasaki79: Kawasaki T (1979). "Thiamine phosphate pyrophosphorylase." Methods Enzymol 1979;62;69-73. PMID: 374983

Kayama73: Kayama Y, Kawasaki T (1973). "Purification and properties of thiaminephosphate pyrophosphorylase of Escherichia coli." Arch Biochem Biophys 1973;158(1);242-8. PMID: 4580841

Ke84: Ke HM, Honzatko RB, Lipscomb WN (1984). "Structure of unligated aspartate carbamoyltransferase of Escherichia coli at 2.6-A resolution." Proc Natl Acad Sci U S A 1984;81(13);4037-40. PMID: 6377306

Kotlarz81: Kotlarz D, Buc H (1981). "Regulatory properties of phosphofructokinase 2 from Escherichia coli." Eur J Biochem 1981;117(3);569-74. PMID: 6456900

Krebs80: Krebs A, Bridger WA (1980). "The kinetic properties of phosphoenolpyruvate carboxykinase of Escherichia coli." Can J Biochem 1980;58(4);309-18. PMID: 6991069

Leung97: Leung HC, Chen Y, Winkler ME (1997). "Regulation of substrate recognition by the MiaA tRNA prenyltransferase modification enzyme of Escherichia coli K-12." J Biol Chem 272(20);13073-83. PMID: 9148919

Mager60: Mager J, Magasanik B (1960). "Guanosine 5'-phosphate reductase and its role in the interconversion of purine nucleotides." J Biol Chem 1960;235(5):1474-1478. PMID: 14419794

MandrandBerthel77: Mandrand-Berthelot MA, Lagarde AE (1977). ""Hit-and-run" mechanism for D-glucuronate reduction catalyzed by D-mannonate:NAD oxidoreductase of Escherichia coli." Biochim Biophys Acta 1977;483(1);6-23. PMID: 195622

Milne79: Milne JA, Cook RA (1979). "Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide specific malic enzyme depending on whether Mg2+ or Mn2+ serves as divalent cation." Biochemistry 18(16);3604-10. PMID: 224913

MorenoBruna01: Moreno-Bruna B, Baroja-Fernandez E, Munoz FJ, Bastarrica-Berasategui A, Zandueta-Criado A, Rodriguez-Lopez M, Lasa I, Akazawa T, Pozueta-Romero J (2001). "Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli." Proc Natl Acad Sci U S A 98(14);8128-32. PMID: 11416161

Narindrasorasak79: Narindrasorasak S, Goldie AH, Sanwal BD (1979). "Characteristics and regulation of a phospholipid-activated malate oxidase from Escherichia coli." J Biol Chem 1979;254(5);1540-5. PMID: 368072

Nelson69: Nelson DJ, Carter CE (1969). "Purification and characterization of Thymidine 5-monophosphate kinase from Escherichia coli B." J Biol Chem 1969;244(19);5254-62. PMID: 4899016

Nimmo84a: Nimmo GA, Borthwick AC, Holms WH, Nimmo HG (1984). "Partial purification and properties of isocitrate dehydrogenase kinase/phosphatase from Escherichia coli ML308." Eur J Biochem 141(2);401-8. PMID: 6329756

Ogilvie75: Ogilvie JW, Vickers LP, Clark RB, Jones MM (1975). "Aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12 (lambda). Activation by monovalent cations and an analysis of the effect of the adenosine triphosphate-magnesium ion complex on this activation process." J Biol Chem 250(4);1242-50. PMID: 163250

Pettigrew90: Pettigrew DW, Yu GJ, Liu Y (1990). "Nucleotide regulation of Escherichia coli glycerol kinase: initial-velocity and substrate binding studies." Biochemistry 1990;29(37);8620-7. PMID: 2148683

Proudfoot04: Proudfoot M, Kuznetsova E, Brown G, Rao NN, Kitagawa M, Mori H, Savchenko A, Yakunin AF (2004). "General enzymatic screens identify three new nucleotidases in Escherichia coli. Biochemical characterization of SurE, YfbR, and YjjG." J Biol Chem 279(52);54687-94. PMID: 15489502

Prusiner76: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations." J Biol Chem 1976;251(11);3463-9. PMID: 776970

Sanchez94: Sanchez JC, Gimenez R, Schneider A, Fessner WD, Baldoma L, Aguilar J, Badia J (1994). "Activation of a cryptic gene encoding a kinase for L-xylulose opens a new pathway for the utilization of L-lyxose by Escherichia coli." J Biol Chem 1994;269(47);29665-9. PMID: 7961955

Speranza89: Speranza ML, Valentini G, Iadarola P, Stoppini M, Malcovati M, Ferri G (1989). "Primary structure of three peptides at the catalytic and allosteric sites of the fructose-1,6-bisphosphate-activated pyruvate kinase from Escherichia coli." Biol Chem Hoppe Seyler 1989;370(3);211-6. PMID: 2653362

Sutherland92: Sutherland E, Coe L, Raleigh EA (1992). "McrBC: a multisubunit GTP-dependent restriction endonuclease." J Mol Biol 225(2);327-48. PMID: 1317461

Suzuki69: Suzuki T (1969). "Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides." Biochim Biophys Acta 1969;191(3);559-69. PMID: 4312205

Tarmy68a: Tarmy EM, Kaplan NO (1968). "Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate-controlled change in conformation." J Biol Chem 1968;243(10);2587-96. PMID: 4297266

Tchigvintsev13: Tchigvintsev A, Tchigvintsev D, Flick R, Popovic A, Dong A, Xu X, Brown G, Lu W, Wu H, Cui H, Dombrowski L, Joo JC, Beloglazova N, Min J, Savchenko A, Caudy AA, Rabinowitz JD, Murzin AG, Yakunin AF (2013). "Biochemical and structural studies of conserved maf proteins revealed nucleotide pyrophosphatases with a preference for modified nucleotides." Chem Biol 20(11);1386-98. PMID: 24210219

Thelander78: Thelander L, Sjoberg BR, Eriksson S (1978). "Ribonucleoside diphosphate reductase (Escherichia coli)." Methods Enzymol 1978;51;227-37. PMID: 357894

Westwood74: Westwood AW, Doelle HW "Glucose-6-phosphate and 6-phosphogluconate dehydrogenases and their control mechanisms in Escherichia coli K-12." Microbios 1974;9:143-165.

Yang83a: Yang JK, Epstein W (1983). "Purification and characterization of adenylate cyclase from Escherichia coli K12." J Biol Chem 1983;258(6);3750-8. PMID: 6300054

Yim76: Yim JJ, Brown GM (1976). "Characteristics of guanosine triphosphate cyclohydrolase I purified from Escherichia coli." J Biol Chem 1976;251(16);5087-94. PMID: 821948

Zheng05a: Zheng J, Singh VK, Jia Z (2005). "Identification of an ITPase/XTPase in Escherichia coli by structural and biochemical analysis." Structure 13(10);1511-20. PMID: 16216582


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Sat Dec 20, 2014, biocyc14.