Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015

Escherichia coli K-12 substr. MG1655 Protein: CRP-cAMP DNA-binding transcriptional dual regulator

Gene: crp Accession Numbers: EG10164 (EcoCyc), b3357, ECK3345

Synonyms: cap, csm, gurB, CRP-cAMP

Regulation Summary Diagram: ?

Subunit composition of CRP-cAMP DNA-binding transcriptional dual regulator = [(Crp)2][cyclic-AMP]
         CRP transcriptional dual regulator = (Crp)2 (summary available)
                 CRP transcriptional dual regulator = Crp

The transcriptional dual regulator CRP, "cAMP receptor protein," also called CAP, "catabolite gene activator protein," regulates the expression of over 180 genes [Grainger05, Robison98, Zheng04] in E. coli. Many of these genes are involved in the catabolism of secondary carbon sources (for reviews, see [Fic08, Deutscher08, Gorke08a, Kolb93]. In addition, CRP is involved in many other processes, such as osmoregulation [Landis99, Balsalobre06], stringent response [Johansson00], biofilm formation [Jackson02], virulence [Balsalobre06], nitrogen assimilation [Mao07, Paul07, Tian01], iron uptake [Zhang05], competence [Sinha09], multidrug resistance to antibiotics [Nishino08a, Hirakawa06], and expression of CyaR sRNA [De09]. Transcriptome analyses have been performed [Khankal09, GutierrezRios07, Zheng04, Gosset04]. Expression of crp is positively and negatively autoregulated [Aiba83, Hanamura92]; repression of crp requires Fis [GonzalezGil98]. CRP activates a gene potentially related to persistence [Uppal14].

CRP was the first purified transcriptional regulator and the first for which the structure was solved [Zubay70, Emmer70, McKay81, Aiba82, Goldberg88]. CRP is activated as a DNA-binding protein by binding of its allosteric effector, cAMP [Zubay70, McKay81, Blaszczyk01].

Protein structure and allosteric activation

CRP belongs to the CRP-FNR superfamily of transcription factors [Korner03, Green01]. The crystal structures of cAMP-CRP [McKay82, Weber87, Passner00], cAMP-CRP bound to DNA [Schultz91, Parkinson96, Passner97, Huang13], the cAMP-CRP-α-CTD-DNA complex [Benoff02], and the solution structure [Popovych09], as well as the crystal structure of apo-CRP [Sharma09], have been solved. CRP is a homodimer and consists of two domains connected by a short hinge region. The C-terminal α-helical DNA-binding domain carries a characteristic helix-turn-helix motif. It dimerizes in apo-CRP, with the DNA recognition helix F buried within its core [Sharma09]. The N-terminal dimerization domain mainly consists of β-sheets and carries a hydrophobic pocket for binding of cAMP. A long α-helix, termed the C-helix, forms an intersubunit coiled-coil. This helix plays a central role in the allosteric activation of CRP. Allostery arises as a natural consequence of changes in global low-frequency protein fluctuations on ligand binding, and there are conserved residues crucial for allosteric control [Rodgers13]. After binding of cAMP, the signal is propagated through a lengthening and reorientation of the C-helix to the DNA-binding domain, resulting in the liberation of the DNA recognition helix [Popovych09, Sharma09].

Mechanism of transcriptional regulation

CRP binds to a 22-bp symmetrical site [Ebright89] and induces a severe bend upon binding, with an angle of ∼80° [Schultz91, Parkinson96, Wu, Chen01]. Two regions of CRP, AR1 ("activation region 1"), located in the C-terminal domain [Zhou93a, Niu94], and AR2 [Niu96], located in the N-terminal domain, are known to interact with RNA polymerase (RNAP).

Promoters that are activated by cAMP-CRP can be grouped into three classes, termed class I, class II, and class III promoters [Busby99]. Class I- and class II-dependent promoters require one cAMP-CRP for activation and have a single DNA-binding site located upstream of the RNAP-binding site, centered near position -93, -83, -72, or -62 of class I promoters [Ushida90, Gaston90, Tebbutt02] and overlapping the RNAP-binding site of class II promoters [Busby99]. At class I promoters, AR1 of the downstream subunit of the CRP dimer interacts with the α-CTD of RNAP [Zhou94a], thereby increasing the affinity of RNAP for the promoter DNA [Igarashi91, Savery96, Ebright93].

