Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

Escherichia coli K-12 substr. MG1655 Polypeptide: chaperone protein DnaK



Gene: dnaK Accession Numbers: EG10241 (EcoCyc), b0014, ECK0014

Synonyms: groPF, groPC, seg, grpF, grpC, groPAB, Hsp70 chaperone DnaK, heat shock protein 70kDa

Regulation Summary Diagram: ?

Component of: DnaK-DnaJ-GrpE chaperone system (summary available)

Summary:
DnaK is a Hsp70 (heat shock 70 kDa) chaperone in E. coli K-12. DnaK assists in a number of cytoplasmic cellular processes including folding of nascent polypeptide chains [Deuerling99, Teter99], rescue of misfolded proteins [Skowyra90, Ziemienowicz93, Schroder93] and protein secretion [Wild92, Wild96]. The chaperone action of DnaK is powered by ATP hydrolysis and is assisted by partner chaperones DnaJ and GrpE. The DnaK chaperone system is essential for lambda DNA replication and is involved in the formation and disassembly of the initiation complex at the viral origin of replication ori-lambda [Alfano89a, Alfano89, Dodson89, Liberek90, Hoffmann92, Zylicz93].

DnaK consists of an N-terminal nucleotide binding domain (NBD; residues 1-370) [McCarty95], a 17 kDa substrate-binding domain (SBD; residues 390-600) [Zhu96, Wang98c, Pellecchia00, Stevens03] and a 10kDa subdomain of α-helical structure (residues 510-638) [Bertelsen99]. DnaK functions are mediated by interdomain allostery. The NBD regulates the substrate affinity of the SBD in a nucleotide dependent manner - alternating between an ATP bound state with low affinity/fast exchange of substrate and an ADP bound state with high affinity/low exchange rate of substrate. In turn, substrate binding results in stimulation of the ATPase activity of the NBD [Ha95, Palleros93, McCarty95, Theyssen96, Pierpaoli97, Slepenkov98, Russell98]. The molecular mechanism underpinning interdomain allostery in DnaK is the subject of considerable research [Buchberger95, Buczynski01, Slepenkov02, Moro06, Rist06, Swain07, Taneva10, Zhuravleva11, Zhuravleva12].

Purified DnaK possesses weak ATPase activity and an autophosphorylating activity [Zylicz83a, Zylicz84]. The co-chaperones, GrpE and DnaJ act to control the flux of substrate through the SBD of DnaK by regulating the nucleotide bound state (reviews: [Qiu06, Harrison03]. The presence of DnaJ and GrpE stimulates the ATPase activity of DnaK in vitro [Liberek91, Jordan95a].

An in vitro system containing DnaK, DnaJ and GrpE plus ATP is able to convert misfolded luciferase into an unfolded intermediate which spontaneously refolds into its native configuration after release from the chaperone [Schroder93, Sharma10a]. DnaK-DnaJ-GrpE acts cooperatively with ClpB to mediate disaggregation and refolding of thermolabile proteins [Goloubinoff99, Zolkiewski99, Mogk99]. DnaK-DnaJ-GrpE cooperates with trigger factor to chaperone de novo protein folding [Schaffitzel01, Deuerling03, Genevaux04]

DnaK binds with the highest affinity to short hydrophobic peptide segments in extended conformation [Zhu96]. DnaK binds to a consensus motif consisting of a hydrophobic core of 4-5 residues (most commonly Leu) flanked by basic residues [Rudiger97, Rudiger97a].

Reviews: [Bukau98, Mayer, Friedman84, Polissi95, Slepenkov02a]

Citations: [Kusukawa88, Tomoyasu98, Grudniak11, Georgopoulos79, Georgopoulos82, Banecki96a, Bertelsen09]

Gene Citations: [Bardwell86, Zhou88, Thomas96]

Locations: cytosol, inner membrane

Map Position: [12,163 -> 14,079] (0.26 centisomes)
Length: 1917 bp / 638 aa

Molecular Weight of Polypeptide: 69.115 kD (from nucleotide sequence), 78400.0 kD (experimental) [Zylicz84 ]

