Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Protein: GroEL-GroES chaperonin complex

Subunit composition of GroEL-GroES chaperonin complex = [GroL]14[GroS]7
         GroEL chaperonin = GroL
         GroES cochaperonin = GroS (summary available)

Summary:
The Escherichia coli chaperonin protein GroEL and its co-chaperonin GroES mediate the ATP dependent folding of newly translated proteins [Hemmingsen88, Kusukawa89, Goloubinoff89, Martin91, Horwich93]. The crystal structure of GroEL has been determined to a resolution of 2.8 angstroms. GroEL forms an 800 kDa cylinder from two back-to-back heptameric rings of 57 kDa subunits [Braig94, Braig95] - the GroEL double toroid. X-ray crystallography to a resolution of 3.0 angstroms has determined the structure of GroEL-GroES complexed with seven ADP molecules. GroES forms a heptamer of 10 kDa subunits which can bind to either end of the GroEL complex, forming a lid on the chamber [Xu97a, Donald05]. Binding of GroES creates a large dome-shaped cavity with a highly polar inner surface in which a non-native protein has the opportunity to fold into its native form [Xu97a]. The function of the GroEL-GroES chaperonin complex is to release proteins from 'kinetic traps' and place them under conditions that favour productive protein folding [Clare12].

Non-native protein substrates bind within GroEL chaperonin rings [Braig93]. Substrate binding is mediated by interactions between exposed hydrophobic side chains of collapsed protein folding intermediates and non-native proteins, and hydrophobic residues located at the apical domains of GroEL [Fenton94, Lin95, Buckle97] (and reviewed in [Houry01]). ATP binds to a pocket in the equatorial domain of GroEL [Boisvert96]. GroEL binds and hydrolyses ATP with positive intra-ring cooperativity and negative inter-ring cooperativity ([Gray91, Yifrach95] and reviewed by [Horovitz01]). Binding of ATP and GroES results in the formation of a ternary complex and structural rearrangement [Chen94a, Weissman94, Roseman96, Cliff06]. The rapid binding of ATP is accompanied by movement of the apical domains of GroEL followed by the slower binding of non-native polypeptide [Tyagi09]. Both asymmetrical complexes (the so-called 'bullet shaped complex), resulting from GroES binding to one end of the GroEL cylinder, and symmetrical complexes ('football shaped') formed when GroES binds to both ends of the GroEL cylinder, have been described [Langer92, Llorca94, Schmidt94, Horowitz99, Sameshima08, Inobe08, Sameshima10]. The symmetrical complex may represent a catalytic intermediate [Todd94, Corrales96, Torok96]. The symmetrical complex is the folding functional form of the chaperonin in vivo [Ye13, Yang13a].

The functional cycle of GroEL-GroES protein folding has been described as a 'two-stroke motion' (see comment by [Lorimer97], review by [Horwich11] and references within). Productive protein folding occurs in the cis ring, that is the groEL ring containing bound GroES, substrate and ATP. The cis-ternary complex does not dissociate until ATP hydrolysis is complete - binding of ATP (but not hydrolysis) to the trans GroEL ring results in disassembly of the cis-ternary complex and release of the substrate, properly folded or not [Rye97, Kad98]. ATP hydrolysis in the cis ring must occur before substrate protein and GroES bind to the trans ring; hydrolysis of ATP in the cis ring switches the trans ring from a collapsed to an open state [Rye99]. A new folding cycle commences with binding of substrate and GroES to the GroEL ring with ATP bound (ie. the trans ring becomes the cis ring).

This canonical model of the protein folding cycle has been challenged [KoikeTakeshita08] with reports that symmetric GroEL-GroES2 complexes are the functional form of the chaperonin in vivo. In the presence of substrate proteins there is simultaneous occupancy of both groEL rings by ATP and GroES; in the absence of substrate protein these complexes revert to asymmetric complexes. Symmetric and asymmetric complexes exist in a dynamic equilibrium that is dependent on substrate protein concentration. The residence time of GroES and substrate protein in GroEL is less than 1 second [Ye13, Yang13a].

ATP hydrolysis moves the reaction cycle forward but is not required for substrate folding - once the the substrate is encapsulated the slow hydrolysis of ATP provides time for folding to occur within the chamber [Clare12]. GroEL folding of model substrates suggests that proteins released in non-native form can be rapidly rebound by another GroEL complex [Weissman94, Smith95, Taguchi95, Weissman96]. Successive rounds of binding and release may be required for protein folding [Todd94, Beissinger99].

There are 85 cytosolic proteins identified by LC-MS/MS after purification that absolutely require GroEL for proper folding, 13 of which are essential. These substrates were enriched for the (βα)8 triosephosphate isomerase (TIM) barrel domain. There are another approximately 165 that are only partially dependent upon GroEL for proper folding [Kerner05]. Global aggregation of newly translated proteins is observed in a GroEL deficient strain of E. coli - approximately 300 mainly cytosolic proteins were identified by electrophoretic analyses [Charbon11]. Sequence analysis has been performed to determine possible substrate recognition sequences for GroEL binding [Chaudhuri05].

