Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Polypeptide: thioredoxin 1



Gene: trxA Accession Numbers: EG11031 (EcoCyc), b3781, ECK3773

Synonyms: dasC, fipA, tsnC, thioredoxin(SH)2, TRX1

Regulation Summary Diagram: ?

Alternative forms of thioredoxin 1: oxidized thioredoxin (extended summary available)

Summary:
Thioredoxins are small electron transfer proteins that contain a cysteine disulfide/dithiol active site with the amino acid sequence motif Cys-X-X-Cys (where X is any amino acid). They are members of the thioredoxin protein family. Members of this family/superfamily contain the thioredoxin fold, a characteristic and stable protein fold consisting of four β-sheets surrounded by three α-helices (reviewed in [Pan06]). The proteins function in a wide variety of cellular processes. Thioredoxin is reduced by NADPH in a reaction catalyzed by thioredoxin reductase. The conversion between the oxidized and reduced forms results in a subtle change of conformation. The functional properties differ between the two forms of thioredoxin. The reduced form of thioredoxin is a protein disulfide reductase, and catalyzes dithiol-disulfide exchange reactions. Escherichia coli thioredoxin contains the active site amino acid sequence Trp-Cys-Gly-Pro-Cys. In [Jeng94, Gleason90, Dyson90, Nikkola93, Katti90, Eklund84] and reviewed in [Holmgren85, Gleason88].

Escherichia coli thioredoxin is involved in reducing important cytoplasmic enzymes such as ribonucleoside diphosphate reductase 1, 3'-phospho-adenylylsulfate reductase methionine sulfoxide reductase A and methionine sulfoxide reductase B. E. coli thioredoxin also binds to bacteriophage T7 DNA polymerase and serves as its processivity factor for polymerization during phage growth ([Etson10] and in [Doublie98]). In addition, many other proteins that may interact with thioredoxin have been identified [Leichert04, Kumar04]. Thioredoxin also functions in a pathway involving a trans-membrane transfer of reducing potential from the cytoplasm to the periplasm. This pathway transfers electrons from cytoplasmic thioredoxin, through the cytoplasmic membrane protein DsbD, to reduce the periplasmic protein disulfide isomerase DbsC [Rietsch97, Cho09]. Reviewed in [Toledano07].

The solution structures of reduced [Jeng94, Dyson90] and oxidized [Jeng94] wild-type thioredoxin have been determined by NMR spectroscopy. The crystal structure of oxidized wild-type thioredoxin has also been solved at 2.8 Å [Holmgren75] and 1.68 Å [Katti90] resolution. Crystal structures are also available for mutant thioredoxins [Rudresh02, Schultz99, Collet05, Nikkola93] and chimeric [Dangi02] or fusion [Schlieper05] proteins with thioredoxin. Crystal structures of thioredoxin in complex with thioredoxin reductase [Lennon00], 3'-phosphoadenosine-5'-phosphosulfate reductase [Chartron07], and bacteriophage T7 DNA polymerase [Li04, Doublie98, Brieba04, Dutta04, Brieba05] have also been solved.

Thioredoxin function in vivo can depend upon cellular location. Although thioredoxin acts as a disulfide bond reductant in the reducing environment of the cytoplasm, it has been shown that if thioredoxin is experimentally exported to the oxidizing environment of the periplasm it can function as an oxidant, promoting disulfide bond formation [Debarbieux98]. The in vivo importance of the redox potential of thioredoxin was demonstrated using thioredoxin active site mutants which had increased redox potentials [Mossner99].

Many other genetic, biochemical and biophysical studies of E. coli thioredoxin structure and function have been done, examples include [Masip08, Huber05, Marulanda05, PerezJimenez05, Mancusso04].