Class II-dependent promoters require AR1 of the upstream subunit and AR2 of the downstream subunit of CRP. AR1 recruits α-CTD to the DNA region upstream of the bound CRP dimer, while AR2 interacts with α-NTD of RNAP [Savery96, Niu96, Savery98]. Class III promoters require multiple activator molecules, that is, either two or more CAP dimers or one CRP dimer and additional activator proteins synergistically activate transcription [Barnard04, Beatty03]. Dependent on the localization of its binding site, CRP functions by a class I or class II mechanism at class III promoters or by a more complex mechanism which can involve direct interactions with the second activator [Belyaeva00, Wade01, Wickstrum05], or CRP exerts its function by DNA bending [Savery96, Busby99, Lobell91].

CRP represses transcription by promoter occlusion [Kolb93], by exclusion of an activator protein [Polayes88], through the interaction with a repressor protein in an antiactivation mechanism [Mollegaard93, ValentinHansen96, McNeill07, Perini96] or by hindering promoter clearance [Liu04c, Rostoks00].

Catabolite repression and inducer exclusion

Catabolite repression in E. coli is mediated by the interplay of CRP, adenylate cyclase, cAMP, and the glucose-specific enzyme IIA (EIIAGlc) of the phosphoenolpyruvate:sugar phosphotransferase system [Deutscher08, Deutscher06, Gorke08a]. In the absence of rapidly metabolizable carbon sources, such as glucose, EIIAGlc is phosphorylated [Hogema98] and activates adenylate cyclase [Feucht80, Reddy98], resulting in an elevated level of cAMP [Park06a, Bettenbrock07]. Due to the autoregulation of crp [Aiba83, Ishizuka94, Hanamura92], cAMP-CRP levels increase. In addition, in the presence of unphosphorylated EIIAGlc, inducer is transported into the cell, leading to the inactivation of the corresponding repressor molecules [Saier89][Magasanik70*]. Therefore, transcription of catabolic genes is switched on by cAMP-CRP.

If glucose is available, EIIAGlc is predominantly dephosphorylated [Hogema98]. As a consequence, adenylate cyclase is not activated, resulting in a reduced level of cAMP. Due to the autoregulation of crp, cAMP-CRP levels decrease [Hanamura91]. In addition, EIIAGlc blocks the uptake of inducer by blocking the transport systems ("inducer exclusion") [Nelson83, Osumi82, Dills82, Sondej02]. Thus, transcription of catabolic genes is switched off. cAMP not only mediates carbon metabolism but also plays a physiological role to ensure that proteomic resources are spent on distinct metabolic pathways as needed in different nutrient environments [You13]. α-Keto-acids inhibit cAMP production [You13].

CRP has been adapted to respond to different external and internal stimuli according to the particular ecological niches occupied by the bacterium [Green14].


CRP was engineered to prove the enhanced strain osmotolerance phenotype based on several random mutagenesis studies. All variants showed much higher osmotolerance towards NaCl and others osmotic stressors, such as KCl, glucose, and sucrose, than the wild type [Zhang12a]. Using DNA microarray analysis, genes involved in colonic acid biosynthesis were identified as upregulated in the absence of salt stress, whereas carbohydrate metabolism genes were differentially expressed under NaCl stress in an MT6 (CRP mutant with the best osmotolerance towards NaCl) mutant compared to the wild type [Zhang12a].

Magasanik: doi:10.1101/087969100.1.189

*Magasanik, 1970. B. Magasanik, Glucose effects: inducer exclusion and repression. In: J. Beckwith and D. Zipser, Editors, The Lactose Operon, Cold Spring Harbor Laboratory, New York (1970), pp. 189-219.

Map Position: [3,484,142 -> 3,484,774] (75.09 centisomes)
Length: 633 bp / 210 aa

Unification Links: ASAP:ABE-0010970 , CGSC:906 , EchoBASE:EB0162 , EcoGene:EG10164 , OU-Microarray:b3357 , PortEco:crp , RegulonDB:EG10164

In Paralogous Gene Group: 278 (2 members)

In Reactions of unknown directionality:

Not in pathways:
Crp + cyclic-AMP = CRP-cAMP DNA-binding transcriptional dual regulator

Gene-Reaction Schematic: ?

Genetic Regulation Schematic: ?

GO Terms:

Biological Process: GO:0045893 - positive regulation of transcription, DNA-templated Inferred from experiment [Zubay70]
Molecular Function: GO:0043565 - sequence-specific DNA binding Inferred from experiment [Ebright89]

MultiFun Terms: information transfer RNA related Transcription related
regulation genetic unit regulated global
regulation type of regulation transcriptional level activator
regulation type of regulation transcriptional level repressor

DNA binding site length: 22 base-pairs

Symmetry: Inverted Repeat

Consensus DNA Binding Sequence: AAATGTGAtctagaTCACATTT

Regulated Transcription Units (276 total): ?


