Escherichia coli K-12 substr. MG1655 Protein: protein translocation ATPase

Gene: secA Accession Numbers: EG10936 (EcoCyc), b0098, ECK0099

Synonyms: azi, pea, prlD

Regulation Summary Diagram: ?

Regulation summary diagram for secA

Subunit composition of protein translocation ATPase = [SecA]2

The SecA protein is a multifunctional and dynamic component of the Sec protein translocation pathway in E. coli K-12. SecA is an ATPase that uses the energy of ATP hydrolysis to drive post-translational translocation of proteins through the SecYEG translocon [Brundage90, Economou94, Erlandson08]. SecA may also be directly involved in co-translational targeting of nascent polypeptides to the SecYEG translocon [Karamyshev05, Huber11]. Purified SecA stimulates refolding of polypeptides lacking signal sequences in vitro. This general chaperone activity does not require ATP hydrolysis [Eser03].

Under permissive conditions, conditional-lethal secA mutants accumulate precursors of several periplasmic proteins (MalE, PhoA, LamB and the ompF gene product) in the cytosol [Oliver81]. SecA is required for translocation of OmpA and alkaline phosphatase into E. coli membrane vesicles [Cabelli88, Cunningham89] In vitro reconstitution of preOmpA translocation in proteoliposomes requires SecA, SecB, the translocation complex consisting of SecY, an additional unidentified polypeptide and SecE (SecY/E), and ATP [Driessen90, Brundage90].

Wild type SecA partitions equally between the cytoplasm and inner membrane [Cabelli91, Mitchell93]. SecA interacts with SecYEG in the membrane [Hartl90, Matsumoto97, Manting99, Mori06, vanderSluis06]. SecA binds the signal sequence of pre-proproteins [Cunningham89a]. Membrane bound SecA binds preOmpA-SecB with high affinity in vitro [Hartl90]. Efficient delivery of preprotein for translocation requires SecA SecB interaction and binding of signal sequence to SecA. Signal sequence binding to SecA results in release of preprotein substrates from SecB [Fekkes97, Fekkes98]. SecA has preOmpA and membrane dependent ATPase activity [Lill89, Lill90]. SecA contains distinct binding sites for the signal peptide and the mature domain of its preprotein substrates [Gouridis09]. PrePhoA association to SecA is only marginally reduced if the signal peptide is impaired but substantially reduced if the mature region is truncated [Prinz96, Gouridis09]. Tight signal peptide binding to SecA promotes 'triggering' of the translocase (that is, lowering the ATPase activation energy) and drives 'trapping' of the mature protein in the translocase so that is irreversibly engaged in the channel [Gouridis09].

SecA has multiple ATP binding sites [Lill89]. SecA has two ATP binding sites of differing affinities [Mitchell93]. ATP binding and hydrolysis drives the cycling of SecA between different conformational states whereupon it is either inserted into the inner membrane, bound as a peripheral membrane protein or occurs free in the cytosol [Economou94, Economou95, Eichler97, Eichler97a]. Binding of a signal sequence to soluble SecA reduces its nucleotide binding capability and induces its oligomerization, enhancing membrane insertion of the SecA-signal peptide complex [Shin06]. Once inserted, SecA regains nucleotide binding capability [Shin06]. Binding and hydrolysis of ATP induces disorder-order folding transitions of the nucleotide binding domain (NBD) which communicates allosterically with other protein domains to drive translocation [Keramisanou06]. Upon hydrolysis of ATP, SecA is released, at least partially, from the translocating protein, whose signal sequence has been cleaved by signal peptidase. At this point, in concert with additional translocase components SecD/F/YajC, ATP again binds to the SecA binding site and additional stepwise translocation of the polypeptide resumes [Duong97, Erlandson08a]. Translocation occurs in a stepwise manner with each cycle of ATP binding and hydrolysis driving approximately 50 amino acids across the membrane [Tomkiewicz06]. The basal ATPase activity of SecA is low; release of ADP is stimulated by binding of SecA to SecYEG and ADP release is fastest when a substrate protein is being translocated [Robson09]. SecA-ATP interacts much more strongly with translocating polypeptide than SecA-ADP [Bauer14].

