Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

Escherichia coli K-12 substr. MG1655 Enzyme: leader peptidase (signal peptidase I)



Gene: lepB Accession Numbers: EG10530 (EcoCyc), b2568, ECK2566

Synonyms: lep, LP1, SPase I

Regulation Summary Diagram: ?

Summary:
Signal peptidase catalyzes the cleavage of the amino-terminal leader or signal peptide from membrane-tethered secretory pre-proteins [Dalbey85, Chatterjee95]. The action of signal peptidase releases the mature secretory protein into the periplasm and retains the signal peptide in the membrane where it is further degraded by the inner membrane protease RseP. Signal peptidase cleaves pre-proteins translocated by both the general Sec-system and the twin-arginine translocation (Tat) system [Luke09]. Signal peptidase also cleaves the signal peptide from bacteriophage M13 procoat protein [Chang78, Zwizinski80, Date81]. Signal peptidase is required for import of the bacterial toxin, colicin D [deZamaroczy01]

Signal peptidase has two N-terminal transmembrane segments separated by a small cytoplasmic domain and a large C-terminal catalytic domain that is located in the periplasm. The second transmembrane segment is believed to function as a non-cleavable signal sequence [Moore87, Dalbey87, Dalbey87a, San89, Bilgin90]. A soluble form of leader peptidase which lacks residues 2-76 is catalytically active in vitro [Kuo93, Tschantz95, Paetzel02] and has been crystallised on its own and in complex with inhibitors [Paetzel95, Paetzel98, Paetzel02, Paetzel04, Luo09, Liu11]. The structure reveals a large hydrophobic region that extends across the active site and may be embedded in the outer leaflet of the inner membrane thus creating a 'pocket' which optimises contact with signal peptides exposed on the periplasmic surface of the inner membrane. LepB catalysis may utilise a Ser/Lys/Ser triad mechanism (reviewed in [Paetzel13].

E. coli LepB functions as a monomer and there are approximately 1000 molecules of LepB in each cell during exponential growth [vanKlompenburg]. lepB is essential [Date83, Dalbey85].

Purified LepB undergoes autocatalytic cleavage at the A38QA / A41 site which is protected in vivo by its cytoplasmic location [Talarico91].

Signal peptides in gram-negative bacteria have an average length of 25 residues and approximately 10% of genes in E. coli are thought to contain signal peptides ([Paetzel13] and references therein). The substrate sequence requirements of signal peptidase have been investigated [Dev90, Shen91, Karamyshev98, Pausova90] - they include conformation to the '-3,-1 rule' [vonHeijne83, Perlman83] which dictates a preference for small residues at the -3 and -1 amino acid positions relative to the cleavage site.

Signal peptidase is considered to be a valuable target in the development of novel anti-microbial drugs (reviewed in [Smitha11].

lep: leader peptidase

Reviews: [Dalbey91, Tschantz94, Gennity90, Paetzel13]
Comments: [vonHeijne98]

Citations: [Inada89, Tschantz93, Stein00, Karla05, Wang04b, Auclair12, Tuteja05, Kim08a, Kim04e, Klenotic00, MusialSiwek08, Carlos00, Fikes90, Choo08, OhnoIwashita84]

Gene Citations: [March85]

Locations: inner membrane

Map Position: [2,702,357 <- 2,703,331] (58.24 centisomes)
Length: 975 bp / 324 aa

Molecular Weight of Polypeptide: 35.96 kD (from nucleotide sequence), 37 kD (experimental) [Wolfe82 ]

Unification Links: ASAP:ABE-0008450 , CGSC:573 , EchoBASE:EB0525 , EcoGene:EG10530 , EcoliWiki:b2568 , ModBase:P00803 , OU-Microarray:b2568 , PortEco:lepB , PR:PRO_000023080 , Pride:P00803 , Protein Model Portal:P00803 , RefSeq:NP_417063 , RegulonDB:EG10530 , SMR:P00803 , String:511145.b2568 , UniProt:P00803