Subunit of CRP-cAMP DNA-binding transcriptional dual regulator: CRP transcriptional dual regulator

Synonyms: cap, csm, gurB

Gene: crp Accession Numbers: EG10164 (EcoCyc), b3357, ECK3345

Locations: cytosol

Subunit composition of CRP transcriptional dual regulator = [Crp]2
         CRP transcriptional dual regulator = Crp

Map Position: [3,484,142 -> 3,484,774] (75.09 centisomes)
Length: 633 bp / 210 aa

Molecular Weight of Polypeptide: 23.64 kD (from nucleotide sequence)

pI: 8.25

GO Terms:

Biological Process: GO:0006351 - transcription, DNA-templated Inferred from experiment Inferred by computational analysis [UniProtGOA11, Shaw83, Wade01, Belyaeva00, Wickstrum05, Beatty03, Williams96, Ramseier95a, Zheng04]
GO:0045013 - carbon catabolite repression of transcription Inferred from experiment [Cirino06]
GO:0045892 - negative regulation of transcription, DNA-templated Inferred from experiment [Zheng04]
GO:0045893 - positive regulation of transcription, DNA-templated Inferred from experiment [Zheng04]
GO:0006355 - regulation of transcription, DNA-templated Inferred by computational analysis [UniProtGOA11, GOA01]
Molecular Function: GO:0005515 - protein binding Inferred from experiment [Rajagopala14, Butland05]
GO:0000166 - nucleotide binding Inferred by computational analysis [UniProtGOA11]
GO:0003677 - DNA binding Inferred by computational analysis [UniProtGOA11, GOA01]
GO:0003700 - sequence-specific DNA binding transcription factor activity Inferred by computational analysis [GOA01]
GO:0030552 - cAMP binding Inferred by computational analysis [UniProtGOA11]
Cellular Component: GO:0005829 - cytosol Inferred from experiment Inferred by computational analysis [DiazMejia09, Ishihama08]
GO:0005622 - intracellular Inferred by computational analysis [GOA01]

MultiFun Terms: information transfer RNA related Transcription related
regulation genetic unit regulated global
regulation type of regulation transcriptional level activator
regulation type of regulation transcriptional level repressor

Unification Links: DIP:DIP-29232N , EcoliWiki:b3357 , Mint:MINT-1249660 , ModBase:P0ACJ8 , PR:PRO_000022333 , Pride:P0ACJ8 , Protein Model Portal:P0ACJ8 , RefSeq:NP_417816 , SMR:P0ACJ8 , String:511145.b3357 , UniProt:P0ACJ8

Relationship Links: InterPro:IN-FAMILY:IPR000595 , InterPro:IN-FAMILY:IPR001808 , InterPro:IN-FAMILY:IPR011991 , InterPro:IN-FAMILY:IPR012318 , InterPro:IN-FAMILY:IPR014710 , InterPro:IN-FAMILY:IPR018335 , InterPro:IN-FAMILY:IPR018488 , InterPro:IN-FAMILY:IPR018490 , PDB:Structure:1CGP , PDB:Structure:1G6N , PDB:Structure:1HW5 , PDB:Structure:1I5Z , PDB:Structure:1I6X , PDB:Structure:1J59 , PDB:Structure:1LB2 , PDB:Structure:1O3Q , PDB:Structure:1O3R , PDB:Structure:1O3S , PDB:Structure:1O3T , PDB:Structure:1RUN , PDB:Structure:1RUO , PDB:Structure:1ZRC , PDB:Structure:1ZRD , PDB:Structure:1ZRE , PDB:Structure:1ZRF , PDB:Structure:2CGP , PDB:Structure:2GAP , PDB:Structure:2GZW , PDB:Structure:2WC2 , PDB:Structure:3FWE , PDB:Structure:3HIF , PDB:Structure:3IYD , PDB:Structure:3KCC , PDB:Structure:3N4M , PDB:Structure:3QOP , PDB:Structure:3RDI , PDB:Structure:3ROU , PDB:Structure:3RPQ , PDB:Structure:3RYP , PDB:Structure:3RYR , PDB:Structure:4BH9 , PDB:Structure:4BHP , Pfam:IN-FAMILY:PF00027 , Pfam:IN-FAMILY:PF00325 , Prints:IN-FAMILY:PR00034 , Prosite:IN-FAMILY:PS00042 , Prosite:IN-FAMILY:PS00888 , Prosite:IN-FAMILY:PS00889 , Prosite:IN-FAMILY:PS50042 , Prosite:IN-FAMILY:PS51063 , Smart:IN-FAMILY:SM00100 , Smart:IN-FAMILY:SM00419

In Reactions of unknown directionality:

Not in pathways:
Crp + cyclic-AMP = CRP-cAMP DNA-binding transcriptional dual regulator


Citations: [Hanamura92, Ramseier95a]

Gene Citations: [Hanamura91, Ishizuka94]

Gene Local Context (not to scale): ?