GroEL and GroES are both heat inducible but are also expressed constitutively and are required for growth under all conditions tested [Fayet89]. In groEL temperature-sensitive mutants, a defined group of cytoplasmic proteins--including citrate synthase, ketoglutarate dehydrogenase, and polynucleotide phosphorylase--were translated but failed to reach native form [Horwich93]. Overproduction of either GroEL-GroES or DnaK and DnaJ prevents aggregation of misfolded proteins in vivo. This suggests that GroEL-GroES and the DnaK and DnaJ proteins have complementary functions in the folding and assembly of most proteins [Gragerov92]. GroEL associates transiently with newly synthesized proteins, but it is absent from the ribosomes suggesting that that DnaK and DnaJ play an early role in protein maturation, whereas GroEL acts at a later stage [Gaitanaris94]. GroEL is diffusely distributed under both normal and stress condtions [Charbon11].

Overexpressed GroEL/GroES promotes the folding of enzyme variants carrying mutations generated in vitro suggesting that it helps alleviate the destabilising constraints of protein mutations [Tokuriki09].

Reviews: [Georgopoulos90, Sigler98, Fenton97, Xu98, Grallert01, Walter02, Thirumalai01, Horwich09, Taguchi05, Masters09].
Comments: [Hartl94, Ten95, Lorimer96, Lorimer97]

Citations: [Motojima10, Goloubinoff89a, Mayhew96, Miyazaki02, Madan08, Motojima03, Clare09, Machida09, Lin04, Weber98, Weaver14, Makino93, Todd93, Bochkareva92, Grallert00, Huang99, BenZvi98, Gorovits97, Stegmann98, Motojima00, Taguchi04, Girshovich95, Todd95, Kovacs10, Weissman95, Dahiya14, Kovalenko94, Tilly82]

Locations: cytosol

Relationship Links: PDB:Structure:1AON , PDB:Structure:1EGS , PDB:Structure:1PCQ , PDB:Structure:1PF9

Gene-Reaction Schematic: ?

GO Terms:

Biological Process: GO:0006457 - protein folding Inferred from experiment [Kusukawa89]
GO:0019068 - virion assembly Inferred from experiment [Tilly81a]
GO:0051085 - chaperone mediated protein folding requiring cofactor Inferred from experiment [Martin93, Rye97, Goloubinoff89]
Molecular Function: GO:0000287 - magnesium ion binding Inferred from experiment [Boisvert96]
GO:0005524 - ATP binding Inferred from experiment [Boisvert96]
GO:0016887 - ATPase activity Inferred from experiment [Hendrix79]
GO:0043531 - ADP binding Inferred from experiment [Xu97a]
GO:0051082 - unfolded protein binding Inferred from experiment [Fenton94]
Cellular Component: GO:0005829 - cytosol Inferred by curator

Credits:
Revised 20-Jul-2014 by Mackie A , Macquarie University
Last-Curated ? 20-Jul-2014 by Mackie A , Macquarie University


Subunit of GroEL-GroES chaperonin complex: GroEL chaperonin

Synonyms: GroL, MopA, GroEL, cpn60

Gene: groL Accession Numbers: EG10599 (EcoCyc), b4143, ECK4137

Locations: cytosol, membrane

Sequence Length: 548 AAs

Molecular Weight: 57.329 kD (from nucleotide sequence)

Molecular Weight: 57 kD (experimental) [Braig94]

GO Terms:

Biological Process: GO:0006200 - ATP catabolic process Inferred from experiment [Hendrix79]
GO:0006457 - protein folding Inferred from experiment Inferred by computational analysis [GOA01, Kusukawa89]
GO:0009408 - response to heat Inferred from experiment [Chuang93]
GO:0019068 - virion assembly Inferred from experiment [Tilly81a]
GO:0051085 - chaperone mediated protein folding requiring cofactor Inferred from experiment [Goloubinoff89]
GO:0007049 - cell cycle Inferred by computational analysis [UniProtGOA11]
GO:0042026 - protein refolding Inferred by computational analysis [GOA06, GOA01]
GO:0044267 - cellular protein metabolic process Inferred by computational analysis [GOA01]
GO:0051301 - cell division Inferred by computational analysis [UniProtGOA11]
Molecular Function: GO:0000287 - magnesium ion binding Inferred from experiment [Boisvert96]
GO:0005515 - protein binding Inferred from experiment [Fenton94, Rajagopala14, Chen13, Motojima10, Tang08, Yokokawa06, Xu97a, KoikeTakeshita06, Chaudhry04, Chaudhry03, Ranson01, Horowitz99, Siegers99, Azem95, Bochkareva02, Butland05, Arifuzzaman06, Sharma08]
GO:0005524 - ATP binding Inferred from experiment Inferred by computational analysis [UniProtGOA11, GOA06, GOA01, Boisvert96, Xu97a]
GO:0016887 - ATPase activity Inferred from experiment [Hendrix79]
GO:0042802 - identical protein binding Inferred from experiment [Braig94, Chen12a, Siegers99, Lasserre06, Azem95]
GO:0051082 - unfolded protein binding Inferred from experiment Inferred by computational analysis [GOA06, Braig93, Fenton94]
GO:0000166 - nucleotide binding Inferred by computational analysis [UniProtGOA11]
Cellular Component: GO:0005829 - cytosol Inferred from experiment Inferred by computational analysis [DiazMejia09, Ishihama08, Lasserre06]
GO:0016020 - membrane Inferred from experiment [Lasserre06]
GO:0005737 - cytoplasm Inferred by computational analysis [UniProtGOA11a, UniProtGOA11, GOA06, GOA01]