Unification Links: ASAP:ABE-0000052 , CGSC:844 , DIP:DIP-35751N , EchoBASE:EB0237 , EcoGene:EG10241 , EcoliWiki:b0014 , Mint:MINT-7259066 , OU-Microarray:b0014 , PortEco:dnaK , PR:PRO_000022465 , Pride:P0A6Y8 , Protein Model Portal:P0A6Y8 , RefSeq:NP_414555 , RegulonDB:EG10241 , SMR:P0A6Y8 , String:511145.b0014 , Swiss-Model:P0A6Y8 , UniProt:P0A6Y8

Relationship Links: InterPro:IN-FAMILY:IPR012725 , InterPro:IN-FAMILY:IPR013126 , InterPro:IN-FAMILY:IPR018181 , PDB:Structure:1BPR , PDB:Structure:1DG4 , PDB:Structure:1DKG , PDB:Structure:1DKX , PDB:Structure:1DKY , PDB:Structure:1DKZ , PDB:Structure:1Q5L , PDB:Structure:2BPR , PDB:Structure:2KHO , PDB:Structure:3DPO , PDB:Structure:3DPP , PDB:Structure:3DPQ , PDB:Structure:3QNJ , PDB:Structure:4B9Q , PDB:Structure:4E81 , PDB:Structure:4EZN , PDB:Structure:4EZO , PDB:Structure:4EZP , PDB:Structure:4EZQ , PDB:Structure:4EZR , PDB:Structure:4EZS , PDB:Structure:4EZT , PDB:Structure:4EZU , PDB:Structure:4EZV , PDB:Structure:4EZW , PDB:Structure:4EZX , PDB:Structure:4EZY , PDB:Structure:4EZZ , PDB:Structure:4F00 , PDB:Structure:4F01 , PDB:Structure:4HY9 , PDB:Structure:4HYB , PDB:Structure:4JN4 , PDB:Structure:4JNE , PDB:Structure:4JNF , Pfam:IN-FAMILY:PF00012 , Prints:IN-FAMILY:PR00301 , Prosite:IN-FAMILY:PS00297 , Prosite:IN-FAMILY:PS00329 , Prosite:IN-FAMILY:PS01036

In Paralogous Gene Group: 5 (5 members)

Gene-Reaction Schematic: ?

GO Terms:

Biological Process: GO:0006461 - protein complex assembly Inferred from experiment [Alfano89, Dodson89]
GO:0009408 - response to heat Inferred from experiment [Neidhardt81, Schroder93, Chuang93]
GO:0034620 - cellular response to unfolded protein Inferred from experiment [Skowyra90, Schroder93]
GO:0043241 - protein complex disassembly Inferred from experiment [Alfano89a, Dodson89]
GO:0043335 - protein unfolding Inferred from experiment [Sharma10a]
GO:0051085 - chaperone mediated protein folding requiring cofactor Inferred from experiment [Deuerling99]
GO:0070389 - chaperone cofactor-dependent protein refolding Inferred from experiment [Schroder93, Skowyra90]
GO:0006260 - DNA replication Inferred by computational analysis [UniProtGOA11a]
GO:0006457 - protein folding Inferred by computational analysis [GOA01]
GO:0006950 - response to stress Inferred by computational analysis [UniProtGOA11a]
Molecular Function: GO:0005515 - protein binding Inferred from experiment [Rajagopala14, Sharma08a, Suh99, Arifuzzaman06, Regonesi06, Butland05]
GO:0005524 - ATP binding Inferred from experiment Inferred by computational analysis [UniProtGOA11a, GOA06, GOA01, McCarty95]
GO:0008270 - zinc ion binding Inferred from experiment [Katayama02]
GO:0043531 - ADP binding Inferred from experiment [Bertelsen09, McCarty95]
GO:0044183 - protein binding involved in protein folding Inferred from experiment [Teter99]
GO:0051082 - unfolded protein binding Inferred from experiment Inferred by computational analysis [GOA01, Rudiger97]
GO:0000166 - nucleotide binding Inferred by computational analysis [UniProtGOA11a]
Cellular Component: GO:0005737 - cytoplasm Inferred from experiment Inferred by computational analysis [UniProtGOA11, UniProtGOA11a, Lasserre06]
GO:0005829 - cytosol Inferred by curator Inferred from experiment Inferred by computational analysis [DiazMejia09, Ishihama08, Zhang07, LopezCampistrou05]
GO:0016020 - membrane Inferred from experiment Inferred by computational analysis [UniProtGOA11a, Lasserre06]
GO:0005886 - plasma membrane Inferred by computational analysis [UniProtGOA11, UniProtGOA11a]