Transcription Units:


3/2/1998 (pkarp) Merged genes G51/b3357 and EG10164/crp
10/20/97 Gene b3357 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10164.


Aiba82: Aiba H, Fujimoto S, Ozaki N (1982). "Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein." Nucleic Acids Res 1982;10(4);1345-61. PMID: 6280140

Aiba83: Aiba H (1983). "Autoregulation of the Escherichia coli crp gene: CRP is a transcriptional repressor for its own gene." Cell 32(1);141-9. PMID: 6297782

Balsalobre06: Balsalobre C, Johansson J, Uhlin BE (2006). "Cyclic AMP-dependent osmoregulation of crp gene expression in Escherichia coli." J Bacteriol 188(16);5935-44. PMID: 16885462

Barnard04: Barnard A, Wolfe A, Busby S (2004). "Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes." Curr Opin Microbiol 7(2);102-8. PMID: 15063844

Beatty03: Beatty CM, Browning DF, Busby SJ, Wolfe AJ (2003). "Cyclic AMP receptor protein-dependent activation of the Escherichia coli acsP2 promoter by a synergistic class III mechanism." J Bacteriol 185(17);5148-57. PMID: 12923087

Belyaeva00: Belyaeva TA, Wade JT, Webster CL, Howard VJ, Thomas MS, Hyde EI, Busby SJ (2000). "Transcription activation at the Escherichia coli melAB promoter: the role of MelR and the cyclic AMP receptor protein." Mol Microbiol 36(1);211-22. PMID: 10760178

Benoff02: Benoff B, Yang H, Lawson CL, Parkinson G, Liu J, Blatter E, Ebright YW, Berman HM, Ebright RH (2002). "Structural basis of transcription activation: the CAP-alpha CTD-DNA complex." Science 297(5586);1562-6. PMID: 12202833

Bettenbrock07: Bettenbrock K, Sauter T, Jahreis K, Kremling A, Lengeler JW, Gilles ED (2007). "Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12." J Bacteriol 189(19);6891-900. PMID: 17675376

Blaszczyk01: Blaszczyk U, Polit A, Guz A, Wasylewski Z (2001). "Interaction of cAMP receptor protein from Escherichia coli with cAMP and DNA studied by dynamic light scattering and time-resolved fluorescence anisotropy methods." J Protein Chem 20(8);601-10. PMID: 11890200

Buchet99: Buchet A, Nasser W, Eichler K, Mandrand-Berthelot MA (1999). "Positive co-regulation of the Escherichia coli carnitine pathway cai and fix operons by CRP and the CaiF activator." Mol Microbiol 1999;34(3);562-75. PMID: 10564497

Busby99: Busby S, Ebright RH (1999). "Transcription activation by catabolite activator protein (CAP)." J Mol Biol 293(2);199-213. PMID: 10550204

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Chen01: Chen S, Gunasekera A, Zhang X, Kunkel TA, Ebright RH, Berman HM (2001). "Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: alteration of DNA binding specificity through alteration of DNA kinking." J Mol Biol 314(1);75-82. PMID: 11724533

Cirino06: Cirino PC, Chin JW, Ingram LO (2006). "Engineering Escherichia coli for xylitol production from glucose-xylose mixtures." Biotechnol Bioeng 95(6);1167-76. PMID: 16838379

De09: De Lay N, Gottesman S (2009). "The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior." J Bacteriol 191(2);461-76. PMID: 18978044

Deutscher06: Deutscher J, Francke C, Postma PW (2006). "How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria." Microbiol Mol Biol Rev 70(4);939-1031. PMID: 17158705

Deutscher08: Deutscher J (2008). "The mechanisms of carbon catabolite repression in bacteria." Curr Opin Microbiol 11(2);87-93. PMID: 18359269

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Dills82: Dills SS, Schmidt MR, Saier MH (1982). "Regulation of lactose transport by the phosphoenolpyruvate-sugar phosphotransferase system in membrane vesicles of Escherichia coli." J Cell Biochem 18(2);239-44. PMID: 7040431

Ebright89: Ebright RH, Ebright YW, Gunasekera A (1989). "Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site." Nucleic Acids Res 17(24);10295-305. PMID: 2557589

