Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Enzyme: maltodextrin phosphorylase



Gene: malP Accession Numbers: EG10560 (EcoCyc), b3417, ECK3404

Synonyms: malA, blu

Regulation Summary Diagram: ?

Subunit composition of maltodextrin phosphorylase = [MalP]2
         maltodextrin phosphorylase monomer = MalP

Summary:
The malP gene product, maltodextrin phosphorylase, is one of two distinct α-glucan phosphorylases in E. coli. The isozyme glycogen phosphorylase is encoded by the glgP gene. MalP has high affinity for short, linear α-1,4 linked oligoglucosides [Schinzel99].

Experiments with the purified enzyme showed that the shortest maltodextrin which can be readily phosphorylyzed is maltopentaose, while the minimum length of the substrate for elongation of the oligosaccharide chain is maltotetraose [Schwartz67, Drueckes96a]. However, analysis of the maltodextrin degradation products in a malQ malZ mutant strain showed the production of maltotriose, implying that maltotetraose is a substrate of maltodextrin phosphorylase [Dippel05].

Site-directed mutagenesis of active-site residues and their effect on catalytic activity and kinetic properties of the enzyme has been reported [Schinzel90, Palm90, Schinzel91, Schinzel91a, Schinzel92, Drueckes96a, Drueckes96]. Kinetic studies of the forward (phosphorylase) and reverse (synthesis) reactions indicated that the enzyme has different binding sites for the terminal glucose residue of the oligoglucoside and glucose-1-phosphate [Becker94].

Various crystal structures of maltodextrin phosphorylase have been solved, providing insight into the lack of allosteric control of the enzyme, substrate specificity and the catalytic mechanism, and supporting results from site-directed mutagenesis experiments [Watson97, OReilly97, OReilly99, Watson99, Geremia02, Campagnolo08].

A malP mutant grown on maltose or maltodextrin contains increased levels of glycogen [Park11a].

Reviews: [Palm90, Schinzel99, Buchbinder01]

Citations: [Palm85, Bartl99, Griessler00]

Gene Citations: [Foglino87, Danot94, Chao74]

Locations: cytosol

Map Position: [3,548,102 <- 3,550,495] (76.47 centisomes)
Length: 2394 bp / 797 aa

Molecular Weight of Polypeptide: 90.522 kD (from nucleotide sequence), 82 kD (experimental) [Thanner75 ]

Molecular Weight of Multimer: 162 kD (experimental) [Schachtele78]

pI: 7.74, 6.5 [Schinzel90]

Unification Links: ASAP:ABE-0011154 , CGSC:528 , DIP:DIP-10146N , EchoBASE:EB0555 , EcoGene:EG10560 , EcoliWiki:b3417 , Mint:MINT-1225428 , ModBase:P00490 , OU-Microarray:b3417 , PortEco:malP , PR:PRO_000023152 , Pride:P00490 , Protein Model Portal:P00490 , RefSeq:YP_026218 , RegulonDB:EG10560 , SMR:P00490 , String:511145.b3417 , UniProt:P00490

Relationship Links: CAZy:IN-FAMILY:GT35 , InterPro:IN-FAMILY:IPR000811 , InterPro:IN-FAMILY:IPR011833 , Panther:IN-FAMILY:PTHR11468 , PDB:Structure:1AHP , PDB:Structure:1E4O , PDB:Structure:1L5V , PDB:Structure:1L5W , PDB:Structure:1L6I , PDB:Structure:1QM5 , PDB:Structure:2ASV , PDB:Structure:2AV6 , PDB:Structure:2AW3 , PDB:Structure:2AZD , PDB:Structure:2ECP , Pfam:IN-FAMILY:PF00343 , Prosite:IN-FAMILY:PS00102

In Paralogous Gene Group: 527 (2 members)

Gene-Reaction Schematic: ?

Genetic Regulation Schematic: ?