SecA contains a helicase DEAD motor (with the characteristic two domains, NBD1 and NBD2, that form a nucleotide binding fold) [Nithianantham08] plus a pre-protein binding domain (aa residues 221-377) [Kimura91, Kourtz00, Papanikou05] and a C-terminal domain (aa residues 611-832). By analogy to crystal structures obtained from Thermotoga maritima [Zimmer08] and Bacillus subtilis [Hunt02] SecA contains a polypeptide cross-linking domain (PPXD), a helical wing domain (HWD) and a helical scaffold domain (HSD) which consists of a long helix and two shorter ones that form a two-helix 'finger'. SecA's two finger helix interacts with translocating substrate and moves it into the SecY channel [Erlandson08]. A polypeptide substrate is captured inside the SecA 'clamp' structure (formed from the PPXD, NBD2 and parts of the HSD) and moves through it to contact the two helix finger before entering the SecY pore [Bauer09]. SecA moves a polypepetide into SecY using a 'push-slide' mechanism consisting of ATP driven power strokes plus passive sliding when SecA is in the ADP bound state; passive substrate sliding contributes significantly to the kinetics of translocation [Bauer14]. SecA has a moderate degree of processivity - some molecules remain associated with SecY during tranlocation, others dissociate and rebind [Bauer14].

SecA binds to translating and non-translating ribosomes with a 1:1 stoichiometry [Karamyshev05, Huber11]. Binding affinity increases when the nascent chain contains a signal sequence [Karamyshev05]. SecA binds to a site near the polypeptide exit channel on the large ribosomal subunit [Huber11, Kumar14]. Cryo-EM structures of both monomeric and dimeric SecA bound to the 70S ribosome have been obtained. Two SecA binding sites are identified at the polypeptide exit channel [Kumar14].

SecA exists in equilibrium between its monomeric and dimeric forms [Or02]. Dimeric SecA is required for protein translocation [Jilaveanu05, Jilaveanu06, Das08, Kusters11, Tang10]. Ligand free SecA adopts an antiparallel dimeric conformation in solution, with many electrostatic interactions occurring at the dimer interface [Chen08]. Two protomers of SecA must be bound to SecB for the complex to be active in vitro [Randall05]. The presence of two SecA protomers is necessary to achieve maximal coupling efficiency between ATP hydrolysis and translocation in cytoplasmic membrane vesicles [Mao09]. Monomeric SecA is functional for translocation in vitro [Or02].

Hydrophobic and electrostatic interactions contribute to SecA-signal peptide binding. The C-terminal region of SecA partially occludes a SecA signal peptide binding groove and may function as an autoinhibitory mechanism. Sec B counteracts this inhibition in vitro [Gelis07].

Preproteins with stretches of positively charged or negatively charged amino acids inserted in their polypeptide chain are unable to stimulate SecA ATPase activity and do not undergo translocation by the Sec translocase in vitro [Nouwen09].

SecA alone can promote preOmpA translocation in phospholiposomes. SecA liposomes are less efficient in preprotein translocation and lose the specificity for signal peptides [Hsieh11, Lin12a, Hsieh13].

SecA regulates its own production through translation control. During normal protein secretion SecA autorepresses its own translation by binding to a site that overlaps the ribosome binding site of secMsecA RNA [Schmidt89, Dolan91, Salavati95]. During inhibition of protein export secA translation rate increases via a SecM mediated mechanism known as the 'secretion defect response' [Oliver98, Murakami04].

Reviews: [Oliver90, Oliver93, Nakatogawa04, Vrontou04, Rusch07, Sardis10, Kusters11a]
Comment: [Economou08]

Citations: [Liang09, Cooper08, Deitermann05, Rajapandi96, Sato96, vanderWolk95, Zito05, Ramamurthy97, Das12, You13, Akimaru91, Hanada94, Swidersky90, Liss86, Duong03]

Gene Citations: [Schmidt88, Schmidt91]

Locations: inner membrane, cytosol

Map Position: [108,279 -> 110,984] (2.33 centisomes, 8°)
Length: 2706 bp / 901 aa

Molecular Weight of Polypeptide: 102.02 kD (from nucleotide sequence)

Unification Links: ASAP:ABE-0000343 , CGSC:176 , DIP:DIP-10840N , EchoBASE:EB0929 , EcoGene:EG10936 , EcoliWiki:b0098 , Mint:MINT-1224866 , ModBase:P10408 , OU-Microarray:b0098 , PortEco:secA , PR:PRO_000023923 , Pride:P10408 , Protein Model Portal:P10408 , RefSeq:NP_414640 , RegulonDB:EG10936 , SMR:P10408 , String:511145.b0098 , Swiss-Model:P10408 , UniProt:P10408

