Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

Escherichia coli K-12 substr. MG1655 Protein: DNA polymerase III, τ subunit dimer



Gene: dnaX Accession Numbers: EG10245 (EcoCyc), b0470, ECK0464

Synonyms: dnaZ, DNA elongation factor III

Regulation Summary Diagram: ?

Component of:
DNA polymerase III, preinitiation complex (extended summary available)
DNA polymerase III, holoenzyme (extended summary available)

Subunit composition of DNA polymerase III, τ subunit dimer = [DnaX]2
         DNA polymerase III, τ subunit = DnaX

Summary:
The tau subunit of DNA polymerase III holoenzyme binds the alpha subunit and dimerizes, dimerizing the core alpha-epsilon-theta polymerase as a consequence [StudwellVaughan91]. This dimerization of the core polymerase is required for processive lagging strand synthesis [Kim96c]. Alpha binds within the tau carboxy-terminus [StudwellVaughan91, Gao01]. Tau interacts with alpha at the beta binding site with high affinity in the presence of duplex DNA and low affinity in the presence of primed ssDNA. As a consequence, when synthesis is complete tau blocks beta binding, leading to release of polymerase from the beta clamp [Lopez03a].

Tau also binds the replicative DNA helicase DnaB. This requires the fourth of five domains in tau, and leads to binding of the hexameric DnaB by more than one tau, suggesting both taus in the polymerase III holoenzyme are bound [Gao01a, Dallmann00]. This interaction is required to allow DNA synthesis to proceed at its normal rate of one thousand nucleotides per second. Without this interaction, DNA polymerase III moves at the rate of DnaB alone, about thirty-five nucleotides per second [Kim96d].

In the absence of tau, leading-strand synthesis by DNA polymerase III is not highly processive and requires an excess of core enzyme [Kim96e, Dallmann95a].

Tau also has an ssDNA-dependent ATpase activity, as well as DNA-DNA and DNA-RNA annealing activities that do not require ATP binding or hydrolysis [Lee87, Kim95]. Based on the annealing activities, a role for tau in primer stabilization has been suggested [Kim95].

Tau shares the first three of its five domains with the gamma subunit. The third domain is required for oligomerization of both tau and gamma, and also includes the binding sites for delta, delta', chi and psi [Glover01, Gao01b].
As described in the gamma subunit description, DnaX undergoes a programmed -1 frameshift roughly half of the time that yields a new stop codon just after the frameshift point [Tsuchihashi90, Flower90, Blinkowa90].

The "Spliced Nucleotide Sequence" link above refers to this frameshifted variant, but note that no splicing occurs.

Gene Citations: [Chen93]

Map Position: [491,316 -> 493,247] (10.59 centisomes)
Length: 1932 bp / 643 aa

Molecular Weight of Polypeptide: 71.138 kD (from nucleotide sequence)

Unification Links: ASAP:ABE-0001633 , CGSC:838 , DIP:DIP-9464N , EchoBASE:EB0241 , EcoGene:EG10245 , EcoliWiki:b0470 , Mint:MINT-1222776 , ModBase:P06710 , OU-Microarray:b0470 , PortEco:dnaX , PR:PRO_000022469 , Pride:P06710 , Protein Model Portal:P06710 , RefSeq:NP_415003 , RegulonDB:EG10245 , SMR:P06710 , String:511145.b0470 , UniProt:P06710

Relationship Links: InterPro:IN-FAMILY:IPR001270 , InterPro:IN-FAMILY:IPR003593 , InterPro:IN-FAMILY:IPR008921 , InterPro:IN-FAMILY:IPR012763 , InterPro:IN-FAMILY:IPR021029 , InterPro:IN-FAMILY:IPR022001 , InterPro:IN-FAMILY:IPR022754 , InterPro:IN-FAMILY:IPR027417 , PDB:Structure:1JR3 , PDB:Structure:1NJF , PDB:Structure:1NJG , PDB:Structure:1XXH , PDB:Structure:1XXI , PDB:Structure:2AYA , PDB:Structure:3GLF , PDB:Structure:3GLG , PDB:Structure:3GLH , PDB:Structure:3GLI , Pfam:IN-FAMILY:PF12168 , Pfam:IN-FAMILY:PF12169 , Pfam:IN-FAMILY:PF12170 , Prints:IN-FAMILY:PR00300 , Smart:IN-FAMILY:SM00382

In Paralogous Gene Group: 134 (5 members)

Gene-Reaction Schematic: ?

