Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Compound: ribitol

Synonyms: meso-ribitol, adonitol, (2R,3s,4S)-pentane-1,2,3,4,5-pentol, D-ribitol

Superclasses: all carbohydrates a carbohydrate a glycan a sugar a sugar alcohol a pentitol
an alcohol a sugar alcohol a pentitol

Chemical Formula: C5H12O5

Molecular Weight: 152.15 Daltons

Monoisotopic Molecular Weight: 152.0684734957 Daltons

SMILES: C(O)C(O)C(O)C(O)CO

InChI: InChI=1S/C5H12O5/c6-1-3(8)5(10)4(9)2-7/h3-10H,1-2H2/t3-,4+,5-

InChIKey: InChIKey=HEBKCHPVOIAQTA-ZXFHETKHSA-N

Unification Links: CAS:488-81-3 , ChEBI:15963 , HMDB:HMDB00508 , KEGG:C00474 , MetaboLights:MTBLC15963

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -189.02

Reactions known to produce the compound:

Not in pathways:
a sugar phosphate + H2O → a sugar + phosphate

β-D-glucuronide and D-glucuronate degradation :
a β-D-glucuronoside + H2O → D-glucopyranuronate + an alcohol

glycerophosphodiester degradation :
a glycerophosphodiester + H2O → an alcohol + sn-glycerol 3-phosphate + H+


an alcohol + NAD+ + H2O ← an organic hydroperoxide + NADH + H+
an N-acetyl-β-D-hexosaminide + H2O → an N-acetyl-β-D-hexosamine + an alcohol
a carboxylic ester + H2O → an alcohol + a carboxylate + H+
an acetic ester + H2O → an alcohol + acetate + H+
an organic hydroperoxide + a reduced thioredoxin → an alcohol + an oxidized thioredoxin + H2O
a phosphate monoester[periplasmic space] + H2O[periplasmic space]an alcohol[periplasmic space] + phosphate[periplasmic space]
a phosphate monoester[periplasmic space] + H2O[periplasmic space]an alcohol[periplasmic space] + phosphate[periplasmic space]

In Reactions of unknown directionality:

Not in pathways:
an alcohol + NADP+ = an aldehyde + NADPH + H+

In Transport reactions:
a [PTS enzyme I]-Nπ-phospho-L-histidine + a sugar[periplasmic space] → a [PTS enzyme I]-L-histidine + a sugar phosphate[cytosol]

Enzymes inhibited by ribitol, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: L-arabinose isomerase [Patrick68]

Inhibitor (Mechanism unknown) of: D-arabinose isomerase [Boulter73]

In Growth Media: PMA carbon source test + D-ribitol


References

Boulter73: Boulter JR, Gielow WO (1973). "Properties of D-arabinose isomerase purified from two strains of Escherichia coli." J Bacteriol 113(2);687-96. PMID: 4632320

Patrick68: Patrick JW, Lee N (1968). "Purification and properties of an L-arabinose isomerase from Escherichia coli." J Biol Chem 1968;243(16);4312-8. PMID: 4878429


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Sat Nov 22, 2014, BIOCYC13A.