Relationship Links: InterPro:IN-FAMILY:IPR000223 , InterPro:IN-FAMILY:IPR011056 , InterPro:IN-FAMILY:IPR015927 , InterPro:IN-FAMILY:IPR019533 , InterPro:IN-FAMILY:IPR019756 , InterPro:IN-FAMILY:IPR019757 , InterPro:IN-FAMILY:IPR019758 , InterPro:IN-FAMILY:IPR019759 , InterPro:IN-FAMILY:IPR019766 , InterPro:IN-FAMILY:IPR028360 , Panther:IN-FAMILY:PTHR12383 , PDB:Structure:1B12 , PDB:Structure:1KN9 , PDB:Structure:1T7D , PDB:Structure:3IIQ , PDB:Structure:3S04 , Pfam:IN-FAMILY:PF00717 , Pfam:IN-FAMILY:PF10502 , Prints:IN-FAMILY:PR00727 , Prosite:IN-FAMILY:PS00501 , Prosite:IN-FAMILY:PS00760 , Prosite:IN-FAMILY:PS00761

Gene-Reaction Schematic: ?

GO Terms:

Biological Process: GO:0006465 - signal peptide processing Inferred from experiment [Chatterjee95, Zwizinski80, Dalbey85]
GO:0006508 - proteolysis Inferred from experiment Inferred by computational analysis [UniProtGOA11a, GOA01a, Kim04e, Stein00]
GO:0016485 - protein processing Inferred from experiment [Karla05, deZamaroczy01]
Molecular Function: GO:0004175 - endopeptidase activity Inferred from experiment [Chatterjee95, Zwizinski80, Dalbey85]
GO:0004252 - serine-type endopeptidase activity Inferred from experiment [Sung92]
GO:0008233 - peptidase activity Inferred from experiment Inferred by computational analysis [UniProtGOA11a, Karla05, Kim04e]
GO:0015643 - toxic substance binding Inferred from experiment [deZamaroczy01]
GO:0008236 - serine-type peptidase activity Inferred by computational analysis [GOA01a]
GO:0016787 - hydrolase activity Inferred by computational analysis [UniProtGOA11a]
Cellular Component: GO:0005886 - plasma membrane Inferred from experiment Inferred by computational analysis [UniProtGOA11, UniProtGOA11a, DiazMejia09, Zhang07, Daley05, Stein00, Chang78]
GO:0005887 - integral component of plasma membrane Inferred from experiment [Wolfe83]
GO:0016021 - integral component of membrane Inferred by computational analysis Inferred from experiment [Stein00, UniProtGOA11a, GOA01a]
GO:0016020 - membrane Inferred by computational analysis [UniProtGOA11a, GOA01a]

MultiFun Terms: cell structure membrane
information transfer protein related export, signal peptide cleavage

Essentiality data for lepB knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB Lennox No 37 Aerobic 7   No [Baba06, Comment 1]

Credits:
Last-Curated ? 27-Jan-2014 by Mackie A , Macquarie University


Enzymatic reaction of: leader peptidase

EC Number: 3.4.21.89

a peptide with a leader sequence + H2O <=> a peptide + a leader sequence

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the direction of enzyme catalysis.

The reaction is irreversible in the direction shown.

Kinetic Parameters:

Substrate
Km (μM)
kcat (sec-1)
kcat/Km (sec-1 μM-1)
Citations
a peptide with a leader sequence
16.5
8.73
[Chatterjee95]

T(opt): 37 °C [BRENDA14, Tschantz94]

pH(opt): 8 [BRENDA14, Wolfe83a], 8.5 [BRENDA14, Gallagher01], 10 [BRENDA14, Kim95a]