GO Terms:

Biological Process: GO:0006200 - ATP catabolic process Inferred from experiment [Tsuchihashi89]
GO:0006260 - DNA replication Inferred from experiment Inferred by computational analysis [UniProtGOA11a, GOA01a, Henson79]
GO:0006261 - DNA-dependent DNA replication Inferred by computational analysis [UniProtGOA11a, GOA01, GOA01a]
Molecular Function: GO:0005515 - protein binding Inferred from experiment [Rajagopala14, Kelman98, Kim96, Naktinis95, Olson95, Rajagopala12, Parks09, Simonetta09, Butland05, Kazmirski04, Bullard02, Song01, Jeruzalmi01a, Glover01, Pritchard00, Gao01a, Gao01, Gao01b]
GO:0016887 - ATPase activity Inferred from experiment [Tsuchihashi89]
GO:0017111 - nucleoside-triphosphatase activity Inferred from experiment [Walker00]
GO:0030337 - DNA polymerase processivity factor activity Inferred from experiment [Olson95, Jeruzalmi01a]
GO:0042802 - identical protein binding Inferred from experiment [Rajagopala14, Glover01]
GO:0000166 - nucleotide binding Inferred by computational analysis [UniProtGOA11a]
GO:0003677 - DNA binding Inferred by computational analysis [GOA01a]
GO:0003887 - DNA-directed DNA polymerase activity Inferred by computational analysis [UniProtGOA11a, GOA01, GOA01a]
GO:0005524 - ATP binding Inferred by computational analysis [UniProtGOA11a, GOA01a]
GO:0016740 - transferase activity Inferred by computational analysis [UniProtGOA11a]
GO:0016779 - nucleotidyltransferase activity Inferred by computational analysis [UniProtGOA11a]
Cellular Component: GO:0043846 - DNA polymerase III, clamp loader complex Inferred from experiment [Blinkova93]
GO:0009360 - DNA polymerase III complex Inferred by computational analysis [GOA01a]

MultiFun Terms: information transfer DNA related DNA replication

Essentiality data for dnaX knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB Lennox No 37 Aerobic 7   No [Baba06, Comment 1]

Subunit of: DNA polymerase III, preinitiation complex

Subunit composition of DNA polymerase III, preinitiation complex = [DnaX]3[HolB][HolA]
         DNA polymerase III, τ subunit = DnaX
         DNA polymerase III, δ prime subunit = HolB (summary available)
         DNA polymerase III, δ subunit = HolA (summary available)

Component of: DNA polymerase III, holoenzyme (extended summary available)

Summary:
The preinitiation complex binds primed ssDNA and loads the beta processivity clamp. Following this, the DNA polymerase III (pol III) core enzyme, linked by tau, binds, allowing processive DNA polymerization [ODonnell87].

Several of the preinitiation complex subunits are required for binding and initiation of replication. The delta subunit interacts with the primer-template junction, ensuring proper placement of the preinitiation complex at a replication start site [Magdalena04]. The complex binds single-strand binding protein (SSB)-coated DNA with the assistance of associated psi-chi dimers [Fradkin92, Glover98]. The interaction with SSB bound to DNA is a thousand-fold stronger than that with SSB alone; it also enhances the affinity of SSB for DNA, preventing premature dissociation from the initiation site [Glover98, Witte03].

Beta clamps are loaded onto DNA by the preinitiation complex. Contact between the complex and beta is primarily mediated by delta, which can bind to the beta carboxy-termini and remove the beta clamp from DNA in an ATP-independent manner [Leu00, Naktinis95, Indiani03]. Free delta is also present in the cell, possibly acting to remove beta clamps from DNA where no polymerase is present [Leu00]. Preinitiation complex binding to beta does require ATP, suggesting a possible conformational change to reveal delta [Naktinis95]. The delta and delta' subunits themselves undergo only minor conformational changes on ATP binding [Goedken04]. The gamma subunit can also open the beta clamp, though less effectively than delta [Leu01]. Both gamma and delta' restrict opening of beta by delta in the absence of ATP [Leu01]. The preinitiation complex loads beta onto template DNA at a rate of 12/s, which is fast enough to account for the rate of lagging strand initiation [Bloom96].