Ebright93: Ebright RH (1993). "Transcription activation at Class I CAP-dependent promoters." Mol Microbiol 8(5);797-802. PMID: 8394979

Emmer70: Emmer M, deCrombrugghe B, Pastan I, Perlman R (1970). "Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes." Proc Natl Acad Sci U S A 66(2);480-7. PMID: 4317918

Feucht80: Feucht BU, Saier MH (1980). "Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium." J Bacteriol 141(2);603-10. PMID: 6245052

Fic08: Fic E, Bonarek P, Gorecki A, Kedracka-Krok S, Mikolajczak J, Polit A, Tworzydlo M, Dziedzicka-Wasylewska M, Wasylewski Z (2008). "cAMP Receptor Protein from Escherichia coli as a Model of Signal Transduction in Proteins - A Review." J Mol Microbiol Biotechnol. PMID: 19033675

Gaston90: Gaston K, Bell A, Kolb A, Buc H, Busby S (1990). "Stringent spacing requirements for transcription activation by CRP." Cell 62(4);733-43. PMID: 2167178

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

Goldberg88: Goldberg SR, Henningfield JE (1988). "Reinforcing effects of nicotine in humans and experimental animals responding under intermittent schedules of i.v. drug injection." Pharmacol Biochem Behav 30(1);227-34. PMID: 3051048

GonzalezGil98: Gonzalez-Gil G, Kahmann R, Muskhelishvili G (1998). "Regulation of crp transcription by oscillation between distinct nucleoprotein complexes." EMBO J 17(10);2877-85. PMID: 9582281

Gorke08a: Gorke B, Stulke J (2008). "Carbon catabolite repression in bacteria: many ways to make the most out of nutrients." Nat Rev Microbiol 6(8);613-24. PMID: 18628769

Gosset04: Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH (2004). "Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli." J Bacteriol 186(11);3516-24. PMID: 15150239

Grainger05: Grainger DC, Hurd D, Harrison M, Holdstock J, Busby SJ (2005). "Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome." Proc Natl Acad Sci U S A 102(49);17693-8. PMID: 16301522

Green01: Green J, Scott C, Guest JR (2001). "Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP." Adv Microb Physiol 2001;44;1-34. PMID: 11407111

Green14: Green J, Stapleton MR, Smith LJ, Artymiuk PJ, Kahramanoglou C, Hunt DM, Buxton RS (2014). "Cyclic-AMP and bacterial cyclic-AMP receptor proteins revisited: adaptation for different ecological niches." Curr Opin Microbiol 18;1-7. PMID: 24509484

GutierrezRios07: Gutierrez-Rios RM, Freyre-Gonzalez JA, Resendis O, Collado-Vides J, Saier M, Gosset G (2007). "Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli." BMC Microbiol 7;53. PMID: 17559662

Hanamura91: Hanamura A, Aiba H (1991). "Molecular mechanism of negative autoregulation of Escherichia coli crp gene." Nucleic Acids Res 1991;19(16);4413-9. PMID: 1715982

Hanamura92: Hanamura A, Aiba H (1992). "A new aspect of transcriptional control of the Escherichia coli crp gene: positive autoregulation." Mol Microbiol 1992;6(17);2489-97. PMID: 1328816

Hirakawa06: Hirakawa H, Inazumi Y, Senda Y, Kobayashi A, Hirata T, Nishino K, Yamaguchi A (2006). "N-acetyl-d-glucosamine induces the expression of multidrug exporter genes, mdtEF, via catabolite activation in Escherichia coli." J Bacteriol 188(16);5851-8. PMID: 16885453

Hogema98: Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Aiba H, Postma PW (1998). "Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc." Mol Microbiol 30(3);487-98. PMID: 9822815

Holcroft00: Holcroft CC, Egan SM (2000). "Roles of cyclic AMP receptor protein and the carboxyl-terminal domain of the alpha subunit in transcription activation of the Escherichia coli rhaBAD operon." J Bacteriol 182(12);3529-35. PMID: 10852886

Huang13: Huang J, Liu J, Tao W, Yang Z, Qiu R, Yu S, Ji C (2013). "Crystallization and preliminary X-ray analysis of the CRP-cAMP-DNA (full length) complex." Acta Crystallogr Sect F Struct Biol Cryst Commun 69(Pt 5);562-5. PMID: 23695578

Igarashi91: Igarashi K, Ishihama A (1991). "Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP." Cell 65(6);1015-22. PMID: 1646077

Ishihama08: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Ishizuka94: Ishizuka H, Hanamura A, Inada T, Aiba H (1994). "Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of autoregulation of the crp gene." EMBO J 1994;13(13);3077-82. PMID: 7518773