MultiFun Terms: cell processes adaptations osmotic pressure
cell processes cell division
information transfer protein related chaperoning, repair (refolding)

Essentiality data for dnaK knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB Lennox Yes 37 Aerobic 7   Yes [Baba06, Comment 1]
M9 medium with 1% glycerol Yes 37 Aerobic 7.2 0.35 Yes [Joyce06, Comment 2]
MOPS medium with 0.4% glucose Yes 37 Aerobic 7.2 0.22 Yes [Baba06, Comment 1]

Credits:
Last-Curated ? 15-Jan-2013 by Mackie A , Macquarie University


Subunit of: DnaK-DnaJ-GrpE chaperone system

Synonyms: Hsp70 chaperone system

Subunit composition of DnaK-DnaJ-GrpE chaperone system = [DnaJ][DnaK][GrpE]
         chaperone protein DnaJ = DnaJ (summary available)
         chaperone protein DnaK = DnaK (extended summary available)
         nucleotide exchange factor GrpE = GrpE (summary available)

Summary:
The DnaK system of E. coli (DnaK-DnaJ-GrpE) is a homolog of the eukaryotic Hsp70 chaperone system. Hsp70 chaperones assist in protein folding processes within the cell including folding and assembly of newly synthesized proteins, refolding of misfolded and aggregated proteins and translocation of secretory proteins. Hsp70 proteins (DnaK in E. coli K-12) act in conjunction with co-chaperones of the J-domain family (DnaJ in E. coli K-12) and nucleotide exchange factors (GrpE in E. coli K-12) (reviewed by [Mayer05]).


Sequence Features

Feature Class Location Common Name Citations Comment
Cleavage-of-Initial-Methionine 1  
[Schmid92, Freestone95, Link97, UniProt11]
UniProt: Removed.
Nucleotide-Phosphate-Binding-Region 2 -> 370 nucleotide binding domain
[Bertelsen09]
 
Chain 2 -> 638  
[UniProt09]
UniProt: Chaperone protein dnaK;
Mutagenesis-Variant 32  
[Ezaki89, Miyazaki92, UniProt11]
Alternate sequence: G → D; UniProt: In SEG-1 and dnaK756(TS); confers temperature sensitivity.
N6-succinyllysine-Modification 70  
[Zhang11d, UniProt12]
UniProt: N6-succinyllysine.
Acetylation-Modification 109  
[Zhang09, UniProt11]
UniProt: N6-acetyllysine.
Phosphorylation-Modification 199  
[Panagiotidis94, McCarty91, UniProt11]
UniProt: Phosphothreonine; by autocatalysis.
N6-succinyllysine-Modification 245  
[Zhang11d, UniProt12]
UniProt: N6-succinyllysine; alternate.
Acetylation-Modification 245  
[Zhang09, UniProt12]
UniProt: N6-acetyllysine; alternate.
N6-succinyllysine-Modification 246  
[Zhang11d, UniProt12]
UniProt: N6-succinyllysine.
N6-succinyllysine-Modification 304  
[Zhang11d, UniProt12]
UniProt: N6-succinyllysine; alternate.
Acetylation-Modification 304  
[Zhang09, UniProt12]
UniProt: N6-acetyllysine; alternate.
N6-succinyllysine-Modification 359  
[Zhang11d, UniProt12]
UniProt: N6-succinyllysine.
Protein-Binding-Region 390 -> 600 substrate binding domain
[Bertelsen09]
 
Acetylation-Modification 421  
[Zhang09, UniProt11]
UniProt: N6-acetyllysine.
Mutagenesis-Variant 436  
[Ezaki89, UniProt11]
Alternate sequence: V → I; UniProt: In mutant SEG-2; confers temperature sensitivity.
Mutagenesis-Variant 455  
[Miyazaki92, UniProt11]
Alternate sequence: G → D; UniProt: In mutant dnaK756(TS); confers temperature sensitivity.
Mutagenesis-Variant 468  
[Miyazaki92, UniProt11]
Alternate sequence: G → D; UniProt: In mutant dnaK756(TS); confers temperature sensitivity.
N6-succinyllysine-Modification 502  
[Zhang11d, UniProt12]
UniProt: N6-succinyllysine.
N6-succinyllysine-Modification 528  
[Zhang11d, UniProt12]
UniProt: N6-succinyllysine.
Acetylation-Modification 556  
[Zhang09, UniProt11]
UniProt: N6-acetyllysine.
Alpha-Helix-Region 560 -> 638  
[Bertelsen09]
 