Beta loading and preinitiation complex release from DNA are both ATP-dependent processes. Each gamma subunit binds an ATP, prompting a conformational change that induces delta' to permit delta to bind and act on the beta clamp [Hingorani98, Turner99]. ATP binding also raises the affinity of the preinitiation complex for primed template [Ason00]. This same primed template triggers hydrolysis of bound ATP, possibly via the interaction between beta and primed DNA, reverting the complex to a lower affinity form that cycles off the DNA and disengages from beta [Ason03, Turner99, Bertram98]. The involvement of ATP and its hydrolysis in beta loading and subsequent preinitiation complex release has been examined in detail [Hingorani99, Bertram00, Snyder04, Williams04].

A number of structural studies have been carried out on the preinitiation complex, sometimes with conflicting results. In addition to the 2 gamma, 1 delta, 1 delta', 1 chi, 1 psi structure found in the holoenzyme, a tau variant with tau, delta, delta', chi and psi can form in vitro [Onrust95, Onrust95a]. In sedimentation assays, gamma and tau have both been detected as homotetramers both on their own and complexed with delta, delta', chi and psi [Dallmann95]. Within the preinitiation complex, gamma crosslinks with both delta' and psi [Glover00]. A crystal structure of the entire complex at 2.7 A resolution shows a pentameric arrangement of subunits including three gamma subunits [Jeruzalmi01a]. Another crystal structure, of delta and beta together, shows that delta operates to open beta by perturbing one of the beta dimer interface points [Jeruzalmi01].


Subunit of: DNA polymerase III, holoenzyme

Subunit composition of DNA polymerase III, holoenzyme = [(DnaE)(DnaQ)(HolE)]3[(DnaX)3(HolB)(HolA)][(DnaN)2]2[(DnaX)2][(HolC)(HolD)]4
         DNA polymerase III, core enzyme = (DnaE)(DnaQ)(HolE) (summary available)
                 DNA polymerase III, α subunit = DnaE (extended summary available)
                 DNA polymerase III, ε subunit = DnaQ (extended summary available)
                 DNA polymerase III, θ subunit = HolE (extended summary available)
         DNA polymerase III, preinitiation complex = (DnaX)3(HolB)(HolA) (extended summary available)
                 DNA polymerase III, τ subunit = DnaX
                 DNA polymerase III, δ prime subunit = HolB (summary available)
                 DNA polymerase III, δ subunit = HolA (summary available)
         DNA polymerase III, β subunit = (DnaN)2 (extended summary available)
         DNA polymerase III, τ subunit dimer = (DnaX)2 (extended summary available)
                 DNA polymerase III, τ subunit = DnaX
         DNA polymerase III, ψ-χ subunit = (HolC)(HolD) (extended summary available)
                 DNA polymerase III, χ subunit = HolC
                 DNA polymerase III, ψ subunit = HolD

Summary:
DNA polymerase III holoenzyme is the enzyme primarily responsible for replicative DNA synthesis in E. coli. It carries out primer-initiated 5' to 3' polymerization of DNA on a single-stranded DNA template, as well as 3' to 5' exonucleolytic editing of mispaired nucleotides.

Replicative DNA polymerization begins when the preinitiation complex binds single-stranded DNA near an RNA primer. The preinitiation complex then loads the beta processivity clamp onto the DNA at this site, after which three core polymerases, chaperoned into place by the tau subunit, bind to the processivity clamp, with one polymerase on the leading strand and two on the lagging. DNA is synthesized 5' to 3' from primers on both the leading and lagging strands, covalently attaching the newly synthesized DNA to the primer. Tau displaces beta in the presence of duplex DNA, dissociating the polymerase from the template when it reaches a temporary stop on the lagging strand or when synthesis is complete on either strand [Maki88, Maki88a, Onrust95, Maki88b, Nusslein76, ReyesLamothe10].

For more detailed discussion of the stages of polymerase binding and DNA synthesis, see the individual entries for DNA polymerase III, preinitiation complex, DNA polymerase III, β subunit, DNA polymerase III, τ subunit dimer, DNA polymerase III, core enzyme and their constituent parts.

DNA polymerase III binds a region about 30 nucleotides long upstream of the RNA primer, with the alpha subunit making contact 9 nucleotides upstream and the beta clamp making contact 22 nucleotides upstream [Reems95, Reems94]. The preinitiation complex binds an area larger than this prior to being displaced by the core polymerase [Reems94]. In the presence of DNA polymerase III, RNA primer length is limited to 10 nucleotides, a limitation that is independent of the epsilon-mediated 3' to 5' exonuclease activity [Zechner92].

