twitter

Escherichia coli K-12 substr. MG1655 Pathway: 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate

Pathway diagram: 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Schematic showing all replicons, marked with selected genes

Genetic Regulation Schematic: ?

Genetic regulation schematic for 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate

Synonyms: 3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation to 2-oxopent-4-enoate

Superclasses: Degradation/Utilization/Assimilation Aromatic Compounds Degradation Phenolic Compounds Degradation

Summary:
Different strains of E. coli have the ability to utilize certain aromatic acids as the sole source of carbon. Shown here, E. coli K-12 can grow on both 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate [Burlingame83]. For the complete degradation pathway, please see the superpathway 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation.

Note that MhpB and MhpC are the only enzymes in this pathway that have been biochemically characterized.

Superpathways: 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation

Credits:
Created 16-May-1996 by Riley M , Marine Biological Laboratory
Last-Curated ? 27-Oