Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Compound: oxygen

Systematic Name: O2

Abbrev Name: O2

Synonyms: oxygen molecule

Superclasses: a non-metabolic compound

Chemical Formula: O2

Molecular Weight: 31.999 Daltons

Monoisotopic Molecular Weight: 31.9898292442 Daltons

SMILES: O=O

InChI: InChI=1S/O2/c1-2

InChIKey: InChIKey=MYMOFIZGZYHOMD-UHFFFAOYSA-N

Unification Links: CAS:7782-44-7 , ChEBI:15379 , ChemSpider:952 , HMDB:HMDB01377 , IAF1260:33493 , KEGG:C00007 , MetaboLights:MTBLC15379 , PubChem:977

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 3.92

Reactions known to consume the compound:

3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate :
3-phenylpropanoate + NADH + oxygen + H+ → 3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)propanoate + NAD+
3-(3-hydroxyphenyl)propionate + NADH + H+ + oxygen → 3-(2,3-dihydroxyphenyl)propanoate + NAD+ + H2O
3-(2,3-dihydroxyphenyl)propanoate + oxygen → (2Z,4E)-2-hydroxy-6-oxonona-2,4-diene-1,9-dioate + H+

cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate :
2,3-dihydroxy-trans-cinnamate + oxygen → (2Z,4E,7E)-2-hydroxy-6-oxonona-2,4,7-triene-1,9-dioate + H+
trans-cinnamate + NADH + oxygen + H+ → (2E)-3-(5,6-dihydroxycyclohexa-1,3-dien-1-yl)prop-2-enoate + NAD+
3-hydroxy-trans-cinnamate + NADH + oxygen + H+ → 2,3-dihydroxy-trans-cinnamate + NAD+ + H2O

D-lactate to cytochrome bo oxidase electron transport , glycerol-3-phosphate to cytochrome bo oxidase electron transfer , NADH to cytochrome bo oxidase electron transfer I , NADH to cytochrome bo oxidase electron transfer II , proline to cytochrome bo oxidase electron transfer , pyruvate to cytochrome bo oxidase electron transfer , succinate to cytochrome bo oxidase electron transfer :
2 an ubiquinol[inner membrane] + 8 H+ + oxygen → 2 an ubiquinone[inner membrane] + 2 H2O + 8 H+[periplasmic space]

heme biosynthesis I (aerobic) :
protoporphyrinogen IX + 3 oxygen → protoporphyrin IX + 3 hydrogen peroxide
coproporphyrinogen III + oxygen + 2 H+ → protoporphyrinogen IX + 2 CO2 + 2 H2O

NAD biosynthesis I (from aspartate) :
L-aspartate + oxygen → hydrogen peroxide + α-iminosuccinate + H+

NADH to cytochrome bd oxidase electron transfer I , NADH to cytochrome bd oxidase electron transport II , pyruvate to cytochrome bd terminal oxidase electron transfer , succinate to cytochrome bd oxidase electron transfer :
2 an ubiquinol[inner membrane] + oxygen + 4 H+ → 2 an ubiquinone[inner membrane] + 2 H2O + 4 H+[periplasmic space]

phenylacetate degradation I (aerobic) :
phenylacetyl-CoA + NADPH + oxygen + H+ → 2-(1,2-epoxy-1,2-dihydrophenyl)acetyl-CoA + NADP+ + H2O

phenylethylamine degradation I :
2-phenylethylamine[periplasmic space] + H2O[periplasmic space] + oxygen[periplasmic space] → phenylacetaldehyde[periplasmic space] + ammonium[periplasmic space] + hydrogen peroxide[periplasmic space]

putrescine degradation II :
γ-glutamyl-L-putrescine + H2O + oxygen → 4-(γ-glutamylamino)butanal + hydrogen peroxide + ammonium

pyridoxal 5'-phosphate biosynthesis I :
pyridoxine 5'-phosphate + oxygen → hydrogen peroxide + pyridoxal 5'-phosphate

pyridoxal 5'-phosphate salvage I :
pyridoxine 5'-phosphate + oxygen → hydrogen peroxide + pyridoxal 5'-phosphate
pyridoxamine 5'-phosphate + oxygen + H2O → ammonium + hydrogen peroxide + pyridoxal 5'-phosphate

superpathway of heme biosynthesis from uroporphyrinogen-III :
protoporphyrinogen IX + 3 oxygen → protoporphyrin IX + 3 hydrogen peroxide
coproporphyrinogen III + oxygen + 2 H+ → protoporphyrinogen IX + 2 CO2 + 2 H2O

taurine degradation IV :
taurine + 2-oxoglutarate + oxygen → aminoacetaldehyde + sulfite + succinate + CO2 + H+

threonine degradation III (to methylglyoxal) :
aminoacetone[periplasmic space] + H2O[periplasmic space] + oxygen[periplasmic space] → methylglyoxal[periplasmic space] + ammonium[periplasmic space] + hydrogen peroxide[periplasmic space]

two-component alkanesulfonate monooxygenase :
an alkanesulfonate + FMNH2 + oxygen → an aldehyde + sulfite + FMN + H2O + 2 H+

ubiquinol-8 biosynthesis (prokaryotic) :
2-octaprenylphenol + NADPH + oxygen + H+ → 3-(all-trans-octaprenyl)benzene-1,2-diol + NADP+ + H2O
6-methoxy-3-methyl-2-all-trans-octaprenyl-1,4-benzoquinol + a reduced electron acceptor + oxygen → 3-demethylubiquinol-8 + an oxidized electron acceptor + H2O
2-methoxy-6-(all-trans-octaprenyl)phenol + NADPH + oxygen + H+ → 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + NADP+ + H2O

uracil degradation III :
uracil + FMNH2 + oxygen → (Z)-3-ureidoacrylate peracid + FMN + H+