Relationship Links: InterPro:IN-FAMILY:IPR000185 , InterPro:IN-FAMILY:IPR004027 , InterPro:IN-FAMILY:IPR011115 , InterPro:IN-FAMILY:IPR011116 , InterPro:IN-FAMILY:IPR011130 , InterPro:IN-FAMILY:IPR014018 , InterPro:IN-FAMILY:IPR020937 , InterPro:IN-FAMILY:IPR027417 , PDB:Structure:1TM6 , PDB:Structure:2FSF , PDB:Structure:2FSG , PDB:Structure:2FSH , PDB:Structure:2FSI , PDB:Structure:2VDA , PDB:Structure:3BXZ , Pfam:IN-FAMILY:PF01043 , Pfam:IN-FAMILY:PF02810 , Pfam:IN-FAMILY:PF07516 , Pfam:IN-FAMILY:PF07517 , Prints:IN-FAMILY:PR00906 , Prosite:IN-FAMILY:PS01312 , Prosite:IN-FAMILY:PS51196 , Smart:IN-FAMILY:SM00957 , Smart:IN-FAMILY:SM00958

Gene-Reaction Schematic: ?

Gene-Reaction Schematic

GO Terms:

Biological Process: GO:0006605 - protein targeting Inferred from experiment Inferred by computational analysis [GOA06, GOA01, Oliver82]
GO:0015031 - protein transport Inferred from experiment Inferred by computational analysis [UniProtGOA11, Oliver82]
GO:0043952 - protein transport by the Sec complex Inferred from experiment [Brundage90, Oliver82]
GO:0061077 - chaperone-mediated protein folding Inferred from experiment [Eser03]
GO:0065002 - intracellular protein transmembrane transport Inferred from experiment Inferred by computational analysis [GOA06, Oliver82]
GO:0006810 - transport Inferred by computational analysis [UniProtGOA11]
GO:0017038 - protein import Inferred by computational analysis [GOA01]
Molecular Function: GO:0005515 - protein binding Inferred from experiment [Rajagopala14, Gully06, Suo11, Karamanou08, Papanikolau07, Butland05, Gelis07, Snyders97]
GO:0015462 - protein-transmembrane transporting ATPase activity Inferred from experiment [Lill89]
GO:0042802 - identical protein binding Inferred from experiment [Suo11, Stenberg05, Gelis07]
GO:0000166 - nucleotide binding Inferred by computational analysis [UniProtGOA11]
GO:0005524 - ATP binding Inferred by computational analysis [UniProtGOA11, GOA06, GOA01]
GO:0046872 - metal ion binding Inferred by computational analysis [UniProtGOA11]
Cellular Component: GO:0005737 - cytoplasm Inferred from experiment Inferred by computational analysis [UniProtGOA11a, UniProtGOA11, Cabelli91, Lasserre06]
GO:0005829 - cytosol Inferred from experiment [Cabelli91, Mitchell93]
GO:0005886 - plasma membrane Inferred from experiment Inferred by computational analysis [UniProtGOA11a, UniProtGOA11, GOA06, DiazMejia09, Cabelli91]
GO:0005887 - integral component of plasma membrane Inferred from experiment [Cabelli91, Mitchell93]
GO:0031522 - cell envelope Sec protein transport complex Inferred from experiment [Brundage90, Driessen90]
GO:0016020 - membrane Inferred by computational analysis [UniProtGOA11, GOA01]

MultiFun Terms: transport Channel-type Transporters Pyrophosphate Bond (ATP; GTP; P2) Hydrolysis-driven Active Transporters The Type II (General) Secretory Pathway (IISP) Family

Essentiality data for secA knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB Lennox No 37 Aerobic 7   No [Baba06, Comment 1]

Curated 31-Oct-2006 by Johnson A , TIGR
Revised 09-Oct-2013 by Mackie A , Macquarie University
Last-Curated ? 09-Sep-2014 by Mackie A , Macquarie University

