Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

Escherichia coli K-12 substr. MG1655 Compound: oxygen

Systematic Name: O2

Abbrev Name: O2

Synonyms: oxygen molecule

Superclasses: a non-metabolic compound

Chemical Formula: O2

Molecular Weight: 31.999 Daltons

Monoisotopic Molecular Weight: 31.9898292442 Daltons

SMILES: O=O

InChI: InChI=1S/O2/c1-2

InChIKey: InChIKey=MYMOFIZGZYHOMD-UHFFFAOYSA-N

Unification Links: CAS:7782-44-7 , ChEBI:15379 , ChemSpider:952 , HMDB:HMDB01377 , IAF1260:33493 , KEGG:C00007 , MetaboLights:MTBLC15379 , PubChem:977

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 3.92

Reactions known to consume the compound:

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate :
3-phenylpropanoate + NADH + oxygen + H+ → 3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)propanoate + NAD+
3-(3-hydroxyphenyl)propionate + NADH + H+ + oxygen → 3-(2,3-dihydroxyphenyl)propanoate + NAD+ + H2O
3-(2,3-dihydroxyphenyl)propanoate + oxygen → (2Z,4E)-2-hydroxy-6-oxonona-2,4-diene-1,9-dioate + H+

cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate :
2,3-dihydroxy-trans-cinnamate + oxygen → (2Z,4E,7E)-2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate + H+
trans-cinnamate + NADH + oxygen + H+ → (2E)-3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)prop-2-enoate + NAD+
3-hydroxy-trans-cinnamate + NADH + oxygen + H+ → 2,3-dihydroxy-trans-cinnamate + NAD+ + H2O

D-lactate to cytochrome bo oxidase electron transport , glycerol-3-phosphate to cytochrome bo oxidase electron transfer , NADH to cytochrome bo oxidase electron transfer I , NADH to cytochrome bo oxidase electron transfer II , proline to cytochrome bo oxidase electron transfer , pyruvate to cytochrome bo oxidase electron transfer , succinate to cytochrome bo oxidase electron transfer :
2 an ubiquinol[inner membrane] + 8 H+ + oxygen → 2 an ubiquinone[inner membrane] + 2 H2O + 8 H+[periplasmic space]

heme biosynthesis I (aerobic) :
protoporphyrinogen IX + 3 oxygen → protoporphyrin IX + 3 hydrogen peroxide
coproporphyrinogen III + oxygen + 2 H+ → protoporphyrinogen IX + 2 CO2 + 2 H2O

NAD biosynthesis I (from aspartate) :
L-aspartate + oxygen → hydrogen peroxide + α-iminosuccinate + H+

NADH to cytochrome bd oxidase electron transfer I , NADH to cytochrome bd oxidase electron transport II , pyruvate to cytochrome bd terminal oxidase electron transfer , succinate to cytochrome bd oxidase electron transfer :
2 an ubiquinol[inner membrane] + oxygen + 4 H+ → 2 an ubiquinone[inner membrane] + 2 H2O + 4 H+[periplasmic space]

phenylacetate degradation I (aerobic) :
phenylacetyl-CoA + NADPH + oxygen + H+ → 2-(1,2-epoxy-1,2-dihydrophenyl)acetyl-CoA + NADP+ + H2O

phenylethylamine degradation I :
2-phenylethylamine[periplasmic space] + H2O[periplasmic space] + oxygen[periplasmic space] → phenylacetaldehyde[periplasmic space] + ammonium[periplasmic space] + hydrogen peroxide[periplasmic space]

putrescine degradation II :
γ-glutamyl-L-putrescine + H2O + oxygen → 4-(γ-glutamylamino)butanal + hydrogen peroxide + ammonium

pyridoxal 5'-phosphate biosynthesis I :
pyridoxine 5'-phosphate + oxygen → hydrogen peroxide + pyridoxal 5'-phosphate

pyridoxal 5'-phosphate salvage I :
pyridoxine 5'-phosphate + oxygen → hydrogen peroxide + pyridoxal 5'-phosphate
pyridoxamine 5'-phosphate + oxygen + H2O → ammonium + hydrogen peroxide + pyridoxal 5'-phosphate

superpathway of heme biosynthesis from uroporphyrinogen-III :
protoporphyrinogen IX + 3 oxygen → protoporphyrin IX + 3 hydrogen peroxide
coproporphyrinogen III + oxygen + 2 H+ → protoporphyrinogen IX + 2 CO2 + 2 H2O

taurine degradation IV :
taurine + 2-oxoglutarate + oxygen → aminoacetaldehyde + sulfite + succinate + CO2 + H+

threonine degradation III (to methylglyoxal) :
aminoacetone[periplasmic space] + H2O[periplasmic space] + oxygen[periplasmic space] → methylglyoxal[periplasmic space] + ammonium[periplasmic space] + hydrogen peroxide[periplasmic space]

two-component alkanesulfonate monooxygenase :
an alkanesulfonate + FMNH2 + oxygen → an aldehyde + sulfite + FMN + H2O + 2 H+

ubiquinol-8 biosynthesis (prokaryotic) :
2-octaprenylphenol + NADPH + oxygen + H+ → 3-(all-trans-octaprenyl)benzene-1,2-diol + NADP+ + H2O
6-methoxy-3-methyl-2-all-trans-octaprenyl-1,4-benzoquinol + a reduced electron acceptor + oxygen → 3-demethylubiquinol-8 + an oxidized electron acceptor + H2O
2-methoxy-6-(all-trans-octaprenyl)phenol + NADPH + oxygen + H+ → 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + NADP+ + H2O

uracil degradation III :
uracil + FMNH2 + oxygen → (Z)-3-ureidoacrylate peracid + FMN + H+