Jackson02: Jackson DW, Simecka JW, Romeo T (2002). "Catabolite repression of Escherichia coli biofilm formation." J Bacteriol 184(12);3406-10. PMID: 12029060

Johansson00: Johansson J, Balsalobre C, Wang SY, Urbonaviciene J, Jin DJ, Sonden B, Uhlin BE (2000). "Nucleoid proteins stimulate stringently controlled bacterial promoters: a link between the cAMP-CRP and the (p)ppGpp regulons in Escherichia coli." Cell 102(4);475-85. PMID: 10966109

Khankal09: Khankal R, Chin JW, Ghosh D, Cirino PC (2009). "Transcriptional effects of CRP* expression in Escherichia coli." J Biol Eng 3;13. PMID: 19703305

Kolb93: Kolb A, Busby S, Buc H, Garges S, Adhya S (1993). "Transcriptional regulation by cAMP and its receptor protein." Annu Rev Biochem 1993;62;749-95. PMID: 8394684

Korner03: Korner H, Sofia HJ, Zumft WG (2003). "Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs." FEMS Microbiol Rev 27(5);559-92. PMID: 14638413

Landis99: Landis L, Xu J, Johnson RC (1999). "The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli." Genes Dev 13(23);3081-91. PMID: 10601034

Liu04c: Liu M, Garges S, Adhya S (2004). "lacP1 promoter with an extended -10 motif. Pleiotropic effects of cyclic AMP protein at different steps of transcription initiation." J Biol Chem 279(52);54552-7. PMID: 15385551

Lobell91: Lobell RB, Schleif RF (1991). "AraC-DNA looping: orientation and distance-dependent loop breaking by the cyclic AMP receptor protein." J Mol Biol 218(1);45-54. PMID: 1848302

Mao07: Mao XJ, Huo YX, Buck M, Kolb A, Wang YP (2007). "Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli." Nucleic Acids Res 35(5);1432-40. PMID: 17284458

McKay81: McKay DB, Steitz TA (1981). "Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA." Nature 290(5809);744-9. PMID: 6261152

McKay82: McKay DB, Weber IT, Steitz TA (1982). "Structure of catabolite gene activator protein at 2.9-A resolution. Incorporation of amino acid sequence and interactions with cyclic AMP." J Biol Chem 257(16);9518-24. PMID: 6286624

McNeill07: McNeill R, Sare GM, Manoharan M, Testa HJ, Mann DM, Neary D, Snowden JS, Varma AR (2007). "Accuracy of single-photon emission computed tomography in differentiating frontotemporal dementia from Alzheimer's disease." J Neurol Neurosurg Psychiatry 78(4);350-5. PMID: 17158559

Mollegaard93: Mollegaard NE, Rasmussen PB, Valentin-Hansen P, Nielsen PE (1993). "Characterization of promoter recognition complexes formed by CRP and CytR for repression and by CRP and RNA polymerase for activation of transcription on the Escherichia coli deoP2 promoter." J Biol Chem 268(23);17471-7. PMID: 8394345

Nelson83: Nelson SO, Wright JK, Postma PW (1983). "The mechanism of inducer exclusion. Direct interaction between purified III of the phosphoenolpyruvate:sugar phosphotransferase system and the lactose carrier of Escherichia coli." EMBO J 2(5);715-720. PMID: 16453452

Nishino08a: Nishino K, Senda Y, Yamaguchi A (2008). "CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes." J Antibiot (Tokyo) 61(3);120-7. PMID: 18503189

Niu94: Niu W, Zhou Y, Dong Q, Ebright YW, Ebright RH (1994). "Characterization of the activating region of Escherichia coli catabolite gene activator protein (CAP). I. Saturation and alanine-scanning mutagenesis." J Mol Biol 243(4);595-602. PMID: 7966284

Niu96: Niu W, Kim Y, Tau G, Heyduk T, Ebright RH (1996). "Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase." Cell 87(6);1123-34. PMID: 8978616

Osumi82: Osumi T, Saier MH (1982). "Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease." Proc Natl Acad Sci U S A 79(5);1457-61. PMID: 7041121

Park06a: Park YH, Lee BR, Seok YJ, Peterkofsky A (2006). "In vitro reconstitution of catabolite repression in Escherichia coli." J Biol Chem 281(10);6448-54. PMID: 16407219

Parkinson96: Parkinson G, Wilson C, Gunasekera A, Ebright YW, Ebright RE, Berman HM (1996). "Structure of the CAP-DNA complex at 2.5 angstroms resolution: a complete picture of the protein-DNA interface." J Mol Biol 260(3);395-408. PMID: 8757802

Passner00: Passner JM, Schultz SC, Steitz TA (2000). "Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution." J Mol Biol 304(5);847-59. PMID: 11124031

Passner97: Passner JM, Steitz TA (1997). "The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer." Proc Natl Acad Sci U S A 94(7);2843-7. PMID: 9096308

Paul07: Paul L, Mishra PK, Blumenthal RM, Matthews RG (2007). "Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR." BMC Microbiol 7;2. PMID: 17233899

Perini96: Perini LT, Doherty EA, Werner E, Senear DF (1996). "Multiple specific CytR binding sites at the Escherichia coli deoP2 promoter mediate both cooperative and competitive interactions between CytR and cAMP receptor protein." J Biol Chem 271(52);33242-55. PMID: 8969182

Polayes88: Polayes DA, Rice PW, Garner MM, Dahlberg JE (1988). "Cyclic AMP-cyclic AMP receptor protein as a repressor of transcription of the spf gene of Escherichia coli." J Bacteriol 1988;170(7);3110-4. PMID: 2454912

Popovych09: Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG (2009). "Structural basis for cAMP-mediated allosteric control of the catabolite activator protein." Proc Natl Acad Sci U S A 106(17);6927-32. PMID: 19359484

Rajagopala14: Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Hauser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014). "The binary protein-protein interaction landscape of Escherichia coli." Nat Biotechnol 32(3);285-90. PMID: 24561554

Ramseier95a: Ramseier TM, Saier MH (1995). "cAMP-cAMP receptor protein complex: five binding sites in the control region of the Escherichia coli mannitol operon." Microbiology 141 ( Pt 8);1901-7. PMID: 7551052

Reddy98: Reddy P, Kamireddi M (1998). "Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIA(Glc) of the phosphoenolpyruvate:sugar phosphotransferase system." J Bacteriol 180(3);732-6. PMID: 9457881

Robison98: Robison K, McGuire AM, Church GM (1998). "A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome." J Mol Biol 284(2);241-54. PMID: 9813115

Rodgers13: Rodgers TL, Townsend PD, Burnell D, Jones ML, Richards SA, McLeish TC, Pohl E, Wilson MR, Cann MJ (2013). "Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors." PLoS Biol 11(9);e1001651. PMID: 24058293

Rostoks00: Rostoks N, Park S, Choy HE (2000). "Reiterative transcription initiation from galP2 promoter of Escherichia coli." Biochim Biophys Acta 1491(1-3);185-95. PMID: 10760580

Saier89: Saier MH (1989). "Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system." Microbiol Rev 53(1);109-20. PMID: 2651862

Savery96: Savery N, Rhodius V, Busby S (1996). "Protein-protein interactions during transcription activation: the case of the Escherichia coli cyclic AMP receptor protein." Philos Trans R Soc Lond B Biol Sci 351(1339);543-50. PMID: 8735277

Savery98: Savery NJ, Lloyd GS, Kainz M, Gaal T, Ross W, Ebright RH, Gourse RL, Busby SJ (1998). "Transcription activation at Class II CRP-dependent promoters: identification of determinants in the C-terminal domain of the RNA polymerase alpha subunit." EMBO J 17(12);3439-47. PMID: 9628879

Schultz91: Schultz SC, Shields GC, Steitz TA (1991). "Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees." Science 253(5023);1001-7. PMID: 1653449

Sharma09: Sharma H, Yu S, Kong J, Wang J, Steitz TA (2009). "Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding." Proc Natl Acad Sci U S A 106(39);16604-9. PMID: 19805344

Shaw83: Shaw DJ, Rice DW, Guest JR (1983). "Homology between CAP and Fnr, a regulator of anaerobic respiration in Escherichia coli." J Mol Biol 166(2);241-7. PMID: 6343617

Sinha09: Sinha S, Cameron AD, Redfield RJ (2009). "Sxy induces a CRP-S regulon in Escherichia coli." J Bacteriol 191(16);5180-95. PMID: 19502395

Sondej02: Sondej M, Weinglass AB, Peterkofsky A, Kaback HR (2002). "Binding of enzyme IIAGlc, a component of the phosphoenolpyruvate:sugar phosphotransferase system, to the Escherichia coli lactose permease." Biochemistry 41(17);5556-65. PMID: 11969416

Tebbutt02: Tebbutt J, Rhodius VA, Webster CL, Busby SJ (2002). "Architectural requirements for optimal activation by tandem CRP molecules at a class I CRP-dependent promoter." FEMS Microbiol Lett 210(1);55-60. PMID: 12023077

Tian01: Tian ZX, Li QS, Buck M, Kolb A, Wang YP (2001). "The CRP-cAMP complex and downregulation of the glnAp2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in Escherichia coli." Mol Microbiol 41(4);911-24. PMID: 11532153

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

Uppal14: Uppal S, Shetty DM, Jawali N (2014). "Cyclic AMP receptor protein (CRP) regulates cspD, a bacterial toxin gene, in Escherichia coli." J Bacteriol. PMID: 24509317

Ushida90: Ushida C, Aiba H (1990). "Helical phase dependent action of CRP: effect of the distance between the CRP site and the -35 region on promoter activity." Nucleic Acids Res 18(21);6325-30. PMID: 2173826

ValentinHansen96: Valentin-Hansen P, Sogaard-Andersen L, Pedersen H (1996). "A flexible partnership: the CytR anti-activator and the cAMP-CRP activator protein, comrades in transcription control." Mol Microbiol 20(3);461-6. PMID: 8736525

Wade01: Wade JT, Belyaeva TA, Hyde EI, Busby SJ (2001). "A simple mechanism for co-dependence on two activators at an Escherichia coli promoter." EMBO J 20(24);7160-7. PMID: 11742992

Weber87: Weber IT, Steitz TA (1987). "Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution." J Mol Biol 198(2);311-26. PMID: 2828639

Wickstrum05: Wickstrum JR, Santangelo TJ, Egan SM (2005). "Cyclic AMP receptor protein and RhaR synergistically activate transcription from the L-rhamnose-responsive rhaSR promoter in Escherichia coli." J Bacteriol 187(19);6708-18. PMID: 16166533

Williams96: Williams RM, Rhodius VA, Bell AI, Kolb A, Busby SJ (1996). "Orientation of functional activating regions in the Escherichia coli CRP protein during transcription activation at class II promoters." Nucleic Acids Res 24(6);1112-8. PMID: 8604346

Won09: Won HS, Lee YS, Lee SH, Lee BJ (2009). "Structural overview on the allosteric activation of cyclic AMP receptor protein." Biochim Biophys Acta 1794(9);1299-308. PMID: 19439203

Wu: Wu HM, Crothers DM "The locus of sequence-directed and protein-induced DNA bending." Nature 308(5959);509-13. PMID: 6323997

You13: You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang YP, Lenz P, Yan D, Hwa T (2013). "Coordination of bacterial proteome with metabolism by cyclic AMP signalling." Nature 500(7462);301-6. PMID: 23925119

Zhang05: Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH (2005). "Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli." J Bacteriol 187(3);980-90. PMID: 15659676

Zhang12a: Zhang H, Chong H, Ching CB, Jiang R (2012). "Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance." Biotechnol Bioeng 109(5);1165-72. PMID: 22179860

Zheng04: Zheng D, Constantinidou C, Hobman JL, Minchin SD (2004). "Identification of the CRP regulon using in vitro and in vivo transcriptional profiling." Nucleic Acids Res 32(19);5874-93. PMID: 15520470

Zhou93a: Zhou Y, Zhang X, Ebright RH (1993). "Identification of the activating region of catabolite gene activator protein (CAP): isolation and characterization of mutants of CAP specifically defective in transcription activation." Proc Natl Acad Sci U S A 90(13);6081-5. PMID: 8392187

Zhou94a: Zhou Y, Pendergrast PS, Bell A, Williams R, Busby S, Ebright RH (1994). "The functional subunit of a dimeric transcription activator protein depends on promoter architecture." EMBO J 13(19);4549-57. PMID: 7925296

Zubay70: Zubay G, Schwartz D, Beckwith J (1970). "Mechanism of activation of catabolite-sensitive genes: a positive control system." Proc Natl Acad Sci U S A 66(1);104-10. PMID: 4320461

Other References Related to Gene Regulation

Kumar11: Kumar R, Shimizu K (2011). "Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures." Microb Cell Fact 10;3. PMID: 21272324

Marzan13: Marzan LW, Hasan CM, Shimizu K (2013). "Effect of acidic condition on the metabolic regulation of Escherichia coli and its phoB mutant." Arch Microbiol 195(3);161-71. PMID: 23274360

Zhang14: Zhang Z, Aboulwafa M, Saier MH (2014). "Regulation of crp Gene Expression by the Catabolite Repressor/Activator, Cra, in Escherichia coli." J Mol Microbiol Biotechnol 24(3);135-41. PMID: 24923415

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Wed Mar 4, 2015, BIOCYC13A.