Sequence Features

Protein sequence of SecA with features indicated

Feature Class Location Common Name Citations Comment
Nucleotide-Phosphate-Binding-Region 1 -> 222 NBD1
nucleotide binding domain I
Sequence-Conflict 19  
[Schmidt88, UniProt10]
UniProt: (in Ref. 1; AA sequence);
Nucleotide-Phosphate-Binding-Region 102 -> 109 Walker A motif
[UniProt10a, Mitchell93]
UniProt: ATP; Non-Experimental Qualifier: potential;
high affinity ATP binding domain
Nucleotide-Phosphate-Binding-Region 198 -> 210 Walker B motif
high affinity ATP binding site
Protein-Binding-Region 222 -> 375 PPXD
polypeptidde cross-linking domain
Nucleotide-Phosphate-Binding-Region 376 -> 415 NBDI
nucleotide binding domain I
Nucleotide-Phosphate-Binding-Region 416 -> 620 NBDII
nucleotide binding domain II
Nucleotide-Phosphate-Binding-Region 503 -> 511 Walker A motif
low affinity ATP binding domain
Protein-Structure-Region 621 -> 669 HSD
helical scaffold domain
Nucleotide-Phosphate-Binding-Region 631 -> 653 Walker B motif
low affinity ATP binding domain
Protein-Structure-Region 670 -> 755 HWD
helical wing domain
Sequence-Conflict 737 -> 738  
[Schmidt88, Yura92, UniProt10]
UniProt: (in Ref. 1; AAA24619 and 2; CAA38875);
Protein-Structure-Region 756 -> 828 HSD
helical scaffold domain
Mutagenesis-Variant 791  
L → A mutation results in decreased translocation of proOmpA substrate in vitro
Mutagenesis-Variant 794  
Y → A mutation results in decreased translocation of proOmpA substrate in vitro
Mutagenesis-Variant 799  
P → A mutation results in decreased translocation of proOmpA substrate in vitro
Mutagenesis-Variant 802  
E → A mutation results in decreased translocation of proOmpA substrate in vitro
Mutagenesis-Variant 803  
Y → A mutation results in decreased translocation of proOmpA substrate in vitro
Metal-Binding-Site 885  
UniProt: Zinc.
Metal-Binding-Site 887  
UniProt: Zinc.
Metal-Binding-Site 896  
UniProt: Zinc.
Metal-Binding-Site 897  
UniProt: Zinc.

Gene Local Context (not to scale): ?

Gene local context diagram

Transcription Unit:

Transcription-unit diagram


10/20/97 Gene b0098 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10936; confirmed by SwissProt match.


Akimaru91: Akimaru J, Matsuyama S, Tokuda H, Mizushima S (1991). "Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli." Proc Natl Acad Sci U S A 88(15);6545-9. PMID: 1830665

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Bauer09: Bauer BW, Rapoport TA (2009). "Mapping polypeptide interactions of the SecA ATPase during translocation." Proc Natl Acad Sci U S A 106(49);20800-5. PMID: 19933328

Bauer14: Bauer BW, Shemesh T, Chen Y, Rapoport TA (2014). "A "push and slide" mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase." Cell 157(6);1416-29. PMID: 24906156

Brundage90: Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W (1990). "The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation." Cell 62(4);649-57. PMID: 2167176

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Cabelli88: Cabelli RJ, Chen L, Tai PC, Oliver DB (1988). "SecA protein is required for secretory protein translocation into E. coli membrane vesicles." Cell 55(4);683-92. PMID: 2846186

Cabelli91: Cabelli RJ, Dolan KM, Qian LP, Oliver DB (1991). "Characterization of membrane-associated and soluble states of SecA protein from wild-type and SecA51(TS) mutant strains of Escherichia coli." J Biol Chem 266(36);24420-7. PMID: 1837021

Chen08: Chen Y, Pan X, Tang Y, Quan S, Tai PC, Sui SF (2008). "Full-length Escherichia coli SecA dimerizes in a closed conformation in solution as determined by cryo-electron microscopy." J Biol Chem 283(43);28783-7. PMID: 18772144

Cooper08: Cooper DB, Smith VF, Crane JM, Roth HC, Lilly AA, Randall LL (2008). "SecA, the motor of the secretion machine, binds diverse partners on one interactive surface." J Mol Biol 382(1);74-87. PMID: 18602400

Cunningham89: Cunningham K, Lill R, Crooke E, Rice M, Moore K, Wickner W, Oliver D (1989). "SecA protein, a peripheral protein of the Escherichia coli plasma membrane, is essential for the functional binding and translocation of proOmpA." EMBO J 8(3);955-9. PMID: 2542028

Cunningham89a: Cunningham K, Wickner W (1989). "Specific recognition of the leader region of precursor proteins is required for the activation of translocation ATPase of Escherichia coli." Proc Natl Acad Sci U S A 86(22);8630-4. PMID: 2554321

Das08: Das S, Stivison E, Folta-Stogniew E, Oliver D (2008). "Reexamination of the role of the amino terminus of SecA in promoting its dimerization and functional state." J Bacteriol 190(21);7302-7. PMID: 18723626

Das12: Das S, Grady LM, Michtavy J, Zhou Y, Cohan FM, Hingorani MM, Oliver DB (2012). "The variable subdomain of Escherichia coli SecA functions to regulate SecA ATPase activity and ADP release." J Bacteriol 194(9);2205-13. PMID: 22389482

Deitermann05: Deitermann S, Sprie GS, Koch HG (2005). "A dual function for SecA in the assembly of single spanning membrane proteins in Escherichia coli." J Biol Chem 280(47);39077-85. PMID: 16186099

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Dolan91: Dolan KM, Oliver DB (1991). "Characterization of Escherichia coli SecA protein binding to a site on its mRNA involved in autoregulation." J Biol Chem 266(34);23329-33. PMID: 1720780