Not in pathways:
a [50S ribosomal subunit protein L16]-L-arginine81 + 2-oxoglutarate + oxygen → a [50S ribosomal subunit protein L16]-(3R)-3-hydroxy-L-arginine81 + succinate + CO2
3-(N-morpholino)propanesulfonate + FMNH2 + oxygen → 3-(N-morpholino)propanal + sulfite + FMN + H2O + 2 H+
2 L-dehydro-ascorbate + oxygen → 2 cyclic-2,3-O-oxalyl-L-threonate + 2 H+
a [protein chain elongation factor EF-P]-L-lysine34 + NADPH + oxygen + H+ → a [protein chain elongation factor EF-P]-5-hydroxy-L-lysine34 + NADP+ + H2O
N-methyl-L-tryptophan + oxygen + H2O → L-tryptophan + hydrogen peroxide + formaldehyde
Cr6+ + 2 NAD(P)H + oxygen → Cr3+ + hydrogen peroxide + 2 NAD(P)+
thymine + FMNH2 + oxygen → (Z)-2-methylureidoacrylate peracid + FMN + H+
isethionate + FMNH2 + oxygen → glycolaldehyde + sulfite + FMN + H2O + 2 H+
1-butanesulfonate + FMNH2 + oxygen → butanal + sulfite + FMN + H2O + 2 H+
2 an ubiquinol + oxygen → 2 an ubiquinone + 2 H2O
2 Fe2+ + 2 oxygen → 2 superoxide + 2 Fe3+
a methylated nucleobase within DNA + 2-oxoglutarate + oxygen → a nucleobase within DNA + CO2 + formaldehyde + succinate + H+
a primary amine[periplasmic space] + H2O[periplasmic space] + oxygen[periplasmic space] → an aldehyde[periplasmic space] + ammonium[periplasmic space] + hydrogen peroxide[periplasmic space]
(S)-2-hydroxyglutarate + oxygen → 2-oxoglutarate + hydrogen peroxide
2,3-dihydroxybenzoate[periplasmic space] + oxygen[periplasmic space] → 2-carboxymuconate[periplasmic space] + 2 H+[periplasmic space]
4 Cu+[periplasmic space] + 4 H+[periplasmic space] + oxygen[periplasmic space] → 4 Cu2+[periplasmic space] + 2 H2O[periplasmic space]
quercetin + oxygen → 2-protocatechuoylphloroglucinolcarboxylate + carbon monoxide
4 Fe2+ + 4 H+ + oxygen → 4 Fe3+ + 2 H2O
N3-methylcytosine + 2-oxoglutarate + oxygen → cytosine + CO2 + formaldehyde + succinate + H+
1-ethyladenine + 2-oxoglutarate + oxygen → adenine + CO2 + acetaldehyde + succinate
N1-methyladenine + 2-oxoglutarate + oxygen → adenine + CO2 + formaldehyde + succinate
2 nitric oxide + NAD(P)H + 2 oxygen → 2 nitrate + NAD(P)+ + H+
a reduced d-type cytochrome + 2 H+ + oxygen → a d-type cytochrome + H2O
an aliphatic amine[periplasmic space] + H2O[periplasmic space] + oxygen[periplasmic space] → an aldehyde[periplasmic space] + ammonium[periplasmic space] + hydrogen peroxide[periplasmic space]

Reactions known to produce the compound:

superoxide radicals degradation :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen
2 hydrogen peroxide → 2 H2O + oxygen

In Reactions of unknown directionality:

Not in pathways:
4 Fe2+ + oxygen + 6 H2O = 4 [FeO(OH)] monomer + 8 H+
2 Fe2+ + oxygen + 4 H2O = 2 [FeO(OH)] monomer + hydrogen peroxide + 4 H+

In Transport reactions:
oxygen[periplasmic space]oxygen[cytosol]

In Redox half-reactions:
oxygen[in] + 4 H+[in] + 4 e- → 2 H2O[in]

Enzymes inhibited by oxygen, sorted by the type of inhibition, are:

Inhibitor (Irreversible) of: pyruvate formate-lyase [Knappe84]

Inhibitor (Mechanism unknown) of: hydroxylamine reductase [Wolfe02] , quinolinate synthase [DraczynskaLusia92, Gardner91] , formate dehydrogenase [Axley90] , formate dehydrogenase-N [Enoch75]


References

Axley90: Axley MJ, Grahame DA, Stadtman TC (1990). "Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component." J Biol Chem 1990;265(30);18213-8. PMID: 2211698

DraczynskaLusia92: Draczynska-Lusiak B, Brown OR (1992). "Protein A of quinolinate synthetase is the site of oxygen poisoning of pyridine nucleotide coenzyme synthesis in Escherichia coli." Free Radic Biol Med 13(6);689-93. PMID: 1459486

Enoch75: Enoch HG, Lester RL (1975). "The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli." J Biol Chem 1975;250(17);6693-705. PMID: 1099093

Gardner91: Gardner PR, Fridovich I (1991). "Quinolinate synthetase: the oxygen-sensitive site of de novo NAD(P)+ biosynthesis." Arch Biochem Biophys 284(1);106-11. PMID: 1846509

Knappe84: Knappe J, Neugebauer FA, Blaschkowski HP, Ganzler M (1984). "Post-translational activation introduces a free radical into pyruvate formate-lyase." Proc Natl Acad Sci U S A 81(5);1332-5. PMID: 6369325

Wolfe02: Wolfe MT, Heo J, Garavelli JS, Ludden PW (2002). "Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli." J Bacteriol 184(21);5898-902. PMID: 12374823


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Fri Nov 28, 2014, BIOCYC13B.