During polymerization, DNA polymerase III pauses at sites of potential secondary structure [LaDuca83]. The holoenzyme can traverse distances as long as 400 base pairs of duplex DNA to reach the next available 3' end and restart synthesis [ODonnell85]. Such jumps within the same template take 2 to 5 seconds, whereas transfer to a new template takes 30 seconds [Burgers83].

DNA polymerase III is required for several kinds of DNA repair, including some forms of double-strand break repair, fixing hydrogen-peroxide-induced damage and methyl-directed mismatch repair [Motamedi99, Hagensee89, Cooper93]. Mutations that inhibit polymerase III stimulate repeat expansion and lead to lower levels of unsaturation in fatty acids [Morag99, Suzuki98].

UV mutagenesis and gap repair following UV damage to DNA both involve DNA polymerase III [CohenFix94, Tomer96]. The polymerase stalls at pyrimidine photodimers in vitro, but is capable of bypassing such lesions to continue synthesis [Shwartz87, Livneh86]. This bypass activity is stimulated by single-strand binding protein (SSB) but inhibited by the polymerase III beta subunit, which explains the relatively low rate of bypass in vivo [Shwartz87, Shavitt89].

Citations: [Cull95]

Credits:
Last-Curated ? 09-Jan-2006 by Shearer A , SRI International


Sequence Features

Feature Class Location Citations Comment
Cleavage-of-Initial-Methionine 1
[UniProt12b]
UniProt: Removed.
Chain 2 -> 643
[UniProt12b]
UniProt: DNA polymerase III subunit tau.
Nucleotide-Phosphate-Binding-Region 45 -> 52
[UniProt10a]
UniProt: ATP; Non-Experimental Qualifier: potential;
Intrinsic-Sequence-Variant 431
[UniProt12b]
Alternate sequence: S → E; UniProt: (in isoform gamma).
Intrinsic-Sequence-Variant 432 -> 643
[UniProt12b]
Alternate sequence: EPAAATRARPVNNAALERLASVTDRVQARPVPSALEKAPAKKEAYRWKATTPVMQQKEVVATPKALKKALEHEKTPELAAKLAAEAIERDPWAAQVSQLSLPKLVEQVALNAWKEESDNAVCLHLRSSQRHLNNRGAQQKLAEALSMLKGSTVELTIVEDDNPAVRTPLEWRQAIYEEKLAQARESIIADNNIQTLRRFFDAELDEESIRPI → missing; UniProt: (in isoform gamma).


Gene Local Context (not to scale): ?

Transcription Unit:

Notes:

Exons/Introns:

History:
10/20/97 Gene b0470 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10245; confirmed by SwissProt match.


References

Ason00: Ason B, Bertram JG, Hingorani MM, Beechem JM, O'Donnell M, Goodman MF, Bloom LB (2000). "A model for Escherichia coli DNA polymerase III holoenzyme assembly at primer/template ends. DNA triggers a change in binding specificity of the gamma complex clamp loader." J Biol Chem 275(4);3006-15. PMID: 10644772

Ason03: Ason B, Handayani R, Williams CR, Bertram JG, Hingorani MM, O'Donnell M, Goodman MF, Bloom LB (2003). "Mechanism of loading the Escherichia coli DNA polymerase III beta sliding clamp on DNA. Bona fide primer/templates preferentially trigger the gamma complex to hydrolyze ATP and load the clamp." J Biol Chem 278(12);10033-40. PMID: 12519754

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Bertram00: Bertram JG, Bloom LB, Hingorani MM, Beechem JM, O'Donnell M, Goodman MF (2000). "Molecular mechanism and energetics of clamp assembly in Escherichia coli. The role of ATP hydrolysis when gamma complex loads beta on DNA." J Biol Chem 275(37);28413-20. PMID: 10874049

Bertram98: Bertram JG, Bloom LB, Turner J, O'Donnell M, Beechem JM, Goodman MF (1998). "Pre-steady state analysis of the assembly of wild type and mutant circular clamps of Escherichia coli DNA polymerase III onto DNA." J Biol Chem 273(38);24564-74. PMID: 9733751

Blinkova93: Blinkova A, Hervas C, Stukenberg PT, Onrust R, O'Donnell ME, Walker JR (1993). "The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX gene, tau and gamma, but only tau is essential." J Bacteriol 175(18);6018-27. PMID: 8376347

Blinkowa90: Blinkowa AL, Walker JR (1990). "Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame." Nucleic Acids Res 18(7);1725-9. PMID: 2186364