Driessen90: Driessen AJ, Wickner W (1990). "Solubilization and functional reconstitution of the protein-translocation enzymes of Escherichia coli." Proc Natl Acad Sci U S A 87(8);3107-11. PMID: 2139227

Duong03: Duong F (2003). "Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase." EMBO J 22(17);4375-84. PMID: 12941690

Duong97: Duong F, Wickner W (1997). "The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling." EMBO J 16(16);4871-9. PMID: 9305629

Economou08: Economou A (2008). "Structural biology: Clamour for a kiss." Nature 455(7215);879-80. PMID: 18923500

Economou94: Economou A, Wickner W (1994). "SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion." Cell 78(5);835-43. PMID: 8087850

Economou95: Economou A, Pogliano JA, Beckwith J, Oliver DB, Wickner W (1995). "SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF." Cell 83(7);1171-81. PMID: 8548804

Eichler97: Eichler J, Brunner J, Wickner W (1997). "The protease-protected 30 kDa domain of SecA is largely inaccessible to the membrane lipid phase." EMBO J 16(9);2188-96. PMID: 9171334

Eichler97a: Eichler J, Wickner W (1997). "Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation." Proc Natl Acad Sci U S A 94(11);5574-81. PMID: 9159114

Erlandson08: Erlandson KJ, Miller SB, Nam Y, Osborne AR, Zimmer J, Rapoport TA (2008). "A role for the two-helix finger of the SecA ATPase in protein translocation." Nature 455(7215);984-7. PMID: 18923526

Erlandson08a: Erlandson KJ, Or E, Osborne AR, Rapoport TA (2008). "Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation." J Biol Chem 283(23);15709-15. PMID: 18359943

Eser03: Eser M, Ehrmann M (2003). "SecA-dependent quality control of intracellular protein localization." Proc Natl Acad Sci U S A 100(23);13231-4. PMID: 14597695

Fekkes97: Fekkes P, van der Does C, Driessen AJ (1997). "The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation." EMBO J 16(20);6105-13. PMID: 9321390

Fekkes98: Fekkes P, de Wit JG, van der Wolk JP, Kimsey HH, Kumamoto CA, Driessen AJ (1998). "Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA." Mol Microbiol 29(5);1179-90. PMID: 9767586

Gelis07: Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007). "Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR." Cell 131(4);756-69. PMID: 18022369

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA06: GOA, SIB (2006). "Electronic Gene Ontology annotations created by transferring manual GO annotations between orthologous microbial proteins."

Gouridis09: Gouridis G, Karamanou S, Gelis I, Kalodimos CG, Economou A (2009). "Signal peptides are allosteric activators of the protein translocase." Nature 462(7271);363-7. PMID: 19924216

Gully06: Gully D, Bouveret E (2006). "A protein network for phospholipid synthesis uncovered by a variant of the tandem affinity purification method in Escherichia coli." Proteomics 6(1);282-93. PMID: 16294310

Hanada94: Hanada M, Nishiyama KI, Mizushima S, Tokuda H (1994). "Reconstitution of an efficient protein translocation machinery comprising SecA and the three membrane proteins, SecY, SecE, and SecG (p12)." J Biol Chem 269(38);23625-31. PMID: 8089132

Hartl90: Hartl FU, Lecker S, Schiebel E, Hendrick JP, Wickner W (1990). "The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane." Cell 63(2);269-79. PMID: 2170023

Hsieh11: Hsieh YH, Zhang H, Lin BR, Cui N, Na B, Yang H, Jiang C, Sui SF, Tai PC (2011). "SecA alone can promote protein translocation and ion channel activity: SecYEG increases efficiency and signal peptide specificity." J Biol Chem 286(52);44702-9. PMID: 22033925

Hsieh13: Hsieh YH, Zhang H, Wang H, Yang H, Jiang C, Sui SF, Tai PC (2013). "Reconstitution of functionally efficient SecA-dependent protein-conducting channels: transformation of low-affinity SecA-liposome channels to high-affinity SecA-SecYEG-SecDF·YajC channels." Biochem Biophys Res Commun 431(3);388-92. PMID: 23337498

Huber11: Huber D, Rajagopalan N, Preissler S, Rocco MA, Merz F, Kramer G, Bukau B (2011). "SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria." Mol Cell 41(3);343-53. PMID: 21292166

Hunt02: Hunt JF, Weinkauf S, Henry L, Fak JJ, McNicholas P, Oliver DB, Deisenhofer J (2002). "Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA." Science 297(5589);2018-26. PMID: 12242434