Gene Citations: [Lim85]

Locations: cytosol, inner membrane

Map Position: [3,963,784 -> 3,964,113] (85.43 centisomes)
Length: 330 bp / 109 aa

Molecular Weight of Polypeptide: 11.807 kD (from nucleotide sequence)

pI: 4.97

Unification Links: ASAP:ABE-0012357 , CGSC:65 , DIP:DIP-31856N , EchoBASE:EB1024 , EcoGene:EG11031 , EcoliWiki:b3781 , KEGG:C00342 , Mint:MINT-1530752 , ModBase:P0AA25 , OU-Microarray:b3781 , PortEco:trxA , PR:PRO_000024129 , Pride:P0AA25 , Protein Model Portal:P0AA25 , RegulonDB:EG11031 , SMR:P0AA25 , String:511145.b3781 , UniProt:P0AA25

Relationship Links: InterPro:IN-FAMILY:IPR005746 , InterPro:IN-FAMILY:IPR012336 , InterPro:IN-FAMILY:IPR013766 , InterPro:IN-FAMILY:IPR017937 , Panther:IN-FAMILY:PTHR10438 , PDB:Structure:1F6M , PDB:Structure:1KEB , PDB:Structure:1M7T , PDB:Structure:1OAZ , PDB:Structure:1SKR , PDB:Structure:1SKS , PDB:Structure:1SKW , PDB:Structure:1SL0 , PDB:Structure:1SL1 , PDB:Structure:1SL2 , PDB:Structure:1SRX , PDB:Structure:1T7P , PDB:Structure:1T8E , PDB:Structure:1THO , PDB:Structure:1TK0 , PDB:Structure:1TK5 , PDB:Structure:1TK8 , PDB:Structure:1TKD , PDB:Structure:1TXX , PDB:Structure:1X9M , PDB:Structure:1X9S , PDB:Structure:1X9W , PDB:Structure:1XOA , PDB:Structure:1XOB , PDB:Structure:1ZCP , PDB:Structure:1ZYQ , PDB:Structure:1ZZY , PDB:Structure:2AJQ , PDB:Structure:2BTO , PDB:Structure:2EIO , PDB:Structure:2EIQ , PDB:Structure:2EIR , PDB:Structure:2FCH , PDB:Structure:2FD3 , PDB:Structure:2H6X , PDB:Structure:2H6Y , PDB:Structure:2H6Z , PDB:Structure:2H70 , PDB:Structure:2H71 , PDB:Structure:2H72 , PDB:Structure:2H73 , PDB:Structure:2H74 , PDB:Structure:2H75 , PDB:Structure:2H76 , PDB:Structure:2O8V , PDB:Structure:2TIR , PDB:Structure:2TRX , PDB:Structure:3DYR , PDB:Structure:4HU7 , PDB:Structure:4HU9 , PDB:Structure:4HUA , Pfam:IN-FAMILY:PF00085 , Prints:IN-FAMILY:PR00421 , Prosite:IN-FAMILY:PS00194 , Prosite:IN-FAMILY:PS51352

In Paralogous Gene Group: 436 (3 members)

Reactions known to consume the compound:

guanosine deoxyribonucleotides de novo biosynthesis II :
dGDP + an oxidized thioredoxin + H2O ← GDP + a reduced thioredoxin

pyrimidine deoxyribonucleotides de novo biosynthesis I :
dCDP + an oxidized thioredoxin + H2O ← CDP + a reduced thioredoxin
dUDP + an oxidized thioredoxin + H2O ← UDP + a reduced thioredoxin

sulfate reduction I (assimilatory) :
adenosine 3',5'-bisphosphate + sulfite + an oxidized thioredoxin + 2 H+ ← 3'-phosphoadenylyl-sulfate + a reduced thioredoxin

superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli) :
dCDP + an oxidized thioredoxin + H2O ← CDP + a reduced thioredoxin
dUDP + an oxidized thioredoxin + H2O ← UDP + a reduced thioredoxin

Not in pathways:
a reduced thioredoxin + hydrogen peroxide → an oxidized thioredoxin + 2 H2O
an organic hydroperoxide + a reduced thioredoxin → an alcohol + an oxidized thioredoxin + H2O
a reduced thioredoxin + D-cystine → an oxidized thioredoxin + 2 D-cysteine
a reduced thioredoxin + L-cystine → an oxidized thioredoxin + 2 L-cysteine
an oxidized thioredoxin + a 2'-deoxyribonucleoside 5'-diphosphate + H2O ← a reduced thioredoxin + a ribonucleoside diphosphate
L-methionine + an oxidized thioredoxin + H2O ← L-methionine-(R)-S-oxide + a reduced thioredoxin
L-methionine + an oxidized thioredoxin + H2O ← L-methionine-(S)-S-oxide + a reduced thioredoxin
a [protein]-L-methionine + an oxidized thioredoxin + H2O ← a protein-L-methionine-(S)-S-oxide + a reduced thioredoxin