MultiFun Terms: cell processes cell division
information transfer protein related chaperoning, repair (refolding)

Unification Links: DIP:DIP-339N , EcoliWiki:b4143 , Mint:MINT-5232496 , ModBase:P0A6F5 , PR:PRO_000022838 , Pride:P0A6F5 , Protein Model Portal:P0A6F5 , RefSeq:NP_418567 , SMR:P0A6F5 , String:511145.b4143 , UniProt:P0A6F5

Relationship Links: InterPro:IN-FAMILY:IPR001844 , InterPro:IN-FAMILY:IPR002423 , InterPro:IN-FAMILY:IPR018370 , InterPro:IN-FAMILY:IPR027409 , InterPro:IN-FAMILY:IPR027413 , Panther:IN-FAMILY:PTHR11353 , PDB:Structure:1AON , PDB:Structure:1DK7 , PDB:Structure:1DKD , PDB:Structure:1FY9 , PDB:Structure:1FYA , PDB:Structure:1GR5 , PDB:Structure:1GRL , PDB:Structure:1GRU , PDB:Structure:1J4Z , PDB:Structure:1JON , PDB:Structure:1KID , PDB:Structure:1KP8 , PDB:Structure:1KPO , PDB:Structure:1LA1 , PDB:Structure:1MNF , PDB:Structure:1OEL , PDB:Structure:1PCQ , PDB:Structure:1PF9 , PDB:Structure:1SS8 , PDB:Structure:1SVT , PDB:Structure:1SX3 , PDB:Structure:1SX4 , PDB:Structure:1XCK , PDB:Structure:2C7C , PDB:Structure:2C7D , PDB:Structure:2C7E , PDB:Structure:2CGT , PDB:Structure:2EU1 , PDB:Structure:2NWC , PDB:Structure:2YEY , PDB:Structure:3C9V , PDB:Structure:3CAU , PDB:Structure:3ZPZ , PDB:Structure:3ZQ0 , PDB:Structure:3ZQ1 , PDB:Structure:4AAQ , PDB:Structure:4AAR , PDB:Structure:4AAS , PDB:Structure:4AAU , PDB:Structure:4AB2 , PDB:Structure:4AB3 , Pfam:IN-FAMILY:PF00118 , Prints:IN-FAMILY:PR00298 , Prosite:IN-FAMILY:PS00296

Citations: [Georgopoulos72, Hendrix79, Svensson94, Spangfort94, Spangfort93]

Essentiality data for groL knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB Lennox No 37 Aerobic 7   No [Baba06, Yamamoto09]

Subunit of GroEL-GroES chaperonin complex: GroES cochaperonin

Synonyms: GroS, GroES, MopB, cpn10

Gene: groS Accession Numbers: EG10600 (EcoCyc), b4142, ECK4136

Locations: cytosol

Sequence Length: 97 AAs

Molecular Weight: 10.387 kD (from nucleotide sequence)

Molecular Weight: 10 kD (experimental) [Xu97a]

GO Terms:

Biological Process: GO:0006457 - protein folding Inferred from experiment Inferred by computational analysis [GOA06, GOA01, Kusukawa89]
GO:0009408 - response to heat Inferred from experiment [Chuang93]
GO:0019068 - virion assembly Inferred from experiment [Tilly81a]
GO:0051085 - chaperone mediated protein folding requiring cofactor Inferred from experiment [Goloubinoff89]
GO:0007049 - cell cycle Inferred by computational analysis [UniProtGOA11]
GO:0051301 - cell division Inferred by computational analysis [UniProtGOA11]
Molecular Function: GO:0005515 - protein binding Inferred from experiment [Chandrasekhar86, Chen13, Motojima10, Yokokawa06, Xu97a, Chaudhry04, Chaudhry03, Ranson01, Horowitz99, Azem95, Sharma08, KoikeTakeshita06]
GO:0042802 - identical protein binding Inferred from experiment [Chandrasekhar86, Lasserre06, Horowitz99]
GO:0005524 - ATP binding Inferred by computational analysis [GOA01]
Cellular Component: GO:0005829 - cytosol Inferred from experiment Inferred by computational analysis [DiazMejia09, Ishihama08, LopezCampistrou05, Lasserre06]
GO:0005737 - cytoplasm Inferred by computational analysis [UniProtGOA11a, UniProtGOA11, GOA06, GOA01]

MultiFun Terms: cell processes cell division
information transfer protein related chaperoning, repair (refolding)

Unification Links: DIP:DIP-9835N , EcoliWiki:b4142 , Mint:MINT-5232475 , ModBase:P0A6F9 , PR:PRO_000022839 , Pride:P0A6F9 , Protein Model Portal:P0A6F9 , RefSeq:NP_418566 , SMR:P0A6F9 , String:511145.b4142 , UniProt:P0A6F9