Sequence Features

Feature Class Location Citations Comment
Blocking-Modification 1
[Wolfe83, UniProt11]
UniProt: Blocked amino end (Met).
Transmembrane-Region 4 -> 22
[UniProt10a]
UniProt: Helical;; Non-Experimental Qualifier: probable;
Sequence-Conflict 42 -> 43
[Nashimoto95, Wolfe83, UniProt10]
Alternate sequence: AG → R; UniProt: (in Ref. 1 and 2);
Transmembrane-Region 59 -> 77
[UniProt10a]
UniProt: Helical;; Non-Experimental Qualifier: probable;
Mutagenesis-Variant 62
[UniProt10]
Alternate sequence: E → V; UniProt: Indifferent;
Mutagenesis-Variant 78
[UniProt10]
Alternate sequence: R → L; UniProt: Indifferent;
Alternate sequence: R → N; UniProt: Indifferent;
Alternate sequence: R → E; UniProt: Indifferent;
Active-Site 91
[Black93, Sung92, UniProt11]
.
Mutagenesis-Variant 91
[UniProt10]
Alternate sequence: S → A; UniProt: Loss of activity;
Sequence-Conflict 123
[Nashimoto95, Wolfe83, UniProt10]
Alternate sequence: T → N; UniProt: (in Ref. 1 and 2);
Mutagenesis-Variant 125
[UniProt10]
Alternate sequence: H → N; UniProt: Indifferent;
Mutagenesis-Variant 128
[UniProt10]
Alternate sequence: R → Q; UniProt: Small effect;
Mutagenesis-Variant 130
[UniProt10]
Alternate sequence: D → A; UniProt: Indifferent;
Mutagenesis-Variant 144
[UniProt10]
Alternate sequence: Y → F; UniProt: Indifferent;
Active-Site 146
[Black93, Sung92, UniProt11]
.
Mutagenesis-Variant 146
[UniProt10]
Alternate sequence: K → S; UniProt: Loss of activity;
Alternate sequence: K → G; UniProt: Loss of activity;
Alternate sequence: K → D; UniProt: Loss of activity;
Alternate sequence: K → M; UniProt: Loss of activity;
Mutagenesis-Variant 147
[UniProt10]
Alternate sequence: R → Q; UniProt: Small effect;
Mutagenesis-Variant 154
[UniProt10]
Alternate sequence: D → N; UniProt: Indifferent;
Alternate sequence: D → A; UniProt: Loss of activity;
Mutagenesis-Variant 159
[UniProt10]
Alternate sequence: D → N; UniProt: Small effect;
Mutagenesis-Variant 171
[UniProt10]
Alternate sequence: C → A; UniProt: Indifferent;
Disulfide-Bond-Site 177, 171
[UniProt10]
Mutagenesis-Variant 177
[UniProt10]
Alternate sequence: C → A; UniProt: Indifferent;
Sequence-Conflict 183
[Nashimoto95, Wolfe83, UniProt10]
Alternate sequence: V → A; UniProt: (in Ref. 1 and 2);
Mutagenesis-Variant 236
[UniProt10]
Alternate sequence: H → N; UniProt: Indifferent;
Mutagenesis-Variant 269
[UniProt10]
Alternate sequence: Y → F; UniProt: Indifferent;
Mutagenesis-Variant 274
[UniProt10]
Alternate sequence: D → A; UniProt: Indifferent;
Mutagenesis-Variant 276
[UniProt10]
Alternate sequence: R → Q; UniProt: Small effect;
Mutagenesis-Variant 281
[UniProt10]
Alternate sequence: D → A; UniProt: Indifferent;
Mutagenesis-Variant 283
[UniProt10]
Alternate sequence: R → Q; UniProt: Small effect;


Gene Local Context (not to scale): ?

Transcription Unit:

Notes:

History:
10/20/97 Gene b2568 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10530; confirmed by SwissProt match.


References

Auclair12: Auclair SM, Bhanu MK, Kendall DA (2012). "Signal peptidase I: cleaving the way to mature proteins." Protein Sci 21(1);13-25. PMID: 22031009

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Bilgin90: Bilgin N, Lee JI, Zhu HY, Dalbey R, von Heijne G (1990). "Mapping of catalytically important domains in Escherichia coli leader peptidase." EMBO J 9(9);2717-22. PMID: 2202591

Black93: Black MT (1993). "Evidence that the catalytic activity of prokaryote leader peptidase depends upon the operation of a serine-lysine catalytic dyad." J Bacteriol 175(16);4957-61. PMID: 8394311

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014." http://www.brenda-enzymes.org.

Carlos00: Carlos JL, Paetzel M, Brubaker G, Karla A, Ashwell CM, Lively MO, Cao G, Bullinger P, Dalbey RE (2000). "The role of the membrane-spanning domain of type I signal peptidases in substrate cleavage site selection." J Biol Chem 275(49);38813-22. PMID: 10982814

Chang78: Chang CN, Blobel G, Model P (1978). "Detection of prokaryotic signal peptidase in an Escherichia coli membrane fraction: endoproteolytic cleavage of nascent f1 pre-coat protein." Proc Natl Acad Sci U S A 75(1);361-5. PMID: 343108

Chatterjee95: Chatterjee S, Suciu D, Dalbey RE, Kahn PC, Inouye M (1995). "Determination of Km and kcat for signal peptidase I using a full length secretory precursor, pro-OmpA-nuclease A." J Mol Biol 245(4);311-4. PMID: 7837264