Acetylation-Modification 577  
[Yu08]
 
N6-succinyllysine-Modification 587  
[Zhang11d, UniProt12]
UniProt: N6-succinyllysine.


Gene Local Context (not to scale): ?

Transcription Units:

Notes:

History:
10/20/97 Gene b0014 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10241; confirmed by SwissProt match.


References

Alfano89: Alfano C, McMacken R (1989). "Ordered assembly of nucleoprotein structures at the bacteriophage lambda replication origin during the initiation of DNA replication." J Biol Chem 264(18);10699-708. PMID: 2525129

Alfano89a: Alfano C, McMacken R (1989). "Heat shock protein-mediated disassembly of nucleoprotein structures is required for the initiation of bacteriophage lambda DNA replication." J Biol Chem 264(18);10709-18. PMID: 2543679

Arifuzzaman06: Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, Ara T, Nakahigashi K, Huang HC, Hirai A, Tsuzuki K, Nakamura S, Altaf-Ul-Amin M, Oshima T, Baba T, Yamamoto N, Kawamura T, Ioka-Nakamichi T, Kitagawa M, Tomita M, Kanaya S, Wada C, Mori H (2006). "Large-scale identification of protein-protein interaction of Escherichia coli K-12." Genome Res 16(5);686-91. PMID: 16606699

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Banecki96a: Banecki B, Zylicz M (1996). "Real time kinetics of the DnaK/DnaJ/GrpE molecular chaperone machine action." J Biol Chem 271(11);6137-43. PMID: 8626401

Bardwell86: Bardwell JC, Tilly K, Craig E, King J, Zylicz M, Georgopoulos C (1986). "The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene. A gene that encodes a heat shock protein." J Biol Chem 1986;261(4);1782-5. PMID: 3003085

Bertelsen09: Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER (2009). "Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate." Proc Natl Acad Sci U S A 106(21);8471-6. PMID: 19439666

Bertelsen99: Bertelsen EB, Zhou H, Lowry DF, Flynn GC, Dahlquist FW (1999). "Topology and dynamics of the 10 kDa C-terminal domain of DnaK in solution." Protein Sci 8(2);343-54. PMID: 10048327

Buchberger95: Buchberger A, Theyssen H, Schroder H, McCarty JS, Virgallita G, Milkereit P, Reinstein J, Bukau B (1995). "Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication." J Biol Chem 270(28);16903-10. PMID: 7622507

Buczynski01: Buczynski G, Slepenkov SV, Sehorn MG, Witt SN (2001). "Characterization of a lidless form of the molecular chaperone DnaK: deletion of the lid increases peptide on- and off-rate constants." J Biol Chem 276(29);27231-6. PMID: 11352903

Bukau98: Bukau B, Horwich AL (1998). "The Hsp70 and Hsp60 chaperone machines." Cell 92(3);351-66. PMID: 9476895

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Chuang93: Chuang SE, Blattner FR (1993). "Characterization of twenty-six new heat shock genes of Escherichia coli." J Bacteriol 175(16);5242-52. PMID: 8349564

Deuerling03: Deuerling E, Patzelt H, Vorderwulbecke S, Rauch T, Kramer G, Schaffitzel E, Mogk A, Schulze-Specking A, Langen H, Bukau B (2003). "Trigger Factor and DnaK possess overlapping substrate pools and binding specificities." Mol Microbiol 47(5);1317-28. PMID: 12603737

Deuerling99: Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999). "Trigger factor and DnaK cooperate in folding of newly synthesized proteins." Nature 400(6745);693-6. PMID: 10458167

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Dodson89: Dodson M, McMacken R, Echols H (1989). "Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda. Protein association and disassociation reactions responsible for localized initiation of replication." J Biol Chem 264(18);10719-25. PMID: 2525130

