Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Protein: Fe-S transport protein in Fe-S cluster assembly



Gene: sufA Accession Numbers: EG11378 (EcoCyc), b1684, ECK1680

Synonyms: ydiC

Regulation Summary Diagram: ?

Subunit composition of Fe-S transport protein in Fe-S cluster assembly = [SufA]2
         Fe-S cluster assembly, scaffold protein = SufA

Summary:
The assembly of iron-sulfur clusters requires complex biosynthetic machinery. E. coli encodes two sets of proteins, the Isc and the Suf system, to achieve this task. SufA is the type II A-type carrier (ATC-II) [Vinella09] component of the Suf system for iron-sulfur cluster assembly that is utilized under iron starvation or oxidative stress conditions [Outten04]. SufA accepts Fe-S clusters formed by the SufBCD complex [Chahal09]; it was shown to carry a [2Fe-2S] cluster and to be able to transfer its cluster to target apoproteins such as ferredoxin (a [2Fe-2S]-containing protein) and aconitase A (a [4Fe-4S]-containing protein) [Gupta09].

Contradictory results of earlier studies - some of which are reported below - were likely due to purification of apo-SufA and in vitro assays under conditions that may not have been physiologically relevant [Gupta09].

SufA can accept sulfur atoms from the SufE component of the SufE-SufS cysteine desulfurase [Sendra07]; however, label transfer experiments don't show interactions between SufA and SufE/S [Chahal09]. In vitro, purified apoSufA can chelate iron-sulfur clusters by treatment with iron and sulfide under anaerobic conditions. HoloSufA then can form a fast and tight association with the target apoprotein biotin synthase (BioB) and transfers a [4Fe-4S] cluster to BioB in a slow reaction [OllagnierdeChou04]. Reports disagree on whether [Lu08a] or not [Sendra07] purified apoSufA binds iron.

A crystal structure of SufA has been solved at 2.7 Å resolution. SufA forms a homodimer in the crystal structure, and the arrangement of four cysteine residues at the dimer interface may allow the coordination of an Fe-S cluster or an iron atom [Wada05].

The sufABCDSE operon encodes components of a secondary pathway of iron-sulfur cluster assembly; the isc operon encodes the major assembly pathway [Takahashi02]. A sufABCDSE operon deletion mutation leads to increased sensitivity to superoxide-generating agents [Lee04], whereas a sufABCDSE isc double mutant exhibits synthetic lethality, indicating that these systems are redundant and that iron-sulfur cluster assembly is essential for viability [Takahashi02, Tokumoto04]. A sufA iscA double mutant has a severe growth defect under aerobic conditions in minimal or rich medium [Lu08a, Vinella09] due to the lack of 4Fe-4S clusters in metabolically essential enzymes such as IlvD, ThiC [Tan09], and IspG/H [Vinella09]. A sufA iscA double mutant is viable under anaerobic conditions [Vinella09].

Overproduction of the products of the sufABCDSE operon, or regulatory mutations in the sufABCDSE operon, suppress defects of a strain deleted of the isc operon [Takahashi02]. Cobalt inhibits growth of E. coli due to a toxic effect on metabolically essential Fe-S cluster-containing proteins. suf mutant strains are hypersensitive to cobalt; thus, the Suf system may be involved in Fe-S cluster repair [Ranquet07].

Expression of sufA is induced by superoxide generators and hydrogen peroxide [Lee04]. Regulation occurs via the iron-dependent Fur repressor [Patzer99], OxyR, IHF, and IscR [Lee04, Yeo06, Lee08].