Choo08: Choo KH, Tong JC, Ranganathan S (2008). "Modeling Escherichia coli signal peptidase complex with bound substrate: determinants in the mature peptide influencing signal peptide cleavage." BMC Bioinformatics 9 Suppl 1;S15. PMID: 18315846

Dalbey85: Dalbey RE, Wickner W (1985). "Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane." J Biol Chem 260(29);15925-31. PMID: 2999144

Dalbey87: Dalbey RE, Wickner W (1987). "Leader peptidase of Escherichia coli: critical role of a small domain in membrane assembly." Science 235(4790);783-7. PMID: 3544218

Dalbey87a: Dalbey RE, Kuhn A, Wickner W (1987). "The internal signal sequence of Escherichia coli leader peptidase is necessary, but not sufficient, for its rapid membrane assembly." J Biol Chem 262(27);13241-5. PMID: 3308874

Dalbey91: Dalbey RE (1991). "Leader peptidase." Mol Microbiol 5(12);2855-60. PMID: 1809829

Daley05: Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005). "Global topology analysis of the Escherichia coli inner membrane proteome." Science 308(5726);1321-3. PMID: 15919996

Date81: Date T, Wickner W (1981). "Isolation of the Escherichia coli leader peptidase gene and effects of leader peptidase overproduction in vivo." Proc Natl Acad Sci U S A 78(10);6106-10. PMID: 6273848

Date83: Date T (1983). "Demonstration by a novel genetic technique that leader peptidase is an essential enzyme of Escherichia coli." J Bacteriol 154(1);76-83. PMID: 6339483

Dev90: Dev IK, Ray PH, Novak P (1990). "Minimum substrate sequence for signal peptidase I of Escherichia coli." J Biol Chem 265(33);20069-72. PMID: 2243078

deZamaroczy01: de Zamaroczy M, Mora L, Lecuyer A, Geli V, Buckingham RH (2001). "Cleavage of colicin D is necessary for cell killing and requires the inner membrane peptidase LepB." Mol Cell 8(1);159-68. PMID: 11511369

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Fikes90: Fikes JD, Barkocy-Gallagher GA, Klapper DG, Bassford PJ (1990). "Maturation of Escherichia coli maltose-binding protein by signal peptidase I in vivo. Sequence requirements for efficient processing and demonstration of an alternate cleavage site." J Biol Chem 265(6);3417-23. PMID: 2406254

Gallagher01: Gallagher J, Kaderbhai NN, Kaderbhai MA (2001). "Kinetic constants of signal peptidase I using cytochrome b5 as a precursor substrate." Biochim Biophys Acta 1550(1);1-5. PMID: 11738082

Gennity90: Gennity J, Goldstein J, Inouye M (1990). "Signal peptide mutants of Escherichia coli." J Bioenerg Biomembr 22(3);233-69. PMID: 2202719

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

Inada89: Inada T, Court DL, Ito K, Nakamura Y (1989). "Conditionally lethal amber mutations in the leader peptidase gene of Escherichia coli." J Bacteriol 171(1);585-7. PMID: 2644209

Karamyshev98: Karamyshev AL, Karamysheva ZN, Kajava AV, Ksenzenko VN, Nesmeyanova MA (1998). "Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region." J Mol Biol 277(4);859-70. PMID: 9545377

Karla05: Karla A, Lively MO, Paetzel M, Dalbey R (2005). "The identification of residues that control signal peptidase cleavage fidelity and substrate specificity." J Biol Chem 280(8);6731-41. PMID: 15598653

Kim04e: Kim YT, Kurita R, Kojima M, Nishii W, Tanokura M, Muramatsu T, Ito H, Takahashi K (2004). "Identification of arginine residues important for the activity of Escherichia coli signal peptidase I." Biol Chem 385(5);381-8. PMID: 15195997

Kim08a: Kim YT, Yoshida H, Kojima M, Kurita R, Nishii W, Muramatsu T, Ito H, Park SJ, Takahashi K (2008). "The effects of mutations in the carboxyl-terminal region on the catalytic activity of Escherichia coli signal peptidase I." J Biochem 143(2);237-42. PMID: 18032415