Jilaveanu05: Jilaveanu LB, Zito CR, Oliver D (2005). "Dimeric SecA is essential for protein translocation." Proc Natl Acad Sci U S A 102(21);7511-6. PMID: 15897468

Jilaveanu06: Jilaveanu LB, Oliver D (2006). "SecA dimer cross-linked at its subunit interface is functional for protein translocation." J Bacteriol 188(1);335-8. PMID: 16352850

Karamanou08: Karamanou S, Bariami V, Papanikou E, Kalodimos CG, Economou A (2008). "Assembly of the translocase motor onto the preprotein-conducting channel." Mol Microbiol 70(2);311-22. PMID: 18761620

Karamyshev05: Karamyshev AL, Johnson AE (2005). "Selective SecA association with signal sequences in ribosome-bound nascent chains: a potential role for SecA in ribosome targeting to the bacterial membrane." J Biol Chem 280(45);37930-40. PMID: 16120599

Keramisanou06: Keramisanou D, Biris N, Gelis I, Sianidis G, Karamanou S, Economou A, Kalodimos CG (2006). "Disorder-order folding transitions underlie catalysis in the helicase motor of SecA." Nat Struct Mol Biol 13(7);594-602. PMID: 16783375

Kimura91: Kimura E, Akita M, Matsuyama S, Mizushima S (1991). "Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli." J Biol Chem 266(10);6600-6. PMID: 1826108

Kourtz00: Kourtz L, Oliver D (2000). "Tyr-326 plays a critical role in controlling SecA-preprotein interaction." Mol Microbiol 37(6);1342-56. PMID: 10998167

Kumar14: Kumar H, Kasho V, Smirnova I, Finer-Moore JS, Kaback HR, Stroud RM (2014). "Structure of sugar-bound LacY." Proc Natl Acad Sci U S A 111(5);1784-8. PMID: 24453216

Kusters11: Kusters I, van den Bogaart G, Kedrov A, Krasnikov V, Fulyani F, Poolman B, Driessen AJ (2011). "Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level." Structure 19(3);430-9. PMID: 21397193

Kusters11a: Kusters I, Driessen AJ (2011). "SecA, a remarkable nanomachine." Cell Mol Life Sci 68(12);2053-66. PMID: 21479870

Lasserre06: Lasserre JP, Beyne E, Pyndiah S, Lapaillerie D, Claverol S, Bonneu M (2006). "A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis." Electrophoresis 27(16);3306-21. PMID: 16858726

Liang09: Liang FC, Bageshwar UK, Musser SM (2009). "Bacterial Sec protein transport is rate-limited by precursor length: a single turnover study." Mol Biol Cell 20(19);4256-66. PMID: 19656854

Lill89: Lill R, Cunningham K, Brundage LA, Ito K, Oliver D, Wickner W (1989). "SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli." EMBO J 8(3);961-6. PMID: 2542029

Lill90: Lill R, Dowhan W, Wickner W (1990). "The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins." Cell 60(2);271-80. PMID: 2153463

Lin12a: Lin BR, Hsieh YH, Jiang C, Tai PC (2012). "Escherichia coli membranes depleted of SecYEG elicit SecA-dependent ion-channel activity but lose signal peptide specificity." J Membr Biol 245(11);747-57. PMID: 22854753

Liss86: Liss LR, Oliver DB (1986). "Effects of secA mutations on the synthesis and secretion of proteins in Escherichia coli. Evidence for a major export system for cell envelope proteins." J Biol Chem 261(5);2299-303. PMID: 3003108

Manting99: Manting EH, Kaufmann A, van der Does C, Driessen AJ (1999). "A single amino acid substitution in SecY stabilizes the interaction with SecA." J Biol Chem 274(34);23868-74. PMID: 10446151

Mao09: Mao C, Hardy SJ, Randall LL (2009). "Maximal Efficiency of Coupling between ATP Hydrolysis and Translocation of Polypeptides Mediated by SecB Requires Two Protomers of SecA." J Bacteriol 191(3):978-84. PMID: 18978043

Matsumoto97: Matsumoto G, Yoshihisa T, Ito K (1997). "SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane." EMBO J 16(21);6384-93. PMID: 9351821

Mitchell93: Mitchell C, Oliver D (1993). "Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase." Mol Microbiol 10(3);483-97. PMID: 7968527

Mori06: Mori H, Ito K (2006). "Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-cross-linking." Proc Natl Acad Sci U S A 103(44);16159-64. PMID: 17060619

Murakami04: Murakami A, Nakatogawa H, Ito K (2004). "Translation arrest of SecM is essential for the basal and regulated expression of SecA." Proc Natl Acad Sci U S A 101(33);12330-5. PMID: 15302932

Nakatogawa04: Nakatogawa H, Murakami A, Ito K (2004). "Control of SecA and SecM translation by protein secretion." Curr Opin Microbiol 7(2);145-50. PMID: 15063851

Nithianantham08: Nithianantham S, Shilton BH (2008). "Analysis of the Isolated SecA DEAD Motor Suggests a Mechanism for Chemical-Mechanical Coupling." J Mol Biol 383(2):380-9. PMID: 18761349

Nouwen09: Nouwen N, Berrelkamp G, Driessen AJ (2009). "Charged amino acids in a preprotein inhibit SecA-dependent protein translocation." J Mol Biol 386(4);1000-10. PMID: 19244616

Oliver81: Oliver DB, Beckwith J (1981). "E. coli mutant pleiotropically defective in the export of secreted proteins." Cell 25(3);765-72. PMID: 7026050

Oliver82: Oliver DB, Beckwith J (1982). "Identification of a new gene (secA) and gene product involved in the secretion of envelope proteins in Escherichia coli." J Bacteriol 150(2);686-91. PMID: 6279567

Oliver90: Oliver DB, Cabelli RJ, Jarosik GP (1990). "SecA protein: autoregulated initiator of secretory precursor protein translocation across the E. coli plasma membrane." J Bioenerg Biomembr 22(3);311-36. PMID: 2167892

Oliver93: Oliver DB (1993). "SecA protein: autoregulated ATPase catalysing preprotein insertion and translocation across the Escherichia coli inner membrane." Mol Microbiol 7(2);159-65. PMID: 8446024

Oliver98: Oliver D, Norman J, Sarker S (1998). "Regulation of Escherichia coli secA by cellular protein secretion proficiency requires an intact gene X signal sequence and an active translocon." J Bacteriol 180(19);5240-2. PMID: 9748461

Or02: Or E, Navon A, Rapoport T (2002). "Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane." EMBO J 21(17);4470-9. PMID: 12198149

Papanikolau07: Papanikolau Y, Papadovasilaki M, Ravelli RB, McCarthy AA, Cusack S, Economou A, Petratos K (2007). "Structure of dimeric SecA, the Escherichia coli preprotein translocase motor." J Mol Biol 366(5);1545-57. PMID: 17229438

Papanikou05: Papanikou E, Karamanou S, Baud C, Frank M, Sianidis G, Keramisanou D, Kalodimos CG, Kuhn A, Economou A (2005). "Identification of the preprotein binding domain of SecA." J Biol Chem 280(52);43209-17. PMID: 16243836

Prinz96: Prinz WA, Spiess C, Ehrmann M, Schierle C, Beckwith J (1996). "Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase." EMBO J 15(19);5209-17. PMID: 8895566

Rajagopala14: Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Hauser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014). "The binary protein-protein interaction landscape of Escherichia coli." Nat Biotechnol 32(3);285-90. PMID: 24561554

Rajapandi96: Rajapandi T, Oliver D (1996). "Integration of SecA protein into the Escherichia coli inner membrane is regulated by its amino-terminal ATP-binding domain." Mol Microbiol 20(1);43-51. PMID: 8861203

Ramamurthy97: Ramamurthy V, Oliver D (1997). "Topology of the integral membrane form of Escherichia coli SecA protein reveals multiple periplasmically exposed regions and modulation by ATP binding." J Biol Chem 272(37);23239-46. PMID: 9287332

Randall05: Randall LL, Crane JM, Lilly AA, Liu G, Mao C, Patel CN, Hardy SJ (2005). "Asymmetric binding between SecA and SecB two symmetric proteins: implications for function in export." J Mol Biol 348(2);479-89. PMID: 15811382

Robson09: Robson A, Gold VA, Hodson S, Clarke AR, Collinson I (2009). "Energy transduction in protein transport and the ATP hydrolytic cycle of SecA." Proc Natl Acad Sci U S A 106(13);5111-6. PMID: 19273842

Rusch07: Rusch SL, Kendall DA (2007). "Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon." Biochim Biophys Acta 1768(1);5-12. PMID: 17011510

Salavati95: Salavati R, Oliver D (1995). "Competition between ribosome and SecA binding promotes Escherichia coli secA translational regulation." RNA 1(7);745-53. PMID: 7585259

Sardis10: Sardis MF, Economou A (2010). "SecA: a tale of two protomers." Mol Microbiol 76(5);1070-81. PMID: 20444093

Sato96: Sato K, Mori H, Yoshida M, Mizushima S (1996). "Characterization of a potential catalytic residue, Asp-133, in the high affinity ATP-binding site of Escherichia coli SecA, translocation ATPase." J Biol Chem 271(29);17439-44. PMID: 8663354