Relationship Links: InterPro:IN-FAMILY:IPR011032 , InterPro:IN-FAMILY:IPR018369 , InterPro:IN-FAMILY:IPR020818 , Panther:IN-FAMILY:PTHR10772 , PDB:Structure:1AON , PDB:Structure:1EGS , PDB:Structure:1GRU , PDB:Structure:1PCQ , PDB:Structure:1PF9 , PDB:Structure:1SVT , PDB:Structure:1SX4 , PDB:Structure:2C7C , PDB:Structure:2C7D , PDB:Structure:3ZPZ , PDB:Structure:3ZQ0 , PDB:Structure:3ZQ1 , Pfam:IN-FAMILY:PF00166 , Prints:IN-FAMILY:PR00297 , Prosite:IN-FAMILY:PS00681 , Smart:IN-FAMILY:SM00883

Summary:
groS is one of a network of 93 genes believed to play a role in promoting the stress-induced mutagenesis (SIM) response of E. coli K-12 [Al12].

Citations: [Chandrasekhar86, Tilly81]

Essentiality data for groS knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB Lennox No 37 Aerobic 7   No [Baba06, Comment 1]

References

Al12: Al Mamun AA, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM (2012). "Identity and function of a large gene network underlying mutagenic repair of DNA breaks." Science 338(6112);1344-8. PMID: 23224554

Arifuzzaman06: Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, Ara T, Nakahigashi K, Huang HC, Hirai A, Tsuzuki K, Nakamura S, Altaf-Ul-Amin M, Oshima T, Baba T, Yamamoto N, Kawamura T, Ioka-Nakamichi T, Kitagawa M, Tomita M, Kanaya S, Wada C, Mori H (2006). "Large-scale identification of protein-protein interaction of Escherichia coli K-12." Genome Res 16(5);686-91. PMID: 16606699

Azem95: Azem A, Diamant S, Kessel M, Weiss C, Goloubinoff P (1995). "The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer." Proc Natl Acad Sci U S A 92(26);12021-5. PMID: 8618836

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Beissinger99: Beissinger M, Rutkat K, Buchner J (1999). "Catalysis, commitment and encapsulation during GroE-mediated folding." J Mol Biol 289(4);1075-92. PMID: 10369783

BenZvi98: Ben-Zvi AP, Chatellier J, Fersht AR, Goloubinoff P (1998). "Minimal and optimal mechanisms for GroE-mediated protein folding." Proc Natl Acad Sci U S A 95(26);15275-80. PMID: 9860959

Bochkareva02: Bochkareva ES, Girshovich AS, Bibi E (2002). "Identification and characterization of the Escherichia coli stress protein UP12, a putative in vivo substrate of GroEL." Eur J Biochem 269(12);3032-40. PMID: 12071968

Bochkareva92: Bochkareva ES, Lissin NM, Flynn GC, Rothman JE, Girshovich AS (1992). "Positive cooperativity in the functioning of molecular chaperone GroEL." J Biol Chem 267(10);6796-800. PMID: 1348056

Boisvert96: Boisvert DC, Wang J, Otwinowski Z, Horwich AL, Sigler PB (1996). "The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S." Nat Struct Biol 3(2);170-7. PMID: 8564544

Braig93: Braig K, Simon M, Furuya F, Hainfeld JF, Horwich AL (1993). "A polypeptide bound by the chaperonin groEL is localized within a central cavity." Proc Natl Acad Sci U S A 90(9);3978-82. PMID: 8097882

Braig94: Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994). "The crystal structure of the bacterial chaperonin GroEL at 2.8 A." Nature 371(6498);578-86. PMID: 7935790

Braig95: Braig K, Adams PD, Brunger AT (1995). "Conformational variability in the refined structure of the chaperonin GroEL at 2.8 A resolution." Nat Struct Biol 2(12);1083-94. PMID: 8846220

Buckle97: Buckle AM, Zahn R, Fersht AR (1997). "A structural model for GroEL-polypeptide recognition." Proc Natl Acad Sci U S A 94(8);3571-5. PMID: 9108017

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Chandrasekhar86: Chandrasekhar GN, Tilly K, Woolford C, Hendrix R, Georgopoulos C (1986). "Purification and properties of the groES morphogenetic protein of Escherichia coli." J Biol Chem 261(26);12414-9. PMID: 3017973

Charbon11: Charbon G, Wang J, Brustad E, Schultz PG, Horwich AL, Jacobs-Wagner C, Chapman E (2011). "Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid." Bioorg Med Chem Lett 21(20);6067-70. PMID: 21890355

Chaudhry03: Chaudhry C, Farr GW, Todd MJ, Rye HS, Brunger AT, Adams PD, Horwich AL, Sigler PB (2003). "Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics." EMBO J 22(19);4877-87. PMID: 14517228

Chaudhry04: Chaudhry C, Horwich AL, Brunger AT, Adams PD (2004). "Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states." J Mol Biol 342(1);229-45. PMID: 15313620

Chaudhuri05: Chaudhuri TK, Gupta P (2005). "Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach." Cell Stress Chaperones 10(1);24-36. PMID: 15832945