Reviews: [Johnson05, Fontecave05, Barras05]

Gene Citations: [Zheng01]

Locations: cytosol

Map Position: [1,762,042 <- 1,762,410] (37.98 centisomes)
Length: 369 bp / 122 aa

Molecular Weight of Polypeptide: 13.3 kD (from nucleotide sequence)

Molecular Weight of Multimer: 30.2 kD (experimental) [Gupta09]

Unification Links: ASAP:ABE-0005624 , EchoBASE:EB1352 , EcoGene:EG11378 , EcoliWiki:b1684 , ModBase:P77667 , OU-Microarray:b1684 , PortEco:sufA , PR:PRO_000024006 , Pride:P77667 , Protein Model Portal:P77667 , RefSeq:NP_416199 , RegulonDB:EG11378 , SMR:P77667 , String:511145.b1684 , UniProt:P77667

Relationship Links: InterPro:IN-FAMILY:IPR000361 , InterPro:IN-FAMILY:IPR011298 , InterPro:IN-FAMILY:IPR016092 , InterPro:IN-FAMILY:IPR017870 , PDB:Structure:2D2A , Pfam:IN-FAMILY:PF01521 , Prosite:IN-FAMILY:PS01152

In Paralogous Gene Group: 55 (3 members)

Gene-Reaction Schematic: ?

Genetic Regulation Schematic: ?

GO Terms:

Biological Process: GO:0006979 - response to oxidative stress Inferred from experiment [Lee04]
GO:0016226 - iron-sulfur cluster assembly Inferred from experiment Inferred by computational analysis [GOA01a, Vinella09]
Molecular Function: GO:0005515 - protein binding Inferred from experiment [Chahal09]
GO:0042803 - protein homodimerization activity Inferred from experiment [Gupta09]
GO:0051537 - 2 iron, 2 sulfur cluster binding Inferred from experiment [Gupta09]
GO:0005198 - structural molecule activity Inferred by computational analysis [GOA01a]
GO:0051536 - iron-sulfur cluster binding Inferred by computational analysis [GOA01a]
Cellular Component: GO:0005829 - cytosol Inferred by computational analysis [DiazMejia09]

MultiFun Terms: metabolism central intermediary metabolism incorporation of metal ions
metabolism metabolism of other compounds sulfur metabolism

Essentiality data for sufA knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB Lennox Yes 37 Aerobic 7   Yes [Baba06, Comment 1]
M9 medium with 1% glycerol Yes 37 Aerobic 7.2 0.35 Yes [Joyce06, Comment 2]
MOPS medium with 0.4% glucose Yes 37 Aerobic 7.2 0.22 Yes [Baba06, Comment 1]

Credits:
Created 14-Oct-2009 by Keseler I , SRI International
Last-Curated ? 15-Oct-2009 by Keseler I , SRI International


Sequence Features

Feature Class Location Common Name Citations
Amino-Acid-Sites-That-Bind 50, 114, 116 sulfur binding residues
[Sendra07]


Gene Local Context (not to scale): ?

Transcription Unit:

Notes:

History:
1/26/1998 (pkarp) Merged genes G6910/b1684 and EG11378/ydiC


References

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Barras05: Barras F, Loiseau L, Py B (2005). "How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins." Adv Microb Physiol 50;41-101. PMID: 16221578

Chahal09: Chahal HK, Dai Y, Saini A, Ayala-Castro C, Outten FW (2009). "The SufBCD Fe-S scaffold complex interacts with SufA for Fe-S cluster transfer." Biochemistry 48(44);10644-53. PMID: 19810706

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Fontecave05: Fontecave M, Choudens SO, Py B, Barras F (2005). "Mechanisms of iron-sulfur cluster assembly: the SUF machinery." J Biol Inorg Chem 10(7);713-21. PMID: 16211402

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

Gupta09: Gupta V, Sendra M, Naik SG, Chahal HK, Huynh BH, Outten FW, Fontecave M, Ollagnier de Choudens S (2009). "Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe-2S] protein and acts as an Fe-S transporter to Fe-S target enzymes." J Am Chem Soc 131(17);6149-53. PMID: 19366265

Johnson05: Johnson DC, Dean DR, Smith AD, Johnson MK (2005). "Structure, function, and formation of biological iron-sulfur clusters." Annu Rev Biochem 74;247-81. PMID: 15952888