Bloom96: Bloom LB, Turner J, Kelman Z, Beechem JM, O'Donnell M, Goodman MF (1996). "Dynamics of loading the beta sliding clamp of DNA polymerase III onto DNA." J Biol Chem 271(48);30699-708. PMID: 8940047

Bullard02: Bullard JM, Pritchard AE, Song MS, Glover BP, Wieczorek A, Chen J, Janjic N, McHenry CS (2002). "A three-domain structure for the delta subunit of the DNA polymerase III holoenzyme delta domain III binds delta' and assembles into the DnaX complex." J Biol Chem 277(15);13246-56. PMID: 11809766

Burgers83: Burgers PM, Kornberg A (1983). "The cycling of Escherichia coli DNA polymerase III holoenzyme in replication." J Biol Chem 258(12);7669-75. PMID: 6345527

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Chen93: Chen KS, Saxena P, Walker JR (1993). "Expression of the Escherichia coli dnaX gene." J Bacteriol 175(20);6663-70. PMID: 7691799

CohenFix94: Cohen-Fix O, Livneh Z (1994). "In vitro UV mutagenesis associated with nucleotide excision-repair gaps in Escherichia coli." J Biol Chem 269(7);4953-8. PMID: 8106470

Cooper93: Cooper DL, Lahue RS, Modrich P (1993). "Methyl-directed mismatch repair is bidirectional." J Biol Chem 268(16);11823-9. PMID: 8389365

Cull95: Cull MG, McHenry CS (1995). "Purification of Escherichia coli DNA polymerase III holoenzyme." Methods Enzymol 262;22-35. PMID: 8594350

Dallmann00: Dallmann HG, Kim S, Pritchard AE, Marians KJ, McHenry CS (2000). "Characterization of the unique C terminus of the Escherichia coli tau DnaX protein. Monomeric C-tau binds alpha AND DnaB and can partially replace tau in reconstituted replication forks." J Biol Chem 275(20);15512-9. PMID: 10748120

Dallmann95: Dallmann HG, McHenry CS (1995). "DnaX complex of Escherichia coli DNA polymerase III holoenzyme. Physical characterization of the DnaX subunits and complexes." J Biol Chem 270(49);29563-9. PMID: 7493999

Dallmann95a: Dallmann HG, Thimmig RL, McHenry CS (1995). "DnaX complex of Escherichia coli DNA polymerase III holoenzyme. Central role of tau in initiation complex assembly and in determining the functional asymmetry of holoenzyme." J Biol Chem 270(49);29555-62. PMID: 7493998

Flower90: Flower AM, McHenry CS (1990). "The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting." Proc Natl Acad Sci U S A 87(10);3713-7. PMID: 2187190

Fradkin92: Fradkin LG, Kornberg A (1992). "Prereplicative complexes of components of DNA polymerase III holoenzyme of Escherichia coli." J Biol Chem 267(15);10318-22. PMID: 1587819

Gao01: Gao D, McHenry CS (2001). "tau binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged tau to determine candidate domains and to assign domain V as the alpha binding domain." J Biol Chem 276(6);4433-40. PMID: 11078743

Gao01a: Gao D, McHenry CS (2001). "tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB." J Biol Chem 276(6);4441-6. PMID: 11078744

Gao01b: Gao D, McHenry CS (2001). "Tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain III, shared by gamma and tau, binds delta delta ' and chi psi." J Biol Chem 276(6);4447-53. PMID: 11078742

Glover00: Glover BP, McHenry CS (2000). "The DnaX-binding subunits delta' and psi are bound to gamma and not tau in the DNA polymerase III holoenzyme." J Biol Chem 275(5);3017-20. PMID: 10652279

Glover01: Glover BP, Pritchard AE, McHenry CS (2001). "tau binds and organizes Escherichia coli replication proteins through distinct domains: domain III, shared by gamma and tau, oligomerizes DnaX." J Biol Chem 276(38);35842-6. PMID: 11463787

Glover98: Glover BP, McHenry CS (1998). "The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template." J Biol Chem 273(36);23476-84. PMID: 9722585

GOA01: GOA, MGI (2001). "Gene Ontology annotation based on Enzyme Commission mapping." Genomics 74;121-128.