Chen12a: Chen J, Yagi H, Sormanni P, Vendruscolo M, Makabe K, Nakamura T, Goto Y, Kuwajima K (2012). "Fibrillogenic propensity of the GroEL apical domain: a Janus-faced minichaperone." FEBS Lett 586(8);1120-7. PMID: 22575645

Chen13: Chen DH, Madan D, Weaver J, Lin Z, Schroder GF, Chiu W, Rye HS (2013). "Visualizing GroEL/ES in the act of encapsulating a folding protein." Cell 153(6);1354-65. PMID: 23746846

Chen94a: Chen S, Roseman AM, Hunter AS, Wood SP, Burston SG, Ranson NA, Clarke AR, Saibil HR (1994). "Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy." Nature 371(6494);261-4. PMID: 7915827

Chuang93: Chuang SE, Blattner FR (1993). "Characterization of twenty-six new heat shock genes of Escherichia coli." J Bacteriol 175(16);5242-52. PMID: 8349564

Clare09: Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR (2009). "Chaperonin complex with a newly folded protein encapsulated in the folding chamber." Nature 457(7225);107-10. PMID: 19122642

Clare12: Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR (2012). "ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin." Cell 149(1);113-23. PMID: 22445172

Cliff06: Cliff MJ, Limpkin C, Cameron A, Burston SG, Clarke AR (2006). "Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE." J Biol Chem 281(30);21266-75. PMID: 16684774

Corrales96: Corrales FJ, Fersht AR (1996). "Kinetic significance of GroEL14.(GroES7)2 complexes in molecular chaperone activity." Fold Des 1(4);265-73. PMID: 9079389

Dahiya14: Dahiya V, Chaudhuri TK (2014). "Chaperones GroEL/GroES accelerate the refolding of a multidomain protein through modulating on-pathway intermediates." J Biol Chem 289(1);286-98. PMID: 24247249

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Donald05: Donald LJ, Stokell DJ, Holliday NJ, Ens W, Standing KG, Duckworth HW (2005). "Multiple equilibria of the Escherichia coli chaperonin GroES revealed by mass spectrometry." Protein Sci 14(5);1375-9. PMID: 15802642

Fayet89: Fayet O, Ziegelhoffer T, Georgopoulos C (1989). "The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures." J Bacteriol 171(3);1379-85. PMID: 2563997

Fenton94: Fenton WA, Kashi Y, Furtak K, Horwich AL (1994). "Residues in chaperonin GroEL required for polypeptide binding and release." Nature 371(6498);614-9. PMID: 7935796

Fenton97: Fenton WA, Horwich AL (1997). "GroEL-mediated protein folding." Protein Sci 6(4);743-60. PMID: 9098884

Gaitanaris94: Gaitanaris GA, Vysokanov A, Hung SC, Gottesman ME, Gragerov A (1994). "Successive action of Escherichia coli chaperones in vivo." Mol Microbiol 14(5);861-9. PMID: 7715448

Georgopoulos72: Georgopoulos CP, Hendrix RW, Kaiser AD, Wood WB (1972). "Role of the host cell in bacteriophage morphogenesis: effects of a bacterial mutation on T4 head assembly." Nat New Biol 239(89);38-41. PMID: 4561971

Georgopoulos90: Georgopoulos C, Ang D (1990). "The Escherichia coli groE chaperonins." Semin Cell Biol 1(1);19-25. PMID: 1983267

Girshovich95: Girshovich AS, Bochkareva ES, Todd MJ, Lorimer GH (1995). "On the distribution of ligands within the asymmetric chaperonin complex, GroEL14.ADP7.GroES7." FEBS Lett 366(1);17-20. PMID: 7789507

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA06: GOA, SIB (2006). "Electronic Gene Ontology annotations created by transferring manual GO annotations between orthologous microbial proteins."

Goloubinoff89: Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989). "Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP." Nature 342(6252);884-9. PMID: 10532860

Goloubinoff89a: Goloubinoff P, Gatenby AA, Lorimer GH (1989). "GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli." Nature 337(6202);44-7. PMID: 2562907

Gorovits97: Gorovits BM, Ybarra J, Seale JW, Horowitz PM (1997). "Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides." J Biol Chem 272(43);26999-7004. PMID: 9341138

Gragerov92: Gragerov A, Nudler E, Komissarova N, Gaitanaris GA, Gottesman ME, Nikiforov V (1992). "Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli." Proc Natl Acad Sci U S A 89(21);10341-4. PMID: 1359538

Grallert00: Grallert H, Rutkat K, Buchner J (2000). "Limits of protein folding inside GroE complexes." J Biol Chem 275(27);20424-30. PMID: 10779510

Grallert01: Grallert H, Buchner J (2001). "Review: a structural view of the GroE chaperone cycle." J Struct Biol 135(2);95-103. PMID: 11580259

Gray91: Gray TE, Fersht AR (1991). "Cooperativity in ATP hydrolysis by GroEL is increased by GroES." FEBS Lett 292(1-2);254-8. PMID: 1683631

Hartl94: Hartl FU (1994). "Protein folding. Secrets of a double-doughnut." Nature 371(6498);557-9. PMID: 7935786

Hemmingsen88: Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988). "Homologous plant and bacterial proteins chaperone oligomeric protein assembly." Nature 333(6171);330-4. PMID: 2897629

Hendrix79: Hendrix RW (1979). "Purification and properties of groE, a host protein involved in bacteriophage assembly." J Mol Biol 129(3);375-92. PMID: 379350

Horovitz01: Horovitz A, Fridmann Y, Kafri G, Yifrach O (2001). "Review: allostery in chaperonins." J Struct Biol 135(2);104-14. PMID: 11580260

Horowitz99: Horowitz PM, Lorimer GH, Ybarra J (1999). "GroES in the asymmetric GroEL14-GroES7 complex exchanges via an associative mechanism." Proc Natl Acad Sci U S A 96(6);2682-6. PMID: 10077571

Horwich09: Horwich AL, Fenton WA (2009). "Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding." Q Rev Biophys 42(2);83-116. PMID: 19638247

Horwich11: Horwich AL (2011). "Protein folding in the cell: an inside story." Nat Med 17(10);1211-6. PMID: 21989012

Horwich93: Horwich AL, Low KB, Fenton WA, Hirshfield IN, Furtak K (1993). "Folding in vivo of bacterial cytoplasmic proteins: role of GroEL." Cell 74(5);909-17. PMID: 8104102

Houry01: Houry WA (2001). "Mechanism of substrate recognition by the chaperonin GroEL." Biochem Cell Biol 79(5);569-77. PMID: 11716298

Huang99: Huang YS, Chuang DT (1999). "Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro." J Biol Chem 274(15);10405-12. PMID: 10187830

Inobe08: Inobe T, Takahashi K, Maki K, Enoki S, Kamagata K, Kadooka A, Arai M, Kuwajima K (2008). "Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering." Biophys J 94(4);1392-402. PMID: 17981896

Ishihama08: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Kad98: Kad NM, Ranson NA, Cliff MJ, Clarke AR (1998). "Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings." J Mol Biol 278(1);267-78. PMID: 9571049

Kerner05: Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005). "Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli." Cell 122(2);209-20. PMID: 16051146

KoikeTakeshita06: Koike-Takeshita A, Shimamura T, Yokoyama K, Yoshida M, Taguchi H (2006). "Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL." J Biol Chem 281(2);962-7. PMID: 16239229

KoikeTakeshita08: Koike-Takeshita A, Yoshida M, Taguchi H (2008). "Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant." J Biol Chem 283(35);23774-81. PMID: 18567584

Kovacs10: Kovacs E, Sun Z, Liu H, Scott DJ, Karsisiotis AI, Clarke AR, Burston SG, Lund PA (2010). "Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity." J Mol Biol 396(5);1271-83. PMID: 20006619

Kovalenko94: Kovalenko O, Yifrach O, Horovitz A (1994). "Residue lysine-34 in GroES modulates allosteric transitions in GroEL." Biochemistry 33(50);14974-8. PMID: 7999753

Kusukawa89: Kusukawa N, Yura T, Ueguchi C, Akiyama Y, Ito K (1989). "Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli." EMBO J 8(11);3517-21. PMID: 2573517

Langer92: Langer T, Pfeifer G, Martin J, Baumeister W, Hartl FU (1992). "Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity." EMBO J 11(13);4757-65. PMID: 1361169

Lasserre06: Lasserre JP, Beyne E, Pyndiah S, Lapaillerie D, Claverol S, Bonneu M (2006). "A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis." Electrophoresis 27(16);3306-21. PMID: 16858726

Lin04: Lin Z, Rye HS (2004). "Expansion and compression of a protein folding intermediate by GroEL." Mol Cell 16(1);23-34. PMID: 15469819

Lin95: Lin Z, Schwartz FP, Eisenstein E (1995). "The hydrophobic nature of GroEL-substrate binding." J Biol Chem 270(3);1011-4. PMID: 7836352

Llorca94: Llorca O, Marco S, Carrascosa JL, Valpuesta JM (1994). "The formation of symmetrical GroEL-GroES complexes in the presence of ATP." FEBS Lett 345(2-3);181-6. PMID: 7911087

LopezCampistrou05: Lopez-Campistrous A, Semchuk P, Burke L, Palmer-Stone T, Brokx SJ, Broderick G, Bottorff D, Bolch S, Weiner JH, Ellison MJ (2005). "Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth." Mol Cell Proteomics 4(8);1205-9. PMID: 15911532

Lorimer96: Lorimer GH, Todd MJ (1996). "GroE structures galore." Nat Struct Biol 3(2);116-21. PMID: 8564534

Lorimer97: Lorimer G (1997). "Protein folding. Folding with a two-stroke motor." Nature 388(6644);720-1, 723. PMID: 9285577

Machida09: Machida K, Fujiwara R, Tanaka T, Sakane I, Hongo K, Mizobata T, Kawata Y (2009). "Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins." Biochim Biophys Acta 1794(9);1344-54. PMID: 19130907

Madan08: Madan D, Lin Z, Rye HS (2008). "Triggering protein folding within the GroEL-GroES complex." J Biol Chem 283(46);32003-13. PMID: 18782766

Makino93: Makino Y, Taguchi H, Yoshida M (1993). "Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP." FEBS Lett 336(2);363-7. PMID: 7903258

Martin91: Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl FU (1991). "Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate." Nature 352(6330);36-42. PMID: 1676490

Martin93: Martin J, Mayhew M, Langer T, Hartl FU (1993). "The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding." Nature 366(6452);228-33. PMID: 7901770

Masters09: Masters M, Blakely G, Coulson A, McLennan N, Yerko V, Acord J (2009). "Protein folding in Escherichia coli: the chaperonin GroE and its substrates." Res Microbiol 160(4);267-77. PMID: 19393741

Mayhew96: Mayhew M, da Silva AC, Martin J, Erdjument-Bromage H, Tempst P, Hartl FU (1996). "Protein folding in the central cavity of the GroEL-GroES chaperonin complex." Nature 379(6564);420-6. PMID: 8559246

Miyazaki02: Miyazaki T, Yoshimi T, Furutsu Y, Hongo K, Mizobata T, Kanemori M, Kawata Y (2002). "GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle." J Biol Chem 277(52);50621-8. PMID: 12377767

Motojima00: Motojima F, Makio T, Aoki K, Makino Y, Kuwajima K, Yoshida M (2000). "Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding." Biochem Biophys Res Commun 267(3);842-9. PMID: 10673379

Motojima03: Motojima F, Yoshida M (2003). "Discrimination of ATP, ADP, and AMPPNP by chaperonin GroEL: hexokinase treatment revealed the exclusive role of ATP." J Biol Chem 278(29);26648-54. PMID: 12736270

Motojima10: Motojima F, Yoshida M (2010). "Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside." EMBO J. PMID: 20959808

Rajagopala14: Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Hauser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014). "The binary protein-protein interaction landscape of Escherichia coli." Nat Biotechnol 32(3);285-90. PMID: 24561554

Ranson01: Ranson NA, Farr GW, Roseman AM, Gowen B, Fenton WA, Horwich AL, Saibil HR (2001). "ATP-bound states of GroEL captured by cryo-electron microscopy." Cell 107(7);869-79. PMID: 11779463

Roseman96: Roseman AM, Chen S, White H, Braig K, Saibil HR (1996). "The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL." Cell 87(2);241-51. PMID: 8861908

Rye97: Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL (1997). "Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL." Nature 388(6644);792-8. PMID: 9285593

Rye99: Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, Horwich AL (1999). "GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings." Cell 97(3);325-38. PMID: 10319813

Sameshima08: Sameshima T, Ueno T, Iizuka R, Ishii N, Terada N, Okabe K, Funatsu T (2008). "Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle." J Biol Chem 283(35);23765-73. PMID: 18567585

Sameshima10: Sameshima T, Iizuka R, Ueno T, Funatsu T (2010). "Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex." Biochem J 427(2);247-54. PMID: 20121703

Schmidt94: Schmidt M, Rutkat K, Rachel R, Pfeifer G, Jaenicke R, Viitanen P, Lorimer G, Buchner J (1994). "Symmetric complexes of GroE chaperonins as part of the functional cycle." Science 265(5172);656-9. PMID: 7913554

Sharma08: Sharma S, Chakraborty K, Muller BK, Astola N, Tang YC, Lamb DC, Hayer-Hartl M, Hartl FU (2008). "Monitoring protein conformation along the pathway of chaperonin-assisted folding." Cell 133(1);142-53. PMID: 18394994

Siegers99: Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E, Hartl FU (1999). "Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system." EMBO J 18(1);75-84. PMID: 9878052

Sigler98: Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL (1998). "Structure and function in GroEL-mediated protein folding." Annu Rev Biochem 67;581-608. PMID: 9759498

Smith95: Smith KE, Fisher MT (1995). "Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding." J Biol Chem 270(37);21517-23. PMID: 7665563

Spangfort93: Spangfort MD, Surin BP, Oppentocht JE, Weibull C, Carlemalm E, Dixon NE, Svensson LA (1993). "Crystallization and preliminary X-ray investigation of the Escherichia coli molecular chaperone cpn60 (GroEL)." FEBS Lett 320(2);160-4. PMID: 8096194

Spangfort94: Spangfort MD, Surin BP, Dixon NE, Svensson LA (1994). "Internal symmetry of the molecular chaperone cpn60 (GroEL) determined by X-ray crystallography." Acta Crystallogr D Biol Crystallogr 50(Pt 4);591-5. PMID: 15299422

Stegmann98: Stegmann R, Manakova E, Rossle M, Heumann H, Nieba-Axmann SE, Pluckthun A, Hermann T, May RP, Wiedenmann A (1998). "Structural changes of the Escherichia coli GroEL-GroES chaperonins upon complex formation in solution: a neutron small angle scattering study." J Struct Biol 121(1);30-40. PMID: 9573618

Svensson94: Svensson LA, Surin BP, Dixon NE, Spangfort MD (1994). "The symmetry of Escherichia coli cpn60 (GroEL) determined by X-ray crystallography." J Mol Biol 235(1);47-52. PMID: 7904652

Taguchi04: Taguchi H, Tsukuda K, Motojima F, Koike-Takeshita A, Yoshida M (2004). "BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers." J Biol Chem 279(44);45737-43. PMID: 15347650

Taguchi05: Taguchi H (2005). "Chaperonin GroEL meets the substrate protein as a "load" of the rings." J Biochem (Tokyo) 137(5);543-9. PMID: 15944406