Not in pathways:
a [50S ribosomal subunit protein L16]-L-arginine81 + 2-oxoglutarate + oxygen → a [50S ribosomal subunit protein L16]-(3R)-3-hydroxy-L-arginine81 + succinate + CO2
3-(N-morpholino)propanesulfonate + FMNH2 + oxygen → 3-(N-morpholino)propanal + sulfite + FMN + H2O + 2 H+
2 L-dehydro-ascorbate + oxygen → 2 cyclic-2,3-O-oxalyl-L-threonate + 2 H+
a [protein chain elongation factor EF-P]-L-lysine34 + NADPH + oxygen + H+ → a [protein chain elongation factor EF-P]-5-hydroxy-L-lysine34 + NADP+ + H2O
N-methyl-L-tryptophan + oxygen + H2O → L-tryptophan + hydrogen peroxide + formaldehyde
Cr6+ + 2 NAD(P)H + oxygen → Cr3+ + hydrogen peroxide + 2 NAD(P)+
thymine + FMNH2 + oxygen → (Z)-2-methylureidoacrylate peracid + FMN + H+
isethionate + FMNH2 + oxygen → glycolaldehyde + sulfite + FMN + H2O + 2 H+
1-butanesulfonate + FMNH2 + oxygen → butanal + sulfite + FMN + H2O + 2 H+
2 an ubiquinol + oxygen → 2 an ubiquinone + 2 H2O
2 Fe2+ + 2 oxygen → 2 superoxide + 2 Fe3+
a methylated nucleobase within DNA + 2-oxoglutarate + oxygen → a nucleobase within DNA + CO2 + formaldehyde + succinate + H+
a primary amine[periplasmic space] + H2O[periplasmic space] + oxygen[periplasmic space] → an aldehyde[periplasmic space] + ammonium[periplasmic space] + hydrogen peroxide[periplasmic space]
(S)-2-hydroxyglutarate + oxygen → 2-oxoglutarate + hydrogen peroxide
2,3-dihydroxybenzoate[periplasmic space] + oxygen[periplasmic space] → 2-carboxymuconate[periplasmic space] + 2 H+[periplasmic space]
4 Cu+[periplasmic space] + 4 H+[periplasmic space] + oxygen[periplasmic space] → 4 Cu2+[periplasmic space] + 2 H2O[periplasmic space]
quercetin + oxygen → 2-protocatechuoylphloroglucinolcarboxylate + carbon monoxide
4 Fe2+ + 4 H+ + oxygen → 4 Fe3+ + 2 H2O
N3-methylcytosine + 2-oxoglutarate + oxygen → cytosine + CO2 + formaldehyde + succinate + H+
1-ethyladenine + 2-oxoglutarate + oxygen → adenine + CO2 + acetaldehyde + succinate
N1-methyladenine + 2-oxoglutarate + oxygen → adenine + CO2 + formaldehyde + succinate
2 nitric oxide + NAD(P)H + 2 oxygen → 2 nitrate + NAD(P)+ + H+
a reduced d-type cytochrome + 2 H+ + oxygen → a d-type cytochrome + H2O
an aliphatic amine[periplasmic space] + H2O[periplasmic space] + oxygen[periplasmic space] → an aldehyde[periplasmic space] + ammonium[periplasmic space] + hydrogen peroxide[periplasmic space]

Reactions known to produce the compound:

superoxide radicals degradation :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen
2 hydrogen peroxide → 2 H2O + oxygen

In Reactions of unknown directionality:

Not in pathways:
4 Fe2+ + oxygen + 6 H2O = 4 [FeO(OH)] monomer + 8 H+
2 Fe2+ + oxygen + 4 H2O = 2 [FeO(OH)] monomer + hydrogen peroxide + 4 H+

In Transport reactions:
oxygen[periplasmic space]oxygen[cytosol]

In Redox half-reactions:
oxygen[in] + 4 H+[in] + 4 e- → 2 H2O[in]

Enzymes inhibited by oxygen, sorted by the type of inhibition, are:

Inhibitor (Irreversible) of: pyruvate formate-lyase [Knappe84]

Inhibitor (Mechanism unknown) of: hydroxylamine reductase [Wolfe02] , quinolinate synthase [DraczynskaLusia92, Gardner91] , formate dehydrogenase [Axley90] , formate dehydrogenase-N [Enoch75]


References

Axley90: Axley MJ, Grahame DA, Stadtman TC (1990). "Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component." J Biol Chem 1990;265(30);18213-8. PMID: 2211698

DraczynskaLusia92: Draczynska-Lusiak B, Brown OR (1992). "Protein A of quinolinate synthetase is the site of oxygen poisoning of pyridine nucleotide coenzyme synthesis in Escherichia coli." Free Radic Biol Med 13(6);689-93. PMID: 1459486

Enoch75: Enoch HG, Lester RL (1975). "The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli." J Biol Chem 1975;250(17);6693-705. PMID: 1099093

Gardner91: Gardner PR, Fridovich I (1991). "Quinolinate synthetase: the oxygen-sensitive site of de novo NAD(P)+ biosynthesis." Arch Biochem Biophys 284(1);106-11. PMID: 1846509

Knappe84: Knappe J, Neugebauer FA, Blaschkowski HP, Ganzler M (1984). "Post-translational activation introduces a free radical into pyruvate formate-lyase." Proc Natl Acad Sci U S A 81(5);1332-5. PMID: 6369325

Wolfe02: Wolfe MT, Heo J, Garavelli JS, Ludden PW (2002). "Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli." J Bacteriol 184(21);5898-902. PMID: 12374823


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Sun Dec 21, 2014, BIOCYC14B.