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

Goedken04: Goedken ER, Levitus M, Johnson A, Bustamante C, O'Donnell M, Kuriyan J (2004). "Fluorescence measurements on the E.coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding." J Mol Biol 336(5);1047-59. PMID: 15037068

Hagensee89: Hagensee ME, Moses RE (1989). "Multiple pathways for repair of hydrogen peroxide-induced DNA damage in Escherichia coli." J Bacteriol 171(2);991-5. PMID: 2644241

Henson79: Henson JM, Chu H, Irwin CA, Walker JR (1979). "Isolation and characterization of dnaX and dnaY temperature-sensitive mutants of Escherichia coli." Genetics 92(4);1041-59. PMID: 391641

Hingorani98: Hingorani MM, O'Donnell M (1998). "ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme." J Biol Chem 273(38);24550-63. PMID: 9733750

Hingorani99: Hingorani MM, Bloom LB, Goodman MF, O'Donnell M (1999). "Division of labor--sequential ATP hydrolysis drives assembly of a DNA polymerase sliding clamp around DNA." EMBO J 18(18);5131-44. PMID: 10487764

Indiani03: Indiani C, O'Donnell M (2003). "Mechanism of the delta wrench in opening the beta sliding clamp." J Biol Chem 278(41);40272-81. PMID: 12851392

Jeruzalmi01: Jeruzalmi D, Yurieva O, Zhao Y, Young M, Stewart J, Hingorani M, O'Donnell M, Kuriyan J (2001). "Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III." Cell 106(4);417-28. PMID: 11525728

Jeruzalmi01a: Jeruzalmi D, O'Donnell M, Kuriyan J (2001). "Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III." Cell 106(4);429-41. PMID: 11525729

Kazmirski04: Kazmirski SL, Podobnik M, Weitze TF, O'Donnell M, Kuriyan J (2004). "Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex." Proc Natl Acad Sci U S A 101(48);16750-5. PMID: 15556993

Kelman98: Kelman Z, Yuzhakov A, Andjelkovic J, O'Donnell M (1998). "Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly." EMBO J 17(8);2436-49. PMID: 9545254

Kim95: Kim S, Marians KJ (1995). "DNA and RNA-DNA annealing activity associated with the tau subunit of the Escherichia coli DNA polymerase III holoenzyme." Nucleic Acids Res 23(8);1374-9. PMID: 7538662

Kim96: Kim DR, McHenry CS (1996). "Biotin tagging deletion analysis of domain limits involved in protein-macromolecular interactions. Mapping the tau binding domain of the DNA polymerase III alpha subunit." J Biol Chem 271(34);20690-8. PMID: 8702819

Kim96c: Kim S, Dallmann HG, McHenry CS, Marians KJ (1996). "tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork." J Biol Chem 271(35);21406-12. PMID: 8702922

Kim96d: Kim S, Dallmann HG, McHenry CS, Marians KJ (1996). "Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement." Cell 84(4);643-50. PMID: 8598050

Kim96e: Kim S, Dallmann HG, McHenry CS, Marians KJ (1996). "Tau protects beta in the leading-strand polymerase complex at the replication fork." J Biol Chem 271(8);4315-8. PMID: 8626779

LaDuca83: LaDuca RJ, Fay PJ, Chuang C, McHenry CS, Bambara RA (1983). "Site-specific pausing of deoxyribonucleic acid synthesis catalyzed by four forms of Escherichia coli DNA polymerase III." Biochemistry 22(22);5177-88. PMID: 6360204

Lee87: Lee SH, Walker JR (1987). "Escherichia coli DnaX product, the tau subunit of DNA polymerase III, is a multifunctional protein with single-stranded DNA-dependent ATPase activity." Proc Natl Acad Sci U S A 84(9);2713-7. PMID: 3033660

Leu00: Leu FP, Hingorani MM, Turner J, O'Donnell M (2000). "The delta subunit of DNA polymerase III holoenzyme serves as a sliding clamp unloader in Escherichia coli." J Biol Chem 275(44);34609-18. PMID: 10924523

Leu01: Leu FP, O'Donnell M (2001). "Interplay of clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme." J Biol Chem 276(50);47185-94. PMID: 11572866

Livneh86: Livneh Z (1986). "Mechanism of replication of ultraviolet-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli. Implications for SOS mutagenesis." J Biol Chem 261(20);9526-33. PMID: 2941423

Lopez03a: Lopez de Saro FJ, Georgescu RE, O'Donnell M (2003). "A peptide switch regulates DNA polymerase processivity." Proc Natl Acad Sci U S A 100(25);14689-94. PMID: 14630952

