Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
twitter

Escherichia coli K-12 substr. MG1655 Protein: regulatory protein P-II; regulation of nitrogen metabolism and fatty acid biosynthesis



Gene: glnB Accession Numbers: EG10384 (EcoCyc), b2553, ECK2550

Synonyms: [protein PII], unmodified PII, PII, PII-1

Regulation Summary Diagram: ?

Regulation summary diagram for glnB

Subunit composition of regulatory protein P-II; regulation of nitrogen metabolism and fatty acid biosynthesis = [GlnB]3
         PII = GlnB

Alternative forms of PII: uridylyl-[protein PII] (summary available)

Summary:
The PII-1 protein encoded by glnB plays a critical role in the regulation of nitrogen metabolism by controlling the activity of glutamine synthetase (GS). In its regulatory role, PII can interact with three proteins: the glnE encoded glutamine synthetase adenylyltransferase/deadenylase; the glnD encoded uridylyltransferase/uridylyl removing enzyme and the NtrB sensory histidine kinase (NRII protein); PII undergoes posttranslational uridylylation and can bind the allosteric effectors ATP/ADP and 2-oxoglutarate (reviewed by [vanHeeswijk13]. PII is also a regulator of fatty acid biosynthesis via its interaction with the biotin carboxylase/biotin carboxyl carrier protein (BC-BCCP) subcomplex of acetyl Co-A carboxylase [Gerhardt14].

Early characterisation was done using an E. coli W strain [Anderson71, Brown71, Mangum73, Adler75]. PII (often called GlnB) from E. coli K-12 is a homotrimer [Vasudevan94, Cheah94, Carr96]. PII can be modified by the covalent attachment of UMP to tyrosine 51 of each monomer to form uridylylated PII (PII-UMP) [Son87, Jaggi96]. The GlnB monomer adopts an interlocking double βαβ fold and contains three loops - two major loops (the T and C loops) and a smaller C-loop; in the homotrimer the T-loop (which contains Tyr51) protrudes away form the main structure [Carr96, Cheah94]. The T-loop is thought to be the site of interaction with receptor proteins; the clefts formed between the T, B and C-loops are thought to be the sites for interaction with the effector molecules [Jiang97a]

PII stimulates the adenylyltransferase activity of GlnE resulting in the addition of AMP to GS and subsequent reduction in GS activity; PII-UMP stimulates the deadenylylation reaction [Jaggi97, Jiang07].

PII activates the phosphatase activity of the NtrB sensor kinase [Ninfa86]; PII inhibits NtrB autophosphorylation and this activity is allosterically regulated by 2 oxoglutarate [Jiang99]. PII binds to the kinase domain of NtrB in an ATP and 2-oxoglutarate dependent manner [Pioszak00, Jiang00] PII regulation of NtrB is controlled by uridylylation; unmodified PII activates NtrB catalysed dephosphorylation of NtrC; PII-UMP does not [Ninfa86, Atkinson94, Liu95].

The reversible conversion of PII to PII-UMP is catalysed by GlnD in response to the nitrogen status of the cell: under limiting nitrogen GlnD catalyses uridylylation of PII (with resultant deadenylylation and activation of GS); when the intracellular nitrogen concentration is high GlnD functions as a PII-uridylyl removing enzyme (with resultant adenylylation and deactivation of GS and inactivation of NtrC) (reviewed in [vanHeeswijk13].

The uridylylation status of PII is regulated by the small molecule effectors 2-oxoglutarate and ATP; the uridylyltransferase activity of GlnD is activated by 2-oxoglutarate and ATP, both of which which bind to PII and PII-UMP [Kamberov95, Jiang98]. Binding of 2-oxoglutarate to PII affects its ability to regulate GlnE and NtrB although 2-oxoglutarate does not affect the ability of PII to bind to GlnE or NtrB [Jiang98a, Jiang09] The three nucleotide binding sites of the PII trimer may be bound by mixtures of ATP and ADP; ADP affects the interaction of PII with NtrB, GlnD and GlnE; PII may serve as a sensor of cellular adenylylate energy charge (a measure of the of the energy available for metabolism) [Jiang07]. Multiple effector binding sites in a PII trimer may cooperate to control the signal output of a single T-loop (and hence the interaction of PII with its receptors); 16 possible signalling states of PII have been hypothesised [Jiang09a].