GO Terms:

Biological Process: GO:0005980 - glycogen catabolic process Inferred from experiment [Schwartz67]
GO:0030980 - alpha-glucan catabolic process Inferred from experiment [Schwartz67, Park11a]
GO:0005975 - carbohydrate metabolic process Inferred by computational analysis [UniProt-GOA, 2011, GOA et al., 2001]
GO:0008152 - metabolic process Inferred by computational analysis [UniProt-GOA, 2011]
Molecular Function: GO:0030170 - pyridoxal phosphate binding Inferred from experiment Inferred by computational analysis [GOA et al., 2001, Schachtele78]
GO:0031220 - maltodextrin phosphorylase activity Inferred from experiment [Schwartz67, Chao69]
GO:0042803 - protein homodimerization activity Inferred from experiment [Watson97]
GO:0003824 - catalytic activity Inferred by computational analysis [UniProt-GOA, 2011]
GO:0004645 - phosphorylase activity Inferred by computational analysis [GOA01, GOA et al., 2001]
GO:0008184 - glycogen phosphorylase activity Inferred by computational analysis [GOA et al., 2001]
GO:0016740 - transferase activity Inferred by computational analysis [UniProt-GOA, 2011]
GO:0016757 - transferase activity, transferring glycosyl groups Inferred by computational analysis [UniProt-GOA, 2011]
Cellular Component: GO:0005737 - cytoplasm Inferred from experiment [Schwartz67]
GO:0005829 - cytosol Inferred from experiment Inferred by computational analysis [Diaz-Mejia et al., 2009, Ishihama et al., 2008]

MultiFun Terms: metabolism carbon utilization carbon compounds
metabolism degradation of macromolecules polysaccharides

Essentiality data for malP knockouts: ?

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB enriched Yes 37 Aerobic 6.95   Yes [Gerdes et al., 2003, Comment 1]
LB Lennox Yes 37 Aerobic 7   Yes [Baba et al., 2006, Comment 2]
M9 medium with 1% glycerol Yes 37 Aerobic 7.2 0.35 Yes [Joyce et al., 2006, Comment 3]
MOPS medium with 0.4% glucose Yes 37 Aerobic 7.2 0.22 Yes [Baba et al., 2006, Comment 2]
Yes [Feist07, Comment 4]

Credits:
Last-Curated ? 30-Mar-2011 by Keseler I , SRI International


Enzymatic reaction of: maltodextrin phosphorylase

EC Number: 2.4.1.1

maltoheptaose + phosphate <=> maltohexaose + α-D-glucose 1-phosphate

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the Enzyme Commission system.

Reversibility of this reaction is unspecified.


Enzymatic reaction of: maltodextrin phosphorylase

EC Number: 2.4.1.1

maltohexaose + phosphate <=> maltopentaose + α-D-glucose 1-phosphate

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the Enzyme Commission system.

Reversibility of this reaction is unspecified.


Enzymatic reaction of: maltodextrin phosphorylase

EC Number: 2.4.1.1

maltopentaose + phosphate <=> α-D-glucose 1-phosphate + maltotetraose

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the Enzyme Commission system.

Reversibility of this reaction is unspecified.


Enzymatic reaction of: maltodextrin phosphorylase

Synonyms: amylophosphorylase, 1,4-α-D-glucan:orthophosphate α-D-glucosyltransferase

EC Number: 2.4.1.1

maltotetraose + phosphate <=> maltotriose + α-D-glucose 1-phosphate

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the direction of enzyme catalysis.

This reaction is reversible.

EC Number: 2.4.1.1

(1,4-α-D-glucosyl)(n) + phosphate <=> (1,4-α-D-glucosyl)(n-1) + α-D-glucose 1-phosphate

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the direction of enzyme catalysis.

This reaction is reversible.

In Pathways: glycogen degradation I

Summary:
The Km for maltoheptaose, measured in the phosphorylase reaction direction, is 0.5 mM [Schinzel90].

The kinetic mechanism is rapid equilibrium random Bi-Bi [Chao69].

Cofactors or Prosthetic Groups: pyridoxal 5'-phosphate [Comment 5, Schachtele78, Schwartz67]

Inhibitors (Competitive): α-D-glucose 1-methylene-phosphonate [Becker95a]

Kinetic Parameters:

Substrate
Km (μM)
Citations
α-D-glucose 1-phosphate
1000.0
[Schinzel90]
phosphate
500.0
[Schinzel90]

pH(opt): 5.5-7 [Chao70]


Sequence Features

Feature Class Location Citations Comment
Cleavage-of-Initial-Methionine 1
[Schiltz80, UniProt11]
UniProt: Removed.
Chain 2 -> 797
[UniProt, 2009]
UniProt: Maltodextrin phosphorylase;
Acetylation-Modification 251
[Zhang09b, UniProt11]
UniProt: N6-acetyllysine.
Sequence-Conflict 294
[Palm85, Palm87, UniProt, 2010]
Alternate sequence: K → E; UniProt: (in Ref. 1 and 5);
Sequence-Conflict 488
[Palm85, Palm87, UniProt, 2010]
Alternate sequence: E → V; UniProt: (in Ref. 1 and 5);
Sequence-Conflict 490
[Palm85, Palm87, UniProt, 2010]
Alternate sequence: F → L; UniProt: (in Ref. 1 and 5);
Sequence-Conflict 499
[Palm85, Palm87, UniProt, 2010]
Alternate sequence: Q → L; UniProt: (in Ref. 1 and 5);
Sequence-Conflict 502
[Palm85, Palm87, UniProt, 2010]
Alternate sequence: E → V; UniProt: (in Ref. 1 and 5);
Sequence-Conflict 522
[Palm85, Palm87, UniProt, 2010]
Alternate sequence: E → D; UniProt: (in Ref. 1 and 5);
Sequence-Conflict 548
[Palm85, UniProt, 2010]
Alternate sequence: H → R; UniProt: (in Ref. 5);
N6-pyridoxal-phosphate-Lys-Modification 646
[UniProt11a]
UniProt: N6-(pyridoxal phosphate)lysine.
Sequence-Conflict 682
[Palm85, Palm87, UniProt, 2010]
Alternate sequence: E → K; UniProt: (in Ref. 1 and 5);
Sequence-Conflict 688
[Palm85, UniProt, 2010]
Alternate sequence: L → D; UniProt: (in Ref. 5);


Gene Local Context (not to scale): ?

Transcription Units:

Notes:

History:
10/20/97 Gene b3417 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10560; confirmed by SwissProt match.


References

Baba et al., 2006: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Bartl99: Bartl F, Palm D, Schinzel R, Zundel G (1999). "Proton relay system in the active site of maltodextrinphosphorylase via hydrogen bonds with large proton polarizability: an FT-IR difference spectroscopy study." Eur Biophys J 28(3);200-7. PMID: 10232933

Becker94: Becker S, Palm D, Schinzel R (1994). "Dissecting differential binding in the forward and reverse reaction of Escherichia coli maltodextrin phosphorylase using 2-deoxyglucosyl substrates." J Biol Chem 269(4);2485-90. PMID: 7905479

Becker95a: Becker S, Schnackerz KD, Schinzel R (1995). "A study of binary complexes of Escherichia coli maltodextrin phosphorylase: alpha-D-glucose 1-methylenephosphonate as a probe of pyridoxal 5'-phosphate-substrate interactions." Biochim Biophys Acta 1243(3);381-5. PMID: 7727513

Buchbinder01: Buchbinder JL, Rath VL, Fletterick RJ (2001). "Structural relationships among regulated and unregulated phosphorylases." Annu Rev Biophys Biomol Struct 30;191-209. PMID: 11340058

Campagnolo08: Campagnolo M, Campa C, Zorzi RD, Wuerges J, Geremia S (2008). "X-ray studies on ternary complexes of maltodextrin phosphorylase." Arch Biochem Biophys 471(1);11-9. PMID: 18164678

Chao69: Chao J, Johnson GF, Graves DJ (1969). "Kinetic mechanism of maltodextrin phosphorylase." Biochemistry 8(4);1459-66. PMID: 4897523

Chao70: Chao J, Graves DJ (1970). "pH dependence of the kinetic parameters of maltodextrin phosphorylase." Biochem Biophys Res Commun 40(6);1398-403. PMID: 4933689

Chao74: Chao J, Weathersbee CJ (1974). "Regulation of maltodextrin phosphorylase synthesis in Escherichia coli by cyclic adenosine 3', 5'-monophosphate and glucose." J Bacteriol 117(1);181-8. PMID: 4358043