Magdalena04: Magdalena Coman M, Jin M, Ceapa R, Finkelstein J, O'Donnell M, Chait BT, Hingorani MM (2004). "Dual functions, clamp opening and primer-template recognition, define a key clamp loader subunit." J Mol Biol 342(5);1457-69. PMID: 15364574

Maki88: Maki S, Kornberg A (1988). "DNA polymerase III holoenzyme of Escherichia coli. III. Distinctive processive polymerases reconstituted from purified subunits." J Biol Chem 263(14);6561-9. PMID: 3283127

Maki88a: Maki S, Kornberg A (1988). "DNA polymerase III holoenzyme of Escherichia coli. II. A novel complex including the gamma subunit essential for processive synthesis." J Biol Chem 263(14);6555-60. PMID: 3283126

Maki88b: Maki H, Maki S, Kornberg A (1988). "DNA Polymerase III holoenzyme of Escherichia coli. IV. The holoenzyme is an asymmetric dimer with twin active sites." J Biol Chem 263(14);6570-8. PMID: 3283128

Morag99: Morag AS, Saveson CJ, Lovett ST (1999). "Expansion of DNA repeats in Escherichia coli: effects of recombination and replication functions." J Mol Biol 289(1);21-7. PMID: 10339402

Motamedi99: Motamedi MR, Szigety SK, Rosenberg SM (1999). "Double-strand-break repair recombination in Escherichia coli: physical evidence for a DNA replication mechanism in vivo." Genes Dev 13(21);2889-903. PMID: 10557215

Naktinis95: Naktinis V, Onrust R, Fang L, O'Donnell M (1995). "Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp." J Biol Chem 270(22);13358-65. PMID: 7768937

Nusslein76: Nusslein V, Henke S, Johnston LH (1976). "Replication of E. coli duplex DNA in vitro. The separation of the DNA containing fractions of a lysate from the soluble enzymes and their complementation properties." Mol Gen Genet 145(2);183-90. PMID: 778584

ODonnell85: O'Donnell ME, Kornberg A (1985). "Dynamics of DNA polymerase III holoenzyme of Escherichia coli in replication of a multiprimed template." J Biol Chem 260(23);12875-83. PMID: 2413035

ODonnell87: O'Donnell ME (1987). "Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli." J Biol Chem 262(34);16558-65. PMID: 3316222

Olson95: Olson MW, Dallmann HG, McHenry CS (1995). "DnaX complex of Escherichia coli DNA polymerase III holoenzyme. The chi psi complex functions by increasing the affinity of tau and gamma for delta.delta' to a physiologically relevant range." J Biol Chem 270(49);29570-7. PMID: 7494000

Onrust95: Onrust R, Finkelstein J, Turner J, Naktinis V, O'Donnell M (1995). "Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. III. Interface between two polymerases and the clamp loader." J Biol Chem 270(22);13366-77. PMID: 7768938

Onrust95a: Onrust R, Finkelstein J, Naktinis V, Turner J, Fang L, O'Donnell M (1995). "Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader." J Biol Chem 270(22);13348-57. PMID: 7768936

Parks09: Parks AR, Li Z, Shi Q, Owens RM, Jin MM, Peters JE (2009). "Transposition into replicating DNA occurs through interaction with the processivity factor." Cell 138(4);685-95. PMID: 19703395

Pritchard00: Pritchard AE, Dallmann HG, Glover BP, McHenry CS (2000). "A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of deltadelta' with DnaX(4) forms DnaX(3)deltadelta'." EMBO J 19(23);6536-45. PMID: 11101526

Rajagopala12: Rajagopala SV, Sikorski P, Caufield JH, Tovchigrechko A, Uetz P (2012). "Studying protein complexes by the yeast two-hybrid system." Methods 58(4);392-9. PMID: 22841565

Rajagopala14: Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Hauser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014). "The binary protein-protein interaction landscape of Escherichia coli." Nat Biotechnol 32(3);285-90. PMID: 24561554

Reems94: Reems JA, McHenry CS (1994). "Escherichia coli DNA polymerase III holoenzyme footprints three helical turns of its primer." J Biol Chem 269(52);33091-6. PMID: 7806536

Reems95: Reems JA, Wood S, McHenry CS (1995). "Escherichia coli DNA polymerase III holoenzyme subunits alpha, beta, and gamma directly contact the primer-template." J Biol Chem 270(10);5606-13. PMID: 7890680