Kim95a: Kim YT, Muramatsu T, Takahashi K (1995). "Leader peptidase from Escherichia coli: overexpression, characterization, and inactivation by modification of tryptophan residues 300 and 310 with N-bromosuccinimide." J Biochem 117(3);535-44. PMID: 7629019

Klenotic00: Klenotic PA, Carlos JL, Samuelson JC, Schuenemann TA, Tschantz WR, Paetzel M, Strynadka NC, Dalbey RE (2000). "The role of the conserved box E residues in the active site of the Escherichia coli type I signal peptidase." J Biol Chem 275(9);6490-8. PMID: 10692453

Kuo93: Kuo DW, Chan HK, Wilson CJ, Griffin PR, Williams H, Knight WB (1993). "Escherichia coli leader peptidase: production of an active form lacking a requirement for detergent and development of peptide substrates." Arch Biochem Biophys 303(2);274-80. PMID: 8512314

Liu11: Liu J, Luo C, Smith PA, Chin JK, Page MG, Paetzel M, Romesberg FE (2011). "Synthesis and characterization of the arylomycin lipoglycopeptide antibiotics and the crystallographic analysis of their complex with signal peptidase." J Am Chem Soc 133(44);17869-77. PMID: 21999324

Luke09: Luke I, Handford JI, Palmer T, Sargent F (2009). "Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB." Arch Microbiol 191(12);919-25. PMID: 19809807

Luo09: Luo C, Roussel P, Dreier J, Page MG, Paetzel M (2009). "Crystallographic analysis of bacterial signal peptidase in ternary complex with arylomycin A2 and a beta-sultam inhibitor." Biochemistry 48(38);8976-84. PMID: 19655811

March85: March PE, Inouye M (1985). "Characterization of the lep operon of Escherichia coli. Identification of the promoter and the gene upstream of the signal peptidase I gene." J Biol Chem 1985;260(12);7206-13. PMID: 2987248

Moore87: Moore KE, Miura S (1987). "A small hydrophobic domain anchors leader peptidase to the cytoplasmic membrane of Escherichia coli." J Biol Chem 262(18);8806-13. PMID: 3036831

MusialSiwek08: Musial-Siwek M, Kendall DA, Yeagle PL (2008). "Solution NMR of signal peptidase, a membrane protein." Biochim Biophys Acta 1778(4);937-44. PMID: 18177734

Nashimoto95: Nashimoto H., Saito N. (1995). Data submission to EMBL/GenBank/DDBJ databases on 1995-09.

OhnoIwashita84: Ohno-Iwashita Y, Wolfe P, Ito K, Wickner W (1984). "Processing of preproteins by liposomes bearing leader peptidase." Biochemistry 23(25);6178-84. PMID: 6395892

Paetzel02: Paetzel M, Dalbey RE, Strynadka NC (2002). "Crystal structure of a bacterial signal peptidase apoenzyme: implications for signal peptide binding and the Ser-Lys dyad mechanism." J Biol Chem 277(11);9512-9. PMID: 11741964

Paetzel04: Paetzel M, Goodall JJ, Kania M, Dalbey RE, Page MG (2004). "Crystallographic and biophysical analysis of a bacterial signal peptidase in complex with a lipopeptide-based inhibitor." J Biol Chem 279(29);30781-90. PMID: 15136583

Paetzel13: Paetzel M (2013). "Structure and mechanism of Escherichia coli type I signal peptidase." Biochim Biophys Acta. PMID: 24333859

Paetzel95: Paetzel M, Chernaia M, Strynadka N, Tschantz W, Cao G, Dalbey RE, James MN (1995). "Crystallization of a soluble, catalytically active form of Escherichia coli leader peptidase." Proteins 23(1);122-5. PMID: 8539246

Paetzel98: Paetzel M, Dalbey RE, Strynadka NC (1998). "Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor." Nature 396(6707);186-90. PMID: 9823901

Pausova90: Pausova Z, Andel M, Stanek V, Lanska V (1990). "[The early phase of development of myocardial infarction in diabetics]." Cas Lek Cesk 129(26);810-4. PMID: 2393890

Perlman83: Perlman D, Halvorson HO (1983). "A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides." J Mol Biol 167(2);391-409. PMID: 6345794

San89: San Millan JL, Boyd D, Dalbey R, Wickner W, Beckwith J (1989). "Use of phoA fusions to study the topology of the Escherichia coli inner membrane protein leader peptidase." J Bacteriol 171(10);5536-41. PMID: 2551889