Danot94: Danot O, Raibaud O (1994). "Multiple protein-DNA and protein-protein interactions are involved in transcriptional activation by MalT." Mol Microbiol 1994;14(2);335-46. PMID: 7830577

Diaz-Mejia et al., 2009: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Dippel05: Dippel R, Boos W (2005). "The maltodextrin system of Escherichia coli: metabolism and transport." J Bacteriol 187(24);8322-31. PMID: 16321936

Drueckes96: Drueckes P, Schinzel R (1996). "Activation of E350A mutant maltodextrin phosphorylase by exogenously added acetate." Protein Eng 9(8);701-5. PMID: 8875647

Drueckes96a: Drueckes P, Boeck B, Palm D, Schinzel R (1996). "Mutational analysis of the oligosaccharide recognition site at the active site of Escherichia coli maltodextrin phosphorylase." Biochemistry 35(21);6727-34. PMID: 8639623

Feist07: Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO (2007). "A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information." Mol Syst Biol 3;121. PMID: 17593909

Foglino87: Foglino M, Lazdunski A (1987). "Deletion analysis of the promoter region of the Escherichia coli pepN gene, a gene subject in vivo to multiple global controls." Mol Gen Genet 1987;210(3);523-7. PMID: 2893244

Gerdes et al., 2003: Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003). "Experimental determination and system level analysis of essential genes in Escherichia coli MG1655." J Bacteriol 185(19);5673-84. PMID: 13129938

Geremia02: Geremia S, Campagnolo M, Schinzel R, Johnson LN (2002). "Enzymatic catalysis in crystals of Escherichia coli maltodextrin phosphorylase." J Mol Biol 322(2);413-23. PMID: 12217700

GOA et al., 2001: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA01: GOA, MGI (2001). "Gene Ontology annotation based on Enzyme Commission mapping." Genomics 74;121-128.

Griessler00: Griessler R, D'auria S, Schinzel R, Tanfani F, Nidetzky B (2000). "Mechanism of thermal denaturation of maltodextrin phosphorylase from Escherichia coli." Biochem J 346 Pt 2;255-63. PMID: 10677342

Ishihama et al., 2008: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Joyce et al., 2006: Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006). "Experimental and computational assessment of conditionally essential genes in Escherichia coli." J Bacteriol 188(23);8259-71. PMID: 17012394

OReilly97: O'Reilly M, Watson KA, Schinzel R, Palm D, Johnson LN (1997). "Oligosaccharide substrate binding in Escherichia coli maltodextrin phosphorylase." Nat Struct Biol 4(5);405-12. PMID: 9145112

OReilly99: O'Reilly M, Watson KA, Johnson LN (1999). "The crystal structure of the Escherichia coli maltodextrin phosphorylase-acarbose complex." Biochemistry 38(17);5337-45. PMID: 10220320

Palm85: Palm D, Goerl R, Burger KJ (1985). "Evolution of catalytic and regulatory sites in phosphorylases." Nature 313(6002);500-2. PMID: 3155826

Palm87: Palm D, Goerl R, Weidinger G, Zeier R, Fischer B, Schinzel R (1987). "E. coli maltodextrin phosphorylase: primary structure and deletion mapping of the C-terminal site." Z Naturforsch C 42(4);394-400. PMID: 3037809

Palm90: Palm D, Klein HW, Schinzel R, Buehner M, Helmreich EJ (1990). "The role of pyridoxal 5'-phosphate in glycogen phosphorylase catalysis." Biochemistry 29(5);1099-107. PMID: 2182117

Park11a: Park JT, Shim JH, Tran PL, Hong IH, Yong HU, Oktavina EF, Nguyen HD, Kim JW, Lee TS, Park SH, Boos W, Park KH (2011). "Role of maltose enzymes in glycogen synthesis by Escherichia coli." J Bacteriol 193(10);2517-26. PMID: 21421758

Schachtele78: Schachtele KH, Schiltz E, Palm D (1978). "Amino-acid sequence of the pyridoxal-phosphate-binding site in Escherichia coli maltodextrin phosphorylase." Eur J Biochem 1978;92(2);427-35. PMID: 367781

Schiltz80: Schiltz E, Palm D, Klein HW (1980). "N-terminal sequences of Escherichia coli and potato phosphorylase." FEBS Lett 109(1);59-62. PMID: 6986282