Ezaki89: Ezaki B, Ogura T, Mori H, Niki H, Hiraga S (1989). "Involvement of DnaK protein in mini-F plasmid replication: temperature-sensitive seg mutations are located in the dnaK gene." Mol Gen Genet 218(2);183-9. PMID: 2674651

Freestone95: Freestone P, Grant S, Toth I, Norris V (1995). "Identification of phosphoproteins in Escherichia coli." Mol Microbiol 15(3);573-80. PMID: 7783627

Friedman84: Friedman DI, Olson ER, Georgopoulos C, Tilly K, Herskowitz I, Banuett F (1984). "Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda." Microbiol Rev 48(4);299-325. PMID: 6240590

Genevaux04: Genevaux P, Keppel F, Schwager F, Langendijk-Genevaux PS, Hartl FU, Georgopoulos C (2004). "In vivo analysis of the overlapping functions of DnaK and trigger factor." EMBO Rep 5(2);195-200. PMID: 14726952

Georgopoulos79: Georgopoulos CP, Lam B, Lundquist-Heil A, Rudolph CF, Yochem J, Feiss M (1979). "Identification of the C. coli dnaK (groPC756) gene product." Mol Gen Genet 172(2);143-9. PMID: 384143

Georgopoulos82: Georgopoulos C, Tilly K, Drahos D, Hendrix R (1982). "The B66.0 protein of Escherichia coli is the product of the dnaK+ gene." J Bacteriol 149(3);1175-7. PMID: 7037741

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA06: GOA, SIB (2006). "Electronic Gene Ontology annotations created by transferring manual GO annotations between orthologous microbial proteins."

Goloubinoff99: Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B (1999). "Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network." Proc Natl Acad Sci U S A 96(24);13732-7. PMID: 10570141

Grudniak11: Grudniak AM, Kurek A, Szarlak J, Wolska KI (2011). "Oleanolic and ursolic acids influence affect the expression of the cysteine regulon and the stress response in Escherichia coli." Curr Microbiol 62(4);1331-6. PMID: 21221969

Ha95: Ha JH, McKay DB (1995). "Kinetics of nucleotide-induced changes in the tryptophan fluorescence of the molecular chaperone Hsc70 and its subfragments suggest the ATP-induced conformational change follows initial ATP binding." Biochemistry 34(36);11635-44. PMID: 7547895

Harrison03: Harrison C (2003). "GrpE, a nucleotide exchange factor for DnaK." Cell Stress Chaperones 8(3);218-24. PMID: 14984054

Hoffmann92: Hoffmann HJ, Lyman SK, Lu C, Petit MA, Echols H (1992). "Activity of the Hsp70 chaperone complex--DnaK, DnaJ, and GrpE--in initiating phage lambda DNA replication by sequestering and releasing lambda P protein." Proc Natl Acad Sci U S A 89(24);12108-11. PMID: 1361234

Ishihama08: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Jordan95a: Jordan R, McMacken R (1995). "Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins." J Biol Chem 270(9);4563-9. PMID: 7876226

Joyce06: Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006). "Experimental and computational assessment of conditionally essential genes in Escherichia coli." J Bacteriol 188(23);8259-71. PMID: 17012394

Katayama02: Katayama A, Tsujii A, Wada A, Nishino T, Ishihama A (2002). "Systematic search for zinc-binding proteins in Escherichia coli." Eur J Biochem 269(9);2403-13. PMID: 11985624

Kusukawa88: Kusukawa N, Yura T (1988). "Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress." Genes Dev 2(7);874-82. PMID: 2905317

Lasserre06: Lasserre JP, Beyne E, Pyndiah S, Lapaillerie D, Claverol S, Bonneu M (2006). "A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis." Electrophoresis 27(16);3306-21. PMID: 16858726

Liberek90: Liberek K, Osipiuk J, Zylicz M, Ang D, Skorko J, Georgopoulos C (1990). "Physical interactions between bacteriophage and Escherichia coli proteins required for initiation of lambda DNA replication." J Biol Chem 265(6);3022-9. PMID: 2154468

Liberek91: Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M (1991). "Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK." Proc Natl Acad Sci U S A 88(7);2874-8. PMID: 1826368