Taguchi95: Taguchi H, Yoshida M (1995). "Chaperonin releases the substrate protein in a form with tendency to aggregate and ability to rebind to chaperonin." FEBS Lett 359(2-3);195-8. PMID: 7867798

Tang08: Tang YC, Chang HC, Chakraborty K, Hartl FU, Hayer-Hartl M (2008). "Essential role of the chaperonin folding compartment in vivo." EMBO J 27(10);1458-68. PMID: 18418386

Ten95: Ten Eyck LF (1995). "Gro-ing pains." Nat Struct Biol 2(12);1038-42. PMID: 8846212

Thirumalai01: Thirumalai D, Lorimer GH (2001). "Chaperonin-mediated protein folding." Annu Rev Biophys Biomol Struct 30;245-69. PMID: 11340060

Tilly81: Tilly K, McKittrick N, Georgopoulos C, Murialdo H (1981). "Studies on Escherichia coli mutants which block bacteriophage morphogenesis." Prog Clin Biol Res 64;35-45. PMID: 6460256

Tilly81a: Tilly K, Murialdo H, Georgopoulos C (1981). "Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis." Proc Natl Acad Sci U S A 78(3);1629-33. PMID: 7015340

Tilly82: Tilly K, Georgopoulos C (1982). "Evidence that the two Escherichia coli groE morphogenetic gene products interact in vivo." J Bacteriol 149(3);1082-8. PMID: 6460751

Todd93: Todd MJ, Viitanen PV, Lorimer GH (1993). "Hydrolysis of adenosine 5'-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion." Biochemistry 32(33);8560-7. PMID: 8102879

Todd94: Todd MJ, Viitanen PV, Lorimer GH (1994). "Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding." Science 265(5172);659-66. PMID: 7913555

Todd95: Todd MJ, Lorimer GH (1995). "Stability of the asymmetric Escherichia coli chaperonin complex. Guanidine chloride causes rapid dissociation." J Biol Chem 270(10);5388-94. PMID: 7890652

Tokuriki09: Tokuriki N, Tawfik DS (2009). "Chaperonin overexpression promotes genetic variation and enzyme evolution." Nature 459(7247);668-73. PMID: 19494908

Torok96: Torok Z, Vigh L, Goloubinoff P (1996). "Fluorescence detection of symmetric GroEL14(GroES7)2 heterooligomers involved in protein release during the chaperonin cycle." J Biol Chem 271(27);16180-6. PMID: 8663256

Tyagi09: Tyagi NK, Fenton WA, Horwich AL (2009). "GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state." Proc Natl Acad Sci U S A 106(48);20264-9. PMID: 19915138

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

Walter02: Walter S (2002). "Structure and function of the GroE chaperone." Cell Mol Life Sci 59(10);1589-97. PMID: 12475168

Weaver14: Weaver J, Rye HS (2014). "The C-terminal Tails of the Bacterial Chaperonin GroEL Stimulate Protein Folding by Directly Altering the Conformation of a Substrate Protein." J Biol Chem. PMID: 24970895

Weber98: Weber F, Keppel F, Georgopoulos C, Hayer-Hartl MK, Hartl FU (1998). "The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding." Nat Struct Biol 5(11);977-85. PMID: 9808043

Weissman94: Weissman JS, Kashi Y, Fenton WA, Horwich AL (1994). "GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms." Cell 78(4);693-702. PMID: 7915201

Weissman95: Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995). "Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES." Cell 83(4);577-87. PMID: 7585961

Weissman96: Weissman JS, Rye HS, Fenton WA, Beechem JM, Horwich AL (1996). "Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction." Cell 84(3);481-90. PMID: 8608602

Xu97a: Xu Z, Horwich AL, Sigler PB (1997). "The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex." Nature 388(6644);741-50. PMID: 9285585

Xu98: Xu Z, Sigler PB (1998). "GroEL/GroES: structure and function of a two-stroke folding machine." J Struct Biol 124(2-3);129-41. PMID: 10049801

Yamamoto09: Yamamoto N, Nakahigashi K, Nakamichi T, Yoshino M, Takai Y, Touda Y, Furubayashi A, Kinjyo S, Dose H, Hasegawa M, Datsenko KA, Nakayashiki T, Tomita M, Wanner BL, Mori H (2009). "Update on the Keio collection of Escherichia coli single-gene deletion mutants." Mol Syst Biol 5;335. PMID: 20029369

Yang13a: Yang D, Ye X, Lorimer GH (2013). "Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine." Proc Natl Acad Sci U S A 110(46);E4298-305. PMID: 24167279

Ye13: Ye X, Lorimer GH (2013). "Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange." Proc Natl Acad Sci U S A 110(46);E4289-97. PMID: 24167257

Yifrach95: Yifrach O, Horovitz A (1995). "Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL." Biochemistry 34(16);5303-8. PMID: 7727391

Yokokawa06: Yokokawa M, Wada C, Ando T, Sakai N, Yagi A, Yoshimura SH, Takeyasu K (2006). "Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL." EMBO J 25(19);4567-76. PMID: 16977315


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Thu Nov 27, 2014, BIOCYC13A.