Schinzel90: Schinzel R, Palm D (1990). "Escherichia coli maltodextrin phosphorylase: contribution of active site residues glutamate-637 and tyrosine-538 to the phosphorolytic cleavage of alpha-glucans." Biochemistry 29(42);9956-62. PMID: 1980213

Schinzel91: Schinzel R (1991). "Active site lysine promotes catalytic function of pyridoxal 5'-phosphate in alpha-glucan phosphorylases." J Biol Chem 266(15);9428-31. PMID: 1827794

Schinzel91a: Schinzel R, Drueckes P (1991). "The phosphate recognition site of Escherichia coli maltodextrin phosphorylase." FEBS Lett 286(1-2);125-8. PMID: 1830850

Schinzel92: Schinzel R, Palm D, Schnackerz KD (1992). "Pyridoxal 5'-phosphate as a 31P reporter observing functional changes in the active site of Escherichia coli maltodextrin phosphorylase after site-directed mutagenesis." Biochemistry 31(16);4128-33. PMID: 1533158

Schinzel99: Schinzel R, Nidetzky B (1999). "Bacterial alpha-glucan phosphorylases." FEMS Microbiol Lett 171(2);73-9. PMID: 10077830

Schwartz67: Schwartz M, Hofnung M (1967). "[Maltodextrin phosphorylase of Escherichia coli]." Eur J Biochem 1967;2(2);132-45. PMID: 4865311

Thanner75: Thanner F, Palm D, Shaltiel S (1975). "Hydrophobic and biospecific chromatography in the purification of maltodextrin phosphorylase from E. coli." FEBS Lett 1975;55(1);178-82. PMID: 1095418

UniProt, 2009: UniProt Consortium (2009). "UniProt version 15.8 released on 2009-10-01 00:00:00." Database.

UniProt, 2010: UniProt Consortium (2010). "UniProt version 2010-11 released on 2010-11-02 00:00:00." Database.

UniProt-GOA, 2011: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

UniProt11: UniProt Consortium (2011). "UniProt version 2011-06 released on 2011-06-30 00:00:00." Database.

UniProt11a: UniProt Consortium (2011). "UniProt version 2011-11 released on 2011-11-22 00:00:00." Database.

Watson97: Watson KA, Schinzel R, Palm D, Johnson LN (1997). "The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase." EMBO J 16(1);1-14. PMID: 9009262

Watson99: Watson KA, McCleverty C, Geremia S, Cottaz S, Driguez H, Johnson LN (1999). "Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question." EMBO J 18(17);4619-32. PMID: 10469642

Zhang09b: Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y (2009). "Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli." Mol Cell Proteomics 8(2);215-25. PMID: 18723842

Other References Related to Gene Regulation

Boos98: Boos W, Shuman H (1998). "Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation." Microbiol Mol Biol Rev 62(1);204-29. PMID: 9529892

Camakaris82: Camakaris H, Pittard J (1982). "Autoregulation of the tyrR gene." J Bacteriol 150(1);70-5. PMID: 6120934

Chapon82: Chapon C (1982). "Role of the catabolite activator protein in the maltose regulon of Escherichia coli." J Bacteriol 150(2);722-9. PMID: 7040340

Constantinidou06: Constantinidou C, Hobman JL, Griffiths L, Patel MD, Penn CW, Cole JA, Overton TW (2006). "A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth." J Biol Chem 281(8);4802-15. PMID: 16377617

Debarbouille82: Debarbouille M, Cossart P, Raibaud O (1982). "A DNA sequence containing the control sites for gene malT and for the malPQ operon." Mol Gen Genet 185(1);88-92. PMID: 6283313

Gutierrez84: Gutierrez C, Raibaud O (1984). "Point mutations that reduce the expression of malPQ, a positively controlled operon of Escherichia coli." J Mol Biol 177(1);69-86. PMID: 6379197

Raibaud87: Raibaud O, Richet E (1987). "Maltotriose is the inducer of the maltose regulon of Escherichia coli." J Bacteriol 169(7);3059-61. PMID: 3298211


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Thu Dec 18, 2014, biocyc11.