Joyce06: Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006). "Experimental and computational assessment of conditionally essential genes in Escherichia coli." J Bacteriol 188(23);8259-71. PMID: 17012394

Lee04: Lee JH, Yeo WS, Roe JH (2004). "Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor." Mol Microbiol 51(6);1745-55. PMID: 15009899

Lee08: Lee KC, Yeo WS, Roe JH (2008). "Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli." J Bacteriol 190(24);8244-7. PMID: 18849427

Lu08a: Lu J, Yang J, Tan G, Ding H (2008). "Complementary roles of SufA and IscA in the biogenesis of iron-sulfur clusters in Escherichia coli." Biochem J 409(2);535-43. PMID: 17941825

OllagnierdeChou04: Ollagnier-de-Choudens S, Sanakis Y, Fontecave M (2004). "SufA/IscA: reactivity studies of a class of scaffold proteins involved in [Fe-S] cluster assembly." J Biol Inorg Chem 9(7);828-38. PMID: 15278785

Outten04: Outten FW, Djaman O, Storz G (2004). "A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli." Mol Microbiol 52(3);861-72. PMID: 15101990

Patzer99: Patzer SI, Hantke K (1999). "SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli." J Bacteriol 181(10);3307-9. PMID: 10322040

Ranquet07: Ranquet C, Ollagnier-de-Choudens S, Loiseau L, Barras F, Fontecave M (2007). "Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins." J Biol Chem 282(42);30442-51. PMID: 17642475

Sendra07: Sendra M, Ollagnier de Choudens S, Lascoux D, Sanakis Y, Fontecave M (2007). "The SUF iron-sulfur cluster biosynthetic machinery: sulfur transfer from the SUFS-SUFE complex to SUFA." FEBS Lett 581(7);1362-8. PMID: 17350000

Takahashi02: Takahashi Y, Tokumoto U (2002). "A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids." J Biol Chem 277(32);28380-3. PMID: 12089140

Tan09: Tan G, Lu J, Bitoun JP, Huang H, Ding H (2009). "IscA/SufA paralogues are required for the [4Fe-4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions." Biochem J 420(3);463-72. PMID: 19309314

Tokumoto04: Tokumoto U, Kitamura S, Fukuyama K, Takahashi Y (2004). "Interchangeability and distinct properties of bacterial Fe-S cluster assembly systems: functional replacement of the isc and suf operons in Escherichia coli with the nifSU-like operon from Helicobacter pylori." J Biochem (Tokyo) 136(2);199-209. PMID: 15496591

Vinella09: Vinella D, Brochier-Armanet C, Loiseau L, Talla E, Barras F (2009). "Iron-sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers." PLoS Genet 5(5);e1000497. PMID: 19478995

Wada05: Wada K, Hasegawa Y, Gong Z, Minami Y, Fukuyama K, Takahashi Y (2005). "Crystal structure of Escherichia coli SufA involved in biosynthesis of iron-sulfur clusters: implications for a functional dimer." FEBS Lett 579(29);6543-8. PMID: 16298366

Yeo06: Yeo WS, Lee JH, Lee KC, Roe JH (2006). "IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins." Mol Microbiol 61(1);206-18. PMID: 16824106

Zheng01: Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G (2001). "DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide." J Bacteriol 183(15);4562-70. PMID: 11443091

Other References Related to Gene Regulation

Giel06: Giel JL, Rodionov D, Liu M, Blattner FR, Kiley PJ (2006). "IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O-regulated genes in Escherichia coli." Mol Microbiol 60(4);1058-75. PMID: 16677314

Jang10: Jang S, Imlay JA (2010). "Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate." Mol Microbiol 78(6);1448-67. PMID: 21143317

Partridge09: Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S (2009). "NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility." Mol Microbiol 73(4);680-94. PMID: 19656291


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Thu Nov 27, 2014, biocyc12.