Link97: Link AJ, Robison K, Church GM (1997). "Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12." Electrophoresis 18(8);1259-313. PMID: 9298646

LopezCampistrou05: Lopez-Campistrous A, Semchuk P, Burke L, Palmer-Stone T, Brokx SJ, Broderick G, Bottorff D, Bolch S, Weiner JH, Ellison MJ (2005). "Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth." Mol Cell Proteomics 4(8);1205-9. PMID: 15911532

Mayer: Mayer MP, Rudiger S, Bukau B "Molecular basis for interactions of the DnaK chaperone with substrates." Biol Chem 381(9-10);877-85. PMID: 11076019

Mayer05: Mayer MP, Bukau B (2005). "Hsp70 chaperones: cellular functions and molecular mechanism." Cell Mol Life Sci 62(6);670-84. PMID: 15770419

McCarty91: McCarty JS, Walker GC (1991). "DnaK as a thermometer: threonine-199 is site of autophosphorylation and is critical for ATPase activity." Proc Natl Acad Sci U S A 88(21);9513-7. PMID: 1835085

McCarty95: McCarty JS, Buchberger A, Reinstein J, Bukau B (1995). "The role of ATP in the functional cycle of the DnaK chaperone system." J Mol Biol 249(1);126-37. PMID: 7776367

Miyazaki92: Miyazaki T, Tanaka S, Fujita H, Itikawa H (1992). "DNA sequence analysis of the dnaK gene of Escherichia coli B and of two dnaK genes carrying the temperature-sensitive mutations dnaK7(Ts) and dnaK756(Ts)." J Bacteriol 174(11);3715-22. PMID: 1592823

Mogk99: Mogk A, Tomoyasu T, Goloubinoff P, R?diger S, R?der D, Langen H, Bukau B (1999). "Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB." EMBO J 18(24);6934-49. PMID: 10601016

Moro06: Moro F, Fernandez-Saiz V, Muga A (2006). "The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain." Protein Sci 15(2);223-33. PMID: 16384998

Neidhardt81: Neidhardt FC, VanBogelen RA (1981). "Positive regulatory gene for temperature-controlled proteins in Escherichia coli." Biochem Biophys Res Commun 100(2);894-900. PMID: 7023474

Palleros93: Palleros DR, Reid KL, Shi L, Welch WJ, Fink AL (1993). "ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis." Nature 365(6447);664-6. PMID: 8413631

Panagiotidis94: Panagiotidis CA, Burkholder WF, Gaitanaris GA, Gragerov A, Gottesman ME, Silverstein SJ (1994). "Inhibition of DnaK autophosphorylation by heat shock proteins and polypeptide substrates." J Biol Chem 269(24);16643-7. PMID: 8206983

Pellecchia00: Pellecchia M, Montgomery DL, Stevens SY, Vander Kooi CW, Feng HP, Gierasch LM, Zuiderweg ER (2000). "Structural insights into substrate binding by the molecular chaperone DnaK." Nat Struct Biol 7(4);298-303. PMID: 10742174

Pierpaoli97: Pierpaoli EV, Sandmeier E, Baici A, Schonfeld HJ, Gisler S, Christen P (1997). "The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system." J Mol Biol 269(5);757-68. PMID: 9223639

Polissi95: Polissi A, Goffin L, Georgopoulos C (1995). "The Escherichia coli heat shock response and bacteriophage lambda development." FEMS Microbiol Rev 17(1-2);159-69. PMID: 7669342

Qiu06: Qiu XB, Shao YM, Miao S, Wang L (2006). "The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones." Cell Mol Life Sci 63(22);2560-70. PMID: 16952052

Rajagopala14: Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Hauser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014). "The binary protein-protein interaction landscape of Escherichia coli." Nat Biotechnol 32(3);285-90. PMID: 24561554

Regonesi06: Regonesi ME, Del Favero M, Basilico F, Briani F, Benazzi L, Tortora P, Mauri P, Deho G (2006). "Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach." Biochimie 88(2);151-61. PMID: 16139413

Rist06: Rist W, Graf C, Bukau B, Mayer MP (2006). "Amide hydrogen exchange reveals conformational changes in hsp70 chaperones important for allosteric regulation." J Biol Chem 281(24);16493-501. PMID: 16613854