Shen91: Shen LM, Lee JI, Cheng SY, Jutte H, Kuhn A, Dalbey RE (1991). "Use of site-directed mutagenesis to define the limits of sequence variation tolerated for processing of the M13 procoat protein by the Escherichia coli leader peptidase." Biochemistry 30(51);11775-81. PMID: 1751494

Smitha11: Smitha Rao CV, Anne J (2011). "Bacterial type I signal peptidases as antibiotic targets." Future Microbiol 6(11);1279-96. PMID: 22082289

Stein00: Stein RL, Barbosa MD, Bruckner R (2000). "Kinetic and mechanistic studies of signal peptidase I from Escherichia coli." Biochemistry 39(27);7973-83. PMID: 10891078

Sung92: Sung M, Dalbey RE (1992). "Identification of potential active-site residues in the Escherichia coli leader peptidase." J Biol Chem 267(19);13154-9. PMID: 1618816

Talarico91: Talarico TL, Dev IK, Bassford PJ, Ray PH (1991). "Inter-molecular degradation of signal peptidase I in vitro." Biochem Biophys Res Commun 181(2);650-6. PMID: 1755848

Tschantz93: Tschantz WR, Sung M, Delgado-Partin VM, Dalbey RE (1993). "A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase." J Biol Chem 268(36);27349-54. PMID: 8262975

Tschantz94: Tschantz WR, Dalbey RE (1994). "Bacterial leader peptidase 1." Methods Enzymol 244;285-301. PMID: 7845215

Tschantz95: Tschantz WR, Paetzel M, Cao G, Suciu D, Inouye M, Dalbey RE (1995). "Characterization of a soluble, catalytically active form of Escherichia coli leader peptidase: requirement of detergent or phospholipid for optimal activity." Biochemistry 34(12);3935-41. PMID: 7696258

Tuteja05: Tuteja R (2005). "Type I signal peptidase: an overview." Arch Biochem Biophys 441(2);107-11. PMID: 16126156

UniProt10: UniProt Consortium (2010). "UniProt version 2010-11 released on 2010-11-02 00:00:00." Database.

UniProt10a: UniProt Consortium (2010). "UniProt version 2010-07 released on 2010-06-15 00:00:00." Database.

UniProt11: UniProt Consortium (2011). "UniProt version 2011-06 released on 2011-06-30 00:00:00." Database.

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

vanKlompenburg: van Klompenburg W, Whitley P, Diemel R, von Heijne G, de Kruijff B "A quantitative assay to determine the amount of signal peptidase I in E. coli and the orientation of membrane vesicles." Mol Membr Biol 12(4);349-53. PMID: 8747280

vonHeijne83: von Heijne G (1983). "Patterns of amino acids near signal-sequence cleavage sites." Eur J Biochem 133(1);17-21. PMID: 6852022

vonHeijne98: von Heijne G (1998). "Life and death of a signal peptide." Nature 396(6707);111, 113. PMID: 9823886

Wang04b: Wang Y, Bruckner R, Stein RL (2004). "Regulation of signal peptidase by phospholipids in membrane: characterization of phospholipid bilayer incorporated Escherichia coli signal peptidase." Biochemistry 43(1);265-70. PMID: 14705954

Wolfe82: Wolfe PB, Silver P, Wickner W (1982). "The isolation of homogeneous leader peptidase from a strain of Escherichia coli which overproduces the enzyme." J Biol Chem 257(13);7898-902. PMID: 6282859

Wolfe83: Wolfe PB, Wickner W, Goodman JM (1983). "Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope." J Biol Chem 258(19);12073-80. PMID: 6311837

Wolfe83a: Wolfe PB, Zwizinski C, Wickner W (1983). "Purification and characterization of leader peptidase from Escherichia coli." Methods Enzymol 97;40-6. PMID: 6361480

Zhang07: Zhang N, Chen R, Young N, Wishart D, Winter P, Weiner JH, Li L (2007). "Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS." Proteomics 7(4);484-93. PMID: 17309111

Zwizinski80: Zwizinski C, Wickner W (1980). "Purification and characterization of leader (signal) peptidase from Escherichia coli." J Biol Chem 255(16);7973-7. PMID: 6995457


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Mon Dec 22, 2014, biocyc11.