Reactions known to produce the compound:

thioredoxin pathway :
a reduced thioredoxin + NADP+ ← an oxidized thioredoxin + NADPH + H+

Reactions known to both consume and produce the compound:

adenosine deoxyribonucleotides de novo biosynthesis II :
dADP + an oxidized thioredoxin + H2O ↔ ADP + a reduced thioredoxin

In Reactions of unknown directionality:

thioredoxin pathway :
an oxidized thioredoxin + 2 e- = a reduced thioredoxin

Not in pathways:
d-biotin d-sulfoxide + a reduced thioredoxin = biotin + an oxidized thioredoxin + H2O
a reduced thioredoxin + thiosulfate = an oxidized thioredoxin + sulfite + hydrogen sulfide + H+
a [protein]-L-methionine + an oxidized thioredoxin + H2O = a protein-L-methionine-(R)-S-oxide + a reduced thioredoxin

Genetic Regulation Schematic: ?

GO Terms:

Biological Process: GO:0045454 - cell redox homeostasis Inferred from experiment Inferred by computational analysis [GOA01, Prinz97]
GO:0006662 - glycerol ether metabolic process Inferred by computational analysis [GOA01]
GO:0016032 - viral process Inferred by computational analysis [UniProtGOA11]
GO:0055114 - oxidation-reduction process Inferred by computational analysis [UniProtGOA11]
Molecular Function: GO:0005515 - protein binding Inferred from experiment [Rajagopala14, Lennon00, Hall10]
GO:0015035 - protein disulfide oxidoreductase activity Inferred from experiment Inferred by computational analysis [GOA01, Mossner99]
Cellular Component: GO:0005829 - cytosol Inferred from experiment Inferred by computational analysis [DiazMejia09, Ishihama08, LopezCampistrou05]
GO:0005886 - plasma membrane [Bayer87]

MultiFun Terms: metabolism biosynthesis of macromolecules (cellular constituents) large molecule carriers thioredoxin, glutaredoxin

Essentiality data for trxA knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB enriched Yes 37 Aerobic 6.95   Yes [Gerdes03, Comment 1]
LB Lennox Yes 37 Aerobic 7   Yes [Baba06, Comment 2]
M9 medium with 1% glycerol Yes 37 Aerobic 7.2 0.35 Yes [Joyce06, Comment 3]
MOPS medium with 0.4% glucose Yes 37 Aerobic 7.2 0.22 Yes [Baba06, Comment 2]
Yes [Feist07, Comment 4]

Credits:
Last-Curated ? 01-Apr-2010 by Fulcher C , SRI International


Sequence Features

Feature Class Location Citations Comment
Cleavage-of-Initial-Methionine 1
[Holmgren68, UniProt11a]
UniProt: Removed.
Conserved-Region 2 -> 109
[UniProt09]
UniProt: Thioredoxin;
Chain 2 -> 109
[UniProt09]
UniProt: Thioredoxin-1;
Amino-Acid-Site 27
[UniProt10a]
UniProt: Deprotonates C-terminal active site Cys; Sequence Annotation Type: site;
Disulfide-Bond-Site 36, 33
[Schultz99, UniProt11a]
UniProt: Redox-active.
Active-Site 33
[UniProt10a]
UniProt: Nucleophile;
Amino-Acid-Site 34
[UniProt10a]
UniProt: Contributes to redox potential value; Sequence Annotation Type: site;
Amino-Acid-Site 35
[UniProt10a]
UniProt: Contributes to redox potential value; Sequence Annotation Type: site;
Active-Site 36
[UniProt10a]
UniProt: Nucleophile;
Acetylation-Modification 70
[Zhang09, UniProt11a]
UniProt: N6-acetyllysine.
Sequence-Conflict 72 -> 73
[Holmgren68, UniProt10a]
Alternate sequence: GI → IG; UniProt: (in Ref. 8; AA sequence);
Sequence-Conflict 88
[Daniels92, UniProt10a]
Alternate sequence: A → AS; UniProt: (in Ref. 5; AAA24696);


Gene Local Context (not to scale): ?