Schmidt88: Schmidt MG, Rollo EE, Grodberg J, Oliver DB (1988). "Nucleotide sequence of the secA gene and secA(Ts) mutations preventing protein export in Escherichia coli." J Bacteriol 170(8);3404-14. PMID: 2841285

Schmidt89: Schmidt MG, Oliver DB (1989). "SecA protein autogenously represses its own translation during normal protein secretion in Escherichia coli." J Bacteriol 171(2);643-9. PMID: 2464580

Schmidt91: Schmidt MG, Dolan KM, Oliver DB (1991). "Regulation of Escherichia coli secA mRNA translation by a secretion-responsive element." J Bacteriol 173(20);6605-11. PMID: 1833384

Shin06: Shin JY, Kim M, Ahn T (2006). "Effects of signal peptide and adenylate on the oligomerization and membrane binding of soluble SecA." J Biochem Mol Biol 39(3);319-28. PMID: 16756762

Snyders97: Snyders S, Ramamurthy V, Oliver D (1997). "Identification of a region of interaction between Escherichia coli SecA and SecY proteins." J Biol Chem 272(17);11302-6. PMID: 9111035

Stenberg05: Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag LL, von Heijne G, Daley DO (2005). "Protein complexes of the Escherichia coli cell envelope." J Biol Chem 280(41);34409-19. PMID: 16079137

Suo11: Suo Y, Hardy SJ, Randall LL (2011). "Orientation of SecA and SecB in complex, derived from disulfide cross-linking." J Bacteriol 193(1);190-6. PMID: 21037004

Swidersky90: Swidersky UE, Hoffschulte HK, Muller M (1990). "Determinants of membrane-targeting and transmembrane translocation during bacterial protein export." EMBO J 9(6);1777-85. PMID: 2140771

Tang10: Tang Y, Pan X, Tai PC, Sui S (2010). "Electron microscopic visualization of asymmetric precursor translocation intermediates: SecA functions as a dimer." Sci China Life Sci 53(9);1049-56. PMID: 21104364

Tomkiewicz06: Tomkiewicz D, Nouwen N, van Leeuwen R, Tans S, Driessen AJ (2006). "SecA supports a constant rate of preprotein translocation." J Biol Chem 281(23);15709-13. PMID: 16601117

UniProt10: UniProt Consortium (2010). "UniProt version 2010-11 released on 2010-11-02 00:00:00." Database.

UniProt10a: UniProt Consortium (2010). "UniProt version 2010-07 released on 2010-06-15 00:00:00." Database.

UniProt15: UniProt Consortium (2015). "UniProt version 2015-01 released on 2015-01-16 00:00:00." Database.

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

vanderSluis06: van der Sluis EO, Nouwen N, Koch J, de Keyzer J, van der Does C, Tampe R, Driessen AJ (2006). "Identification of two interaction sites in SecY that are important for the functional interaction with SecA." J Mol Biol 361(5);839-49. PMID: 16890955

vanderWolk95: van der Wolk JP, Klose M, de Wit JG, den Blaauwen T, Freudl R, Driessen AJ (1995). "Identification of the magnesium-binding domain of the high-affinity ATP-binding site of the Bacillus subtilis and Escherichia coli SecA protein." J Biol Chem 270(32);18975-82. PMID: 7642557

Vrontou04: Vrontou E, Economou A (2004). "Structure and function of SecA, the preprotein translocase nanomotor." Biochim Biophys Acta 1694(1-3);67-80. PMID: 15546658

You13: You Z, Liao M, Zhang H, Yang H, Pan X, Houghton JE, Sui SF, Tai PC (2013). "Phospholipids induce conformational changes of SecA to form membrane-specific domains: AFM structures and implication on protein-conducting channels." PLoS One 8(8);e72560. PMID: 23977317

Yura92: Yura T, Mori H, Nagai H, Nagata T, Ishihama A, Fujita N, Isono K, Mizobuchi K, Nakata A (1992). "Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region." Nucleic Acids Res 1992;20(13);3305-8. PMID: 1630901

Zimmer08: Zimmer J, Nam Y, Rapoport TA (2008). "Structure of a complex of the ATPase SecA and the protein-translocation channel." Nature 455(7215);936-43. PMID: 18923516

Zito05: Zito CR, Antony E, Hunt JF, Oliver DB, Hingorani MM (2005). "Role of a conserved glutamate residue in the Escherichia coli SecA ATPase mechanism." J Biol Chem 280(15);14611-9. PMID: 15710614

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 19.0 on Fri Oct 9, 2015, biocyc13.