Rudiger97: Rudiger S, Buchberger A, Bukau B (1997). "Interaction of Hsp70 chaperones with substrates." Nat Struct Biol 4(5);342-9. PMID: 9145101

Rudiger97a: Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997). "Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries." EMBO J 16(7);1501-7. PMID: 9130695

Russell98: Russell R, Jordan R, McMacken R (1998). "Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone." Biochemistry 37(2);596-607. PMID: 9425082

Schaffitzel01: Schaffitzel E, Rudiger S, Bukau B, Deuerling E (2001). "Functional dissection of trigger factor and DnaK: interactions with nascent polypeptides and thermally denatured proteins." Biol Chem 382(8);1235-43. PMID: 11592405

Schmid92: Schmid D, Jaussi R, Christen P (1992). "Precursor of mitochondrial aspartate aminotransferase synthesized in Escherichia coli is complexed with heat-shock protein DnaK." Eur J Biochem 208(3);699-704. PMID: 1396676

Schroder93: Schroder H, Langer T, Hartl FU, Bukau B (1993). "DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage." EMBO J 12(11);4137-44. PMID: 7900997

Sharma08a: Sharma S, Chakraborty K, Muller BK, Astola N, Tang YC, Lamb DC, Hayer-Hartl M, Hartl FU (2008). "Monitoring protein conformation along the pathway of chaperonin-assisted folding." Cell 133(1);142-53. PMID: 18394994

Sharma10a: Sharma SK, De los Rios P, Christen P, Lustig A, Goloubinoff P (2010). "The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase." Nat Chem Biol 6(12);914-20. PMID: 20953191

Skowyra90: Skowyra D, Georgopoulos C, Zylicz M (1990). "The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner." Cell 62(5);939-44. PMID: 2203539

Slepenkov02: Slepenkov SV, Witt SN (2002). "Kinetic analysis of interdomain coupling in a lidless variant of the molecular chaperone DnaK: DnaK's lid inhibits transition to the low affinity state." Biochemistry 41(40);12224-35. PMID: 12356325

Slepenkov02a: Slepenkov SV, Witt SN (2002). "The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase?." Mol Microbiol 45(5);1197-206. PMID: 12207689

Slepenkov98: Slepenkov SV, Witt SN (1998). "Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis." Biochemistry 37(4);1015-24. PMID: 9454592

Stevens03: Stevens SY, Cai S, Pellecchia M, Zuiderweg ER (2003). "The solution structure of the bacterial HSP70 chaperone protein domain DnaK(393-507) in complex with the peptide NRLLLTG." Protein Sci 12(11);2588-96. PMID: 14573869

Suh99: Suh WC, Lu CZ, Gross CA (1999). "Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ." J Biol Chem 274(43);30534-9. PMID: 10521435

Swain07: Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM (2007). "Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker." Mol Cell 26(1);27-39. PMID: 17434124

Taneva10: Taneva SG, Moro F, Velazquez-Campoy A, Muga A (2010). "Energetics of nucleotide-induced DnaK conformational states." Biochemistry 49(6);1338-45. PMID: 20078127

Teter99: Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999). "Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains." Cell 97(6);755-65. PMID: 10380927

Theyssen96: Theyssen H, Schuster HP, Packschies L, Bukau B, Reinstein J (1996). "The second step of ATP binding to DnaK induces peptide release." J Mol Biol 263(5);657-70. PMID: 8947566

Thomas96: Thomas JG, Baneyx F (1996). "Protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines." Mol Microbiol 1996;21(6);1185-96. PMID: 8898387

Tomoyasu98: Tomoyasu T, Ogura T, Tatsuta T, Bukau B (1998). "Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli." Mol Microbiol 30(3);567-81. PMID: 9822822

UniProt09: UniProt Consortium (2009). "UniProt version 15.8 released on 2009-10-01 00:00:00." Database.

UniProt11: UniProt Consortium (2011). "UniProt version 2011-06 released on 2011-06-30 00:00:00." Database.

UniProt12: UniProt Consortium (2012). "UniProt version 2012-09 released on 2012-09-12 00:00:00." Database.