Transcription Units:

Notes:

History:
Peter D. Karp on Wed Jan 18, 2006:
Gene left-end position adjusted based on analysis performed in the 2005 E. coli annotation update [Riley06 ].
10/20/97 Gene b3781 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG11031; confirmed by SwissProt match.


References

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Bayer87: Bayer ME, Bayer MH, Lunn CA, Pigiet V (1987). "Association of thioredoxin with the inner membrane and adhesion sites in Escherichia coli." J Bacteriol 169(6);2659-66. PMID: 3294802

Brieba04: Brieba LG, Eichman BF, Kokoska RJ, Doublie S, Kunkel TA, Ellenberger T (2004). "Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA polymerase." EMBO J 23(17);3452-61. PMID: 15297882

Brieba05: Brieba LG, Kokoska RJ, Bebenek K, Kunkel TA, Ellenberger T (2005). "A lysine residue in the fingers subdomain of T7 DNA polymerase modulates the miscoding potential of 8-oxo-7,8-dihydroguanosine." Structure 13(11);1653-9. PMID: 16271888

Chartron07: Chartron J, Shiau C, Stout CD, Carroll KS (2007). "3'-Phosphoadenosine-5'-phosphosulfate reductase in complex with thioredoxin: a structural snapshot in the catalytic cycle." Biochemistry 46(13);3942-51. PMID: 17352498

Cho09: Cho SH, Beckwith J (2009). "Two snapshots of electron transport across the membrane: insights into the structure and function of DsbD." J Biol Chem 284(17);11416-24. PMID: 19258316

Collet05: Collet JF, Peisach D, Bardwell JC, Xu Z (2005). "The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant." Protein Sci 14(7);1863-9. PMID: 15987909

Dangi02: Dangi B, Dobrodumov AV, Louis JM, Gronenborn AM (2002). "Solution structure and dynamics of the human-Escherichia coli thioredoxin chimera: insights into thermodynamic stability." Biochemistry 41(30);9376-88. PMID: 12135359

Daniels92: Daniels DL, Plunkett G, Burland V, Blattner FR (1992). "Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes." Science 1992;257(5071);771-8. PMID: 1379743

Debarbieux98: Debarbieux L, Beckwith J (1998). "The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm." Proc Natl Acad Sci U S A 95(18);10751-6. PMID: 9724776

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Doublie98: Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T (1998). "Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution." Nature 391(6664);251-8. PMID: 9440688

Dutta04: Dutta S, Li Y, Johnson D, Dzantiev L, Richardson CC, Romano LJ, Ellenberger T (2004). "Crystal structures of 2-acetylaminofluorene and 2-aminofluorene in complex with T7 DNA polymerase reveal mechanisms of mutagenesis." Proc Natl Acad Sci U S A 101(46);16186-91. PMID: 15528277

Dyson90: Dyson HJ, Gippert GP, Case DA, Holmgren A, Wright PE (1990). "Three-dimensional solution structure of the reduced form of Escherichia coli thioredoxin determined by nuclear magnetic resonance spectroscopy." Biochemistry 1990;29(17);4129-36. PMID: 2193685

Eklund84: Eklund H, Cambillau C, Sjoberg BM, Holmgren A, Jornvall H, Hoog JO, Branden CI (1984). "Conformational and functional similarities between glutaredoxin and thioredoxins." EMBO J 1984;3(7);1443-9. PMID: 6378624

Etson10: Etson CM, Hamdan SM, Richardson CC, van Oijen AM (2010). "Thioredoxin suppresses microscopic hopping of T7 DNA polymerase on duplex DNA." Proc Natl Acad Sci U S A 107(5);1900-5. PMID: 20080681

Feist07: Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007). "A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information." Mol Syst Biol 3;121. PMID: 17593909

Gerdes03: Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003). "Experimental determination and system level analysis of essential genes in Escherichia coli MG1655." J Bacteriol 185(19);5673-84. PMID: 13129938

Gleason88: Gleason FK, Holmgren A (1988). "Thioredoxin and related proteins in procaryotes." FEMS Microbiol Rev 1988;4(4);271-97. PMID: 3152490

Gleason90: Gleason FK, Lim CJ, Gerami-Nejad M, Fuchs JA (1990). "Characterization of Escherichia coli thioredoxins with altered active site residues." Biochemistry 1990;29(15);3701-9. PMID: 2187529

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

Hall10: Hall M, Mata-Cabana A, Akerlund HE, Florencio FJ, Schroder WP, Lindahl M, Kieselbach T (2010). "Thioredoxin targets of the plant chloroplast lumen and their implications for plastid function." Proteomics 10(5);987-1001. PMID: 20049866

Holmgren68: Holmgren A (1968). "Thioredoxin. 6. The amino acid sequence of the protein from escherichia coli B." Eur J Biochem 6(4);475-84. PMID: 4883076

Holmgren75: Holmgren A, Soderberg BO, Eklund H, Branden CI (1975). "Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution." Proc Natl Acad Sci U S A 72(6);2305-9. PMID: 1094461

Holmgren85: Holmgren A (1985). "Thioredoxin." Annu Rev Biochem 1985;54;237-71. PMID: 3896121

Huber05: Huber D, Cha MI, Debarbieux L, Planson AG, Cruz N, Lopez G, Tasayco ML, Chaffotte A, Beckwith J (2005). "A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo." Proc Natl Acad Sci U S A 102(52);18872-7. PMID: 16357193

Ishihama08: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Jeng94: Jeng MF, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE, Dyson HJ (1994). "High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin." Structure 2(9);853-68. PMID: 7812718

Joyce06: Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006). "Experimental and computational assessment of conditionally essential genes in Escherichia coli." J Bacteriol 188(23);8259-71. PMID: 17012394

Katti90: Katti SK, LeMaster DM, Eklund H (1990). "Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution." J Mol Biol 1990;212(1);167-84. PMID: 2181145

Kumar04: Kumar JK, Tabor S, Richardson CC (2004). "Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli." Proc Natl Acad Sci U S A 101(11);3759-64. PMID: 15004283

Leichert04: Leichert LI, Jakob U (2004). "Protein thiol modifications visualized in vivo." PLoS Biol 2(11);e333. PMID: 15502869

Lennon00: Lennon BW, Williams CH, Ludwig ML (2000). "Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase." Science 289(5482);1190-4. PMID: 10947986

Li04: Li Y, Dutta S, Doublie S, Bdour HM, Taylor JS, Ellenberger T (2004). "Nucleotide insertion opposite a cis-syn thymine dimer by a replicative DNA polymerase from bacteriophage T7." Nat Struct Mol Biol 11(8);784-90. PMID: 15235589

Lim85: Lim CJ, Geraghty D, Fuchs JA (1985). "Cloning and nucleotide sequence of the trxA gene of Escherichia coli K-12." J Bacteriol 163(1);311-6. PMID: 3891733

LopezCampistrou05: Lopez-Campistrous A, Semchuk P, Burke L, Palmer-Stone T, Brokx SJ, Broderick G, Bottorff D, Bolch S, Weiner JH, Ellison MJ (2005). "Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth." Mol Cell Proteomics 4(8);1205-9. PMID: 15911532

Mancusso04: Mancusso R, Cruz E, Cataldi M, Mendoza C, Fuchs J, Wang H, Yang X, Tasayco ML (2004). "Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions." Biochemistry 43(13);3835-43. PMID: 15049690

Marulanda05: Marulanda D, Tasayco ML, Cataldi M, Arriaran V, Polenova T (2005). "Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy." J Phys Chem B 109(38);18135-45. PMID: 16853329

Masip08: Masip L, Klein-Marcuschamer D, Quan S, Bardwell JC, Georgiou G (2008). "Laboratory evolution of Escherichia coli thioredoxin for enhanced catalysis of protein oxidation in the periplasm reveals a phylogenetically conserved substrate specificity determinant." J Biol Chem 283(2);840-8. PMID: 18003618

Mossner99: Mossner E, Huber-Wunderlich M, Rietsch A, Beckwith J, Glockshuber R, Aslund F (1999). "Importance of redox potential for the in vivo function of the cytoplasmic disulfide reductant thioredoxin from Escherichia coli." J Biol Chem 274(36);25254-9. PMID: 10464247

Nikkola93: Nikkola M, Gleason FK, Fuchs JA, Eklund H (1993). "Crystal structure analysis of a mutant Escherichia coli thioredoxin in which lysine 36 is replaced by glutamic acid." Biochemistry 1993;32(19);5093-8. PMID: 8098620

Pan06: Pan JL, Bardwell JC (2006). "The origami of thioredoxin-like folds." Protein Sci 15(10);2217-27. PMID: 17008712

PerezJimenez05: Perez-Jimenez R, Godoy-Ruiz R, Ibarra-Molero B, Sanchez-Ruiz JM (2005). "The effect of charge-introduction mutations on E. coli thioredoxin stability." Biophys Chem 115(2-3);105-7. PMID: 15752590

Prinz97: Prinz WA, Aslund F, Holmgren A, Beckwith J (1997). "The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm." J Biol Chem 272(25);15661-7. PMID: 9188456

Rajagopala14: Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Hauser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014). "The binary protein-protein interaction landscape of Escherichia coli." Nat Biotechnol 32(3);285-90. PMID: 24561554

Rietsch97: Rietsch A, Bessette P, Georgiou G, Beckwith J (1997). "Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin." J Bacteriol 1997;179(21);6602-8. PMID: 9352906

Riley06: Riley M, Abe T, Arnaud MB, Berlyn MK, Blattner FR, Chaudhuri RR, Glasner JD, Horiuchi T, Keseler IM, Kosuge T, Mori H, Perna NT, Plunkett G, Rudd KE, Serres MH, Thomas GH, Thomson NR, Wishart D, Wanner BL (2006). "Escherichia coli K-12: a cooperatively developed annotation snapshot--2005." Nucleic Acids Res 34(1);1-9. PMID: 16397293

Rudresh02: Rudresh , Jain R, Dani V, Mitra A, Srivastava S, Sarma SP, Varadarajan R, Ramakumar S (2002). "Structural consequences of replacement of an alpha-helical Pro residue in Escherichia coli thioredoxin." Protein Eng 15(8);627-33. PMID: 12364576

Schlieper05: Schlieper D, Oliva MA, Andreu JM, Lowe J (2005). "Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer." Proc Natl Acad Sci U S A 102(26);9170-5. PMID: 15967998

Schultz99: Schultz LW, Chivers PT, Raines RT (1999). "The CXXC motif: crystal structure of an active-site variant of Escherichia coli thioredoxin." Acta Crystallogr D Biol Crystallogr 55(Pt 9);1533-8. PMID: 10489448

Toledano07: Toledano MB, Kumar C, Le Moan N, Spector D, Tacnet F (2007). "The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis." FEBS Lett 581(19);3598-607. PMID: 17659286

UniProt09: UniProt Consortium (2009). "UniProt version 15.8 released on 2009-10-01 00:00:00." Database.

UniProt10a: UniProt Consortium (2010). "UniProt version 2010-11 released on 2010-11-02 00:00:00." Database.

UniProt11a: UniProt Consortium (2011). "UniProt version 2011-11 released on 2011-11-22 00:00:00." Database.

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

Zhang09: Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y (2009). "Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli." Mol Cell Proteomics 8(2);215-25. PMID: 18723842

Other References Related to Gene Regulation

Aldea88: Aldea M, Claverie-Martin F, Diaz-Torres MR, Kushner SR (1988). "Transcript mapping using [35S]DNA probes, trichloroacetate solvent and dideoxy sequencing ladders: a rapid method for identification of transcriptional start points." Gene 1988;65(1);101-10. PMID: 3294110

Lim00: Lim CJ, Daws T, Gerami-Nejad M, Fuchs JA (2000). "Growth-phase regulation of the Escherichia coli thioredoxin gene." Biochim Biophys Acta 1491(1-3);1-6. PMID: 10760563

Sa97: Sa JH, Namgung MA, Lim CJ, Fuchs JA (1997). "Expression of the Escherichia coli thioredoxin gene is negatively regulated by cyclic AMP." Biochem Biophys Res Commun 234(3);564-7. PMID: 9175752


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Wed Nov 26, 2014, biocyc13.