PII (but not PII-UMP) can form a complex with the BC-BCCP subcomplex of acetyl-CoA carboxylase (ACC); PII (but not PII-UMP) inhibits ACC activity in vitro in a 2-oxoglutarate dependent manner. In the presence of PII the turnover number (Kcat) of ACC is reduced by more than half; PII does not interact with BC-BCCP when 2-oxoglutarate is present [Gerhardt14]

E. coli K-12 possesses a second PII protein, PII-2, encoded by the glnK gene. Like PII, PII-2 protein is uridylylated in vivo and can activate the adenylylation of glutamine synthetase and stimulate the phosphatase activity of NtrB [vanHeeswijk96, vanHeeswijk95, Atkinson99]. PII and PII-2 are functionally equivalent; distinct expression of the two genes accounts for the distinct physiological effects [Blauwkamp02, Atkinson02]. PII and PII-2 can heterotrimerize [vanHeeswijk00]. PII-2 regulatory activity is less potent than PII; PII is the principal signal transducer and regulator of GS activity (see [vanHeeswijk13]

Citations: [deMel94, Suh83, Jiang98b, Jiang11, Jiang12, Rodrigues14, Blauwkamp03, Jiang97b]

Gene Citations: [vanHeeswijk93, He93, Liu93]

Locations: cytosol

Map Position: [2,685,092 <- 2,685,430] (57.87 centisomes, 208°)
Length: 339 bp / 112 aa

Molecular Weight of Polypeptide: 12.425 kD (from nucleotide sequence)

pI: 5.43

Isozyme Sequence Similarity:
GlnK: YES

Unification Links: ASAP:ABE-0008398 , CGSC:32933 , DIP:DIP-35005N , EchoBASE:EB0379 , EcoGene:EG10384 , EcoliWiki:b2553 , Mint:MINT-1235669 , ModBase:P0A9Z1 , OU-Microarray:b2553 , PortEco:glnB , PR:PRO_000022783 , Pride:P0A9Z1 , Protein Model Portal:P0A9Z1 , RegulonDB:EG10384 , SMR:P0A9Z1 , String:511145.b2553 , UniProt:P0A9Z1

Relationship Links: InterPro:IN-FAMILY:IPR002187 , InterPro:IN-FAMILY:IPR002332 , InterPro:IN-FAMILY:IPR011322 , InterPro:IN-FAMILY:IPR015867 , InterPro:IN-FAMILY:IPR017918 , PDB:Structure:1PIL , PDB:Structure:2PII , Pfam:IN-FAMILY:PF00543 , Prints:IN-FAMILY:PR00340 , Prosite:IN-FAMILY:PS00496 , Prosite:IN-FAMILY:PS00638 , Prosite:IN-FAMILY:PS51343 , Smart:IN-FAMILY:SM00938

Reactions known to consume the compound:

Nitrogen Regulation Two-Component System :
a PII protein + UTP → a uridylylated PII protein + diphosphate

Reactions known to produce the compound:

Nitrogen Regulation Two-Component System :
uridylyl-[protein PII] → PII + UMP

Not in pathways:
a uridylylated PII protein + H2O → a PII protein + UMP

Gene-Reaction Schematic: ?

Gene-Reaction Schematic

Genetic Regulation Schematic: ?

Genetic regulation schematic for glnB

GO Terms:

Biological Process: GO:0006808 - regulation of nitrogen utilization Inferred from experiment Inferred by computational analysis [GOA01a, Atkinson94, Jiang99, Ninfa86, Son87]
GO:0042304 - regulation of fatty acid biosynthetic process Inferred from experiment [Gerhardt14]
GO:0050790 - regulation of catalytic activity Inferred from experiment Inferred by computational analysis [GOA01a, Gerhardt14, Pioszak00, Atkinson94, Ninfa86, Jiang99, Jiang97a]
GO:0006351 - transcription, DNA-templated Inferred by computational analysis [UniProtGOA11a]
GO:0006355 - regulation of transcription, DNA-templated Inferred by computational analysis [UniProtGOA11a]
Molecular Function: GO:0005515 - protein binding Inferred from experiment [Gerhardt14, Pioszak00, Jiang97a, Rajagopala14, Butland05, Salinas03, Burillo04]
GO:0005524 - ATP binding Inferred from experiment [Jiang98, Xu01]
GO:0030234 - enzyme regulator activity Inferred from experiment Inferred by computational analysis [GOA01a, Gerhardt14, Pioszak00, Atkinson94, Ninfa86, Jiang99, Jiang97a]
GO:0036094 - small molecule binding Inferred from experiment [Jiang98, Kamberov95, Jiang97a]
GO:0042802 - identical protein binding Inferred from experiment [Burillo04, Vasudevan94, Rajagopala14]
GO:0000166 - nucleotide binding Inferred by computational analysis [UniProtGOA11a]
Cellular Component: GO:0005829 - cytosol Inferred from experiment Inferred by computational analysis [DiazMejia09, Ishihama08, LopezCampistrou05]