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

Wang98c: Wang H, Kurochkin AV, Pang Y, Hu W, Flynn GC, Zuiderweg ER (1998). "NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: a preview of chaperone-protein interaction." Biochemistry 37(22);7929-40. PMID: 9609686

Wild92: Wild J, Altman E, Yura T, Gross CA (1992). "DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli." Genes Dev 6(7);1165-72. PMID: 1628824

Wild96: Wild J, Rossmeissl P, Walter WA, Gross CA (1996). "Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli." J Bacteriol 178(12);3608-13. PMID: 8655561

Yu08: Yu BJ, Kim JA, Moon JH, Ryu SE, Pan JG (2008). "The diversity of lysine-acetylated proteins in Escherichia coli." J Microbiol Biotechnol 18(9);1529-36. PMID: 18852508

Zhang07: Zhang N, Chen R, Young N, Wishart D, Winter P, Weiner JH, Li L (2007). "Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS." Proteomics 7(4);484-93. PMID: 17309111

Zhang09: Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y (2009). "Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli." Mol Cell Proteomics 8(2);215-25. PMID: 18723842

Zhang11d: Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011). "Identification of lysine succinylation as a new post-translational modification." Nat Chem Biol 7(1);58-63. PMID: 21151122

Zhou88: Zhou YN, Kusukawa N, Erickson JW, Gross CA, Yura T (1988). "Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32." J Bacteriol 170(8);3640-9. PMID: 2900239

Zhu96: Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996). "Structural analysis of substrate binding by the molecular chaperone DnaK." Science 272(5268);1606-14. PMID: 8658133

Zhuravleva11: Zhuravleva A, Gierasch LM (2011). "Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones." Proc Natl Acad Sci U S A 108(17);6987-92. PMID: 21482798

Zhuravleva12: Zhuravleva A, Clerico EM, Gierasch LM (2012). "An Interdomain Energetic Tug-of-War Creates the Allosterically Active State in Hsp70 Molecular Chaperones." Cell 151(6);1296-307. PMID: 23217711

Ziemienowicz93: Ziemienowicz A, Skowyra D, Zeilstra-Ryalls J, Fayet O, Georgopoulos C, Zylicz M (1993). "Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity." J Biol Chem 268(34);25425-31. PMID: 7902351

Zolkiewski99: Zolkiewski M (1999). "ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli." J Biol Chem 274(40);28083-6. PMID: 10497158

Zylicz83a: Zylicz M, LeBowitz JH, McMacken R, Georgopoulos C (1983). "The dnaK protein of Escherichia coli possesses an ATPase and autophosphorylating activity and is essential in an in vitro DNA replication system." Proc Natl Acad Sci U S A 80(21);6431-5. PMID: 6314326

Zylicz84: Zylicz M, Georgopoulos C (1984). "Purification and properties of the Escherichia coli dnaK replication protein." J Biol Chem 259(14);8820-5. PMID: 6086613

Zylicz93: Zylicz M (1993). "The Escherichia coli chaperones involved in DNA replication." Philos Trans R Soc Lond B Biol Sci 339(1289);271-7; discussion 277-8. PMID: 8098531

Other References Related to Gene Regulation

Cowing85: Cowing DW, Bardwell JC, Craig EA, Woolford C, Hendrix RW, Gross CA (1985). "Consensus sequence for Escherichia coli heat shock gene promoters." Proc Natl Acad Sci U S A 82(9);2679-83. PMID: 3887408

Nonaka06: Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA (2006). "Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress." Genes Dev 20(13);1776-89. PMID: 16818608

Wade06: Wade JT, Roa DC, Grainger DC, Hurd D, Busby SJ, Struhl K, Nudler E (2006). "Extensive functional overlap between sigma factors in Escherichia coli." Nat Struct Mol Biol 13(9);806-14. PMID: 16892065

Wagner09a: Wagner MA, Zahrl D, Rieser G, Koraimann G (2009). "Growth phase- and cell division-dependent activation and inactivation of the {sigma}32 regulon in Escherichia coli." J Bacteriol 191(5);1695-702. PMID: 19114495

Zahrl06: Zahrl D, Wagner M, Bischof K, Koraimann G (2006). "Expression and assembly of a functional type IV secretion system elicit extracytoplasmic and cytoplasmic stress responses in Escherichia coli." J Bacteriol 188(18);6611-21. PMID: 16952953


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Mon Dec 22, 2014, BIOCYC14B.