ReyesLamothe10: Reyes-Lamothe R, Sherratt DJ, Leake MC (2010). "Stoichiometry and architecture of active DNA replication machinery in Escherichia coli." Science 328(5977);498-501. PMID: 20413500

Shavitt89: Shavitt O, Livneh Z (1989). "The beta subunit modulates bypass and termination at UV lesions during in vitro replication with DNA polymerase III holoenzyme of Escherichia coli." J Biol Chem 264(19);11275-81. PMID: 2661556

Shwartz87: Shwartz H, Livneh Z (1987). "Dynamics of termination during in vitro replication of ultraviolet-irradiated DNA with DNA polymerase III holoenzyme of Escherichia coli." J Biol Chem 262(22);10518-23. PMID: 2956258

Simonetta09: Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA, McNally R, Seyedin SN, Makino DL, O'Donnell M, Kuriyan J (2009). "The mechanism of ATP-dependent primer-template recognition by a clamp loader complex." Cell 137(4);659-71. PMID: 19450514

Snyder04: Snyder AK, Williams CR, Johnson A, O'Donnell M, Bloom LB (2004). "Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: II. Uncoupling the beta and DNA binding activities of the gamma complex." J Biol Chem 279(6);4386-93. PMID: 14610068

Song01: Song MS, McHenry CS (2001). "Carboxyl-terminal domain III of the delta' subunit of DNA polymerase III holoenzyme binds DnaX and supports cooperative DnaX complex assembly." J Biol Chem 276(52);48709-15. PMID: 11606586

StudwellVaughan91: Studwell-Vaughan PS, O'Donnell M (1991). "Constitution of the twin polymerase of DNA polymerase III holoenzyme." J Biol Chem 266(29);19833-41. PMID: 1918087

Suzuki98: Suzuki E, Kondo T, Makise M, Mima S, Sakamoto K, Tsuchiya T, Mizushima T (1998). "Alteration in levels of unsaturated fatty acids in mutants of Escherichia coli defective in DNA replication." Biol Pharm Bull 21(7);657-61. PMID: 9703244

Tomer96: Tomer G, Cohen-Fix O, O'Donnell M, Goodman M, Livneh Z (1996). "Reconstitution of repair-gap UV mutagenesis with purified proteins from Escherichia coli: a role for DNA polymerases III and II." Proc Natl Acad Sci U S A 93(4);1376-80. PMID: 8643639

Tsuchihashi89: Tsuchihashi Z, Kornberg A (1989). "ATP interactions of the tau and gamma subunits of DNA polymerase III holoenzyme of Escherichia coli." J Biol Chem 264(30);17790-5. PMID: 2681183

Tsuchihashi90: Tsuchihashi Z, Kornberg A (1990). "Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme." Proc Natl Acad Sci U S A 87(7);2516-20. PMID: 2181440

Turner99: Turner J, Hingorani MM, Kelman Z, O'Donnell M (1999). "The internal workings of a DNA polymerase clamp-loading machine." EMBO J 18(3);771-83. PMID: 9927437

UniProt10a: UniProt Consortium (2010). "UniProt version 2010-07 released on 2010-06-15 00:00:00." Database.

UniProt12b: UniProt Consortium (2012). "UniProt version 2012-09 released on 2012-09-12 00:00:00." Database.

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

Walker00: Walker JR, Hervas C, Ross JD, Blinkova A, Walbridge MJ, Pumarega EJ, Park MO, Neely HR (2000). "Escherichia coli DNA polymerase III tau- and gamma-subunit conserved residues required for activity in vivo and in vitro." J Bacteriol 182(21);6106-13. PMID: 11029431

Williams04: Williams CR, Snyder AK, Kuzmic P, O'Donnell M, Bloom LB (2004). "Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: I. Two distinct activities for individual ATP sites in the gamma complex." J Biol Chem 279(6);4376-85. PMID: 14610067

Witte03: Witte G, Urbanke C, Curth U (2003). "DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery." Nucleic Acids Res 31(15);4434-40. PMID: 12888503

Zechner92: Zechner EL, Wu CA, Marians KJ (1992). "Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. III. A polymerase-primase interaction governs primer size." J Biol Chem 267(6);4054-63. PMID: 1531480

Other References Related to Gene Regulation

Flower86: Flower AM, McHenry CS (1986). "The adjacent dnaZ and dnaX genes of Escherichia coli are contained within one continuous open reading frame." Nucleic Acids Res 14(20);8091-101. PMID: 3534795


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Sat Dec 20, 2014, biocyc14.