MultiFun Terms: metabolism biosynthesis of building blocks amino acids glutamine
metabolism biosynthesis of building blocks fatty acids and phosphatidic acid
metabolism metabolism of other compounds nitrogen metabolism
regulation type of regulation posttranscriptional inhibition / activation of enzymes

Activates: NtrC-Pasp + H2O → NtrC + phosphate

Inhibits: ATP + NtrB sensory histidine kinase → ADP + NtrB-Phis

Essentiality data for glnB knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB enriched Yes 37 Aerobic 6.95   Yes [Gerdes03, Comment 1]
LB Lennox Yes 37 Aerobic 7   Yes [Baba06, Comment 2]
M9 medium with 1% glycerol Yes 37 Aerobic 7.2 0.35 Yes [Joyce06, Comment 3]
MOPS medium with 0.4% glucose Yes 37 Aerobic 7.2 0.22 Yes [Baba06, Comment 2]

Credits:
Revised 09-Feb-2015 by Mackie A , Macquarie University
Last-Curated ? 11-Feb-2015 by Mackie A , Macquarie University


Sequence Features

Protein sequence of PII with features indicated

Feature Class Location Common Name Citations Comment
Beta-Strand-Region 2 -> 8 β 1
[Carr96]
 
Alpha-Helix-Region 10 -> 23 helix A
[Carr96]
 
Sequence-Conflict 19  
[Son87, UniProt10a]
UniProt: (in Ref. 1; AAA23883);
Beta-Strand-Region 27 -> 36 β 2
[Carr96]
 
Mutagenesis-Variant 29  
[Jiang97a]
experimental mutation T → M results in defects in interaction with protein receptors and/or effectors (see [Jiang97a]) for details
Mutagenesis-Variant 37  
[Jiang97a]
experimental mutation G → A results in defects in interaction with protein receptors and/or effectors (see [Jiang97a]) for details
Protein-Structure-Region 37 -> 55 T-loop
[Carr96]
 
Mutagenesis-Variant 39  
[Jiang97a]
experimental mutation Q → E results in defects in interaction with protein receptors and/or effectors (see [Jiang97a]) for details
Mutagenesis-Variant 40  
[Jiang97a]
experimental mutation K → N results in defects in interaction with protein receptors and/or effectors (see [Jiang97a]) for details
Mutagenesis-Variant 41  
[Jiang97a]
experimental mutation G → A results in defective uridylylation
Mutagenesis-Variant 47 -> 53  
[Jiang97a]
experimental mutation Δ47-53 results in defects in uridylylation and in interaction with protein receptors
Mutagenesis-Variant 49  
[Jiang97a]
experimental mutation A → P results in severe defect in interaction with NtrB
Mutagenesis-Variant 50  
[Jiang97a]
experimental mutation E → Q results in defective uridylylation
Mutagenesis-Variant 51  
[Jiang97a]
experimental mutation Y → F results in defective uridylylation
O-UMP-tyrosine-Modification 51  
[Son87, UniProt15, Jaggi96, Adler75]
UniProt: O-UMP-tyrosine.
Mutagenesis-Variant 53  
[Jiang97a]
experimental mutation V → G results in defects in interaction with protein receptors
Beta-Strand-Region 56 -> 65 β 3
[Carr96]
 
Alpha-Helix-Region 67 -> 81 helix B
[Carr96]
 
Sequence-Conflict 81 -> 82  
[Son87, UniProt10a]
UniProt: (in Ref. 1; AAA23883);
Protein-Structure-Region 82 -> 90 B-loop
[Carr96]
 
Mutagenesis-Variant 83  
[Jiang97a]
experimental mutation T → N results in defects in interaction with protein receptors and/or effectors (see [Jiang97a]) for details
Mutagenesis-Variant 84  
[Jiang97a]
experimental mutation G → A results in defects in interaction with protein receptors and/or effectors (see [Jiang97a]) for details
Nucleotide-Phosphate-Binding-Region 84 -> 90 ATP binding region
[deMel94]
 
Mutagenesis-Variant 89  
[Jiang97a]
experimental mutation G → A results in severe defects in interaction with protein receptors and effectors (see [Jiang97a]) for details
Mutagenesis-Variant 90  
[Jiang97a]
experimental mutation K → R results in defects in interaction with protein receptors and/or effectors (see [Jiang97a]) for details
Beta-Strand-Region 91 -> 95 β 4
[Carr96]
 
Protein-Structure-Region 96 -> 112 C-loop
[Carr96]
 
Beta-Strand-Region 97 -> 102 β 5
[Carr96]
 
Beta-Strand-Region 106 -> 109 β 6
[Carr96]
 


Gene Local Context (not to scale): ?

Gene local context diagram

Transcription Units:

Transcription-unit diagram

Transcription-unit diagram

Transcription-unit diagram

Transcription-unit diagram

Transcription-unit diagram

Notes:

History:
10/20/97 Gene b2553 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10384; confirmed by SwissProt match.


References

Adler75: Adler SP, Purich D, Stadtman ER (1975). "Cascade control of Escherichia coli glutamine synthetase. Properties of the PII regulatory protein and the uridylyltransferase-uridylyl-removing enzyme." J Biol Chem 1975;250(16);6264-72. PMID: 239942

Anderson71: Anderson WB, Stadtman ER (1971). "Purification and functional roles of the P I and P II components of Escherichia coli glutamine synthetase deadenylylation system." Arch Biochem Biophys 143(2);428-43. PMID: 4934180

Atkinson02: Atkinson MR, Blauwkamp TA, Ninfa AJ (2002). "Context-dependent functions of the PII and GlnK signal transduction proteins in Escherichia coli." J Bacteriol 2002;184(19);5364-75. PMID: 12218023

Atkinson94: Atkinson MR, Kamberov ES, Weiss RL, Ninfa AJ (1994). "Reversible uridylylation of the Escherichia coli PII signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator I (NRI or NtrC)." J Biol Chem 1994;269(45);28288-93. PMID: 7961766

Atkinson99: Atkinson MR, Ninfa AJ (1999). "Characterization of the GlnK protein of Escherichia coli." Mol Microbiol 32(2);301-13. PMID: 10231487

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Blauwkamp02: Blauwkamp TA, Ninfa AJ (2002). "Physiological role of the GlnK signal transduction protein of Escherichia coli: survival of nitrogen starvation." Mol Microbiol 2002;46(1);203-14. PMID: 12366843

Blauwkamp03: Blauwkamp TA, Ninfa AJ (2003). "Antagonism of PII signalling by the AmtB protein of Escherichia coli." Mol Microbiol 48(4);1017-28. PMID: 12753193

Brown71: Brown MS, Segal A, Stadtman ER (1971). "Modulation of glutamine synthetase adenylylation and deadenylylation is mediated by metabolic transformation of the P II -regulatory protein." Proc Natl Acad Sci U S A 68(12);2949-53. PMID: 4399832

Burillo04: Burillo S, Luque I, Fuentes I, Contreras A (2004). "Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis." J Bacteriol 186(11);3346-54. PMID: 15150219

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Carr96: Carr PD, Cheah E, Suffolk PM, Vasudevan SG, Dixon NE, Ollis DL (1996). "X-ray structure of the signal transduction protein from Escherichia coli at 1.9 A." Acta Crystallogr D Biol Crystallogr 52(Pt 1);93-104. PMID: 15299730

Cheah94: Cheah E, Carr PD, Suffolk PM, Vasudevan SG, Dixon NE, Ollis DL (1994). "Structure of the Escherichia coli signal transducing protein PII." Structure 2(10);981-90. PMID: 7866749

deMel94: de Mel VS, Kamberov ES, Martin PD, Zhang J, Ninfa AJ, Edwards BF (1994). "Preliminary X-ray diffraction analysis of crystals of the PII protein from Escherichia coli." J Mol Biol 243(4);796-8. PMID: 7966297

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Gerdes03: Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003). "Experimental determination and system level analysis of essential genes in Escherichia coli MG1655." J Bacteriol 185(19);5673-84. PMID: 13129938

Gerhardt14: Gerhardt EC, Rodrigues TE, Muller-Santos M, Pedrosa FO, Souza EM, Forchhammer K, Huergo LF (2014). "The Bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase." Mol Microbiol. PMID: 25557370

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

He93: He B, Choi KY, Zalkin H (1993). "Regulation of Escherichia coli glnB, prsA, and speA by the purine repressor." J Bacteriol 1993;175(11);3598-606. PMID: 8388874

Ishihama08: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Jaggi96: Jaggi R, Ybarlucea W, Cheah E, Carr PD, Edwards KJ, Ollis DL, Vasudevan SG (1996). "The role of the T-loop of the signal transducing protein PII from Escherichia coli." FEBS Lett 391(1-2);223-8. PMID: 8706922

Jaggi97: Jaggi R, van Heeswijk WC, Westerhoff HV, Ollis DL, Vasudevan SG (1997). "The two opposing activities of adenylyl transferase reside in distinct homologous domains, with intramolecular signal transduction." EMBO J 16(18);5562-71. PMID: 9312015

Jiang00: Jiang P, Atkinson MR, Srisawat C, Sun Q, Ninfa AJ (2000). "Functional dissection of the dimerization and enzymatic activities of Escherichia coli nitrogen regulator II and their regulation by the PII protein." Biochemistry 39(44);13433-49. PMID: 11063580

Jiang07: Jiang P, Ninfa AJ (2007). "Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro." Biochemistry 46(45);12979-96. PMID: 17939683

Jiang09: Jiang P, Ninfa AJ (2009). "Alpha-ketoglutarate controls the ability of the Escherichia coli PII signal transduction protein to regulate the activities of NRII (NrB but does not control the binding of PII to NRII." Biochemistry 48(48);11514-21. PMID: 19877669

Jiang09a: Jiang P, Ninfa AJ (2009). "Sensation and signaling of alpha-ketoglutarate and adenylylate energy charge by the Escherichia coli PII signal transduction protein require cooperation of the three ligand-binding sites within the PII trimer." Biochemistry 48(48);11522-31. PMID: 19877670

Jiang11: Jiang P, Ninfa AJ (2011). "A source of ultrasensitivity in the glutamine response of the bicyclic cascade system controlling glutamine synthetase adenylylation state and activity in Escherichia coli." Biochemistry 50(50);10929-40. PMID: 22085244

Jiang12: Jiang P, Ventura AC, Ninfa AJ (2012). "Characterization of the reconstituted UTase/UR-PII-NRII-NRI bicyclic signal transduction system that controls the transcription of nitrogen-regulated (Ntr) genes in Escherichia coli." Biochemistry 51(45);9045-57. PMID: 23088566

Jiang97a: Jiang P, Zucker P, Atkinson MR, Kamberov ES, Tirasophon W, Chandran P, Schefke BR, Ninfa AJ (1997). "Structure/function analysis of the PII signal transduction protein of Escherichia coli: genetic separation of interactions with protein receptors." J Bacteriol 179(13);4342-53. PMID: 9209053

Jiang97b: Jiang P, Zucker P, Ninfa AJ (1997). "Probing interactions of the homotrimeric PII signal transduction protein with its receptors by use of PII heterotrimers formed in vitro from wild-type and mutant subunits." J Bacteriol 179(13);4354-60. PMID: 9209054

Jiang98: Jiang P, Peliska JA, Ninfa AJ (1998). "Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein." Biochemistry 37(37);12782-94. PMID: 9737855

Jiang98a: Jiang P, Peliska JA, Ninfa AJ (1998). "The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state." Biochemistry 37(37);12802-10. PMID: 9737857

Jiang98b: Jiang P, Peliska JA, Ninfa AJ (1998). "Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli." Biochemistry 37(37);12795-801. PMID: 9737856

Jiang99: Jiang P, Ninfa AJ (1999). "Regulation of autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein." J Bacteriol 181(6);1906-11. PMID: 10074086

Joyce06: Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006). "Experimental and computational assessment of conditionally essential genes in Escherichia coli." J Bacteriol 188(23);8259-71. PMID: 17012394

Kamberov95: Kamberov ES, Atkinson MR, Ninfa AJ (1995). "The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP." J Biol Chem 1995;270(30);17797-807. PMID: 7629080

Liu93: Liu J, Magasanik B (1993). "The glnB region of the Escherichia coli chromosome." J Bacteriol 1993;175(22);7441-9. PMID: 8226691

Liu95: Liu J, Magasanik B (1995). "Activation of the dephosphorylation of nitrogen regulator I-phosphate of Escherichia coli." J Bacteriol 1995;177(4);926-31. PMID: 7860602

LopezCampistrou05: Lopez-Campistrous A, Semchuk P, Burke L, Palmer-Stone T, Brokx SJ, Broderick G, Bottorff D, Bolch S, Weiner JH, Ellison MJ (2005). "Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth." Mol Cell Proteomics 4(8);1205-9. PMID: 15911532

Mangum73: Mangum JH, Magni G, Stadtman ER (1973). "Regulation of glutamine synthetase adenylylation and deadenylylation by the enzymatic uridylylation and deuridylylation of the PII regulatory protein." Arch Biochem Biophys 158(2);514-25. PMID: 4150122

Ninfa86: Ninfa AJ, Magasanik B (1986). "Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli." Proc Natl Acad Sci U S A 1986;83(16);5909-13. PMID: 2874557

Pioszak00: Pioszak AA, Jiang P, Ninfa AJ (2000). "The Escherichia coli PII signal transduction protein regulates the activities of the two-component system transmitter protein NRII by direct interaction with the kinase domain of the transmitter module." Biochemistry 39(44);13450-61. PMID: 11063581

Rajagopala14: Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Hauser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014). "The binary protein-protein interaction landscape of Escherichia coli." Nat Biotechnol 32(3);285-90. PMID: 24561554

Rodrigues14: Rodrigues TE, Gerhardt EC, Oliveira MA, Chubatsu LS, Pedrosa FO, Souza EM, Souza GA, Muller-Santos M, Huergo LF (2014). "Search for novel targets of the PII signal transduction protein in Bacteria identifies the BCCP component of acetyl-CoA carboxylase as a PII binding partner." Mol Microbiol 91(4);751-61. PMID: 24329683

Salinas03: Salinas P, Contreras A (2003). "Identification and analysis of Escherichia coli proteins that interact with the histidine kinase NtrB in a yeast two-hybrid system." Mol Genet Genomics 269(4);574-81. PMID: 12838411

Son87: Son HS, Rhee SG (1987). "Cascade control of Escherichia coli glutamine synthetase. Purification and properties of PII protein and nucleotide sequence of its structural gene." J Biol Chem 262(18);8690-5. PMID: 2885322

Suh83: Suh SW, Rhee SG (1983). "Preliminary X-ray crystallographic studies and molecular symmetry of the PII regulatory protein from Escherichia coli." J Biol Chem 258(17);10294-5. PMID: 6136507

UniProt10a: UniProt Consortium (2010). "UniProt version 2010-11 released on 2010-11-02 00:00:00." Database.

UniProt15: UniProt Consortium (2015). "UniProt version 2015-01 released on 2015-01-16 00:00:00." Database.

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

vanHeeswijk00: van Heeswijk WC, Wen D, Clancy P, Jaggi R, Ollis DL, Westerhoff HV, Vasudevan SG (2000). "The Escherichia coli signal transducers PII (GlnB) and GlnK form heterotrimers in vivo: fine tuning the nitrogen signal cascade." Proc Natl Acad Sci U S A 2000;97(8);3942-7. PMID: 10760266

vanHeeswijk13: van Heeswijk WC, Westerhoff HV, Boogerd FC (2013). "Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective." Microbiol Mol Biol Rev 77(4);628-95. PMID: 24296575

vanHeeswijk93: van Heeswijk WC, Rabenberg M, Westerhoff HV, Kahn D (1993). "The genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli." Mol Microbiol 9(3);443-57. PMID: 8412694

vanHeeswijk95: van Heeswijk WC, Stegeman B, Hoving S, Molenaar D, Kahn D, Westerhoff HV (1995). "An additional PII in Escherichia coli: a new regulatory protein in the glutamine synthetase cascade." FEMS Microbiol Lett 1995;132(1-2);153-7. PMID: 7590157

vanHeeswijk96: van Heeswijk WC, Hoving S, Molenaar D, Stegeman B, Kahn D, Westerhoff HV (1996). "An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli." Mol Microbiol 1996;21(1);133-46. PMID: 8843440

Vasudevan94: Vasudevan SG, Gedye C, Dixon NE, Cheah E, Carr PD, Suffolk PM, Jeffrey PD, Ollis DL (1994). "Escherichia coli PII protein: purification, crystallization and oligomeric structure." FEBS Lett 1994;337(3);255-8. PMID: 8293810

Xu01: Xu Y, Carr PD, Huber T, Vasudevan SG, Ollis DL (2001). "The structure of the PII-ATP complex." Eur J Biochem 268(7);2028-37. PMID: 11277925

Other References Related to Gene Regulation

Kumar11: Kumar R, Shimizu K (2011). "Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures." Microb Cell Fact 10;3. PMID: 21272324


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 19.0 on Sun Aug 30, 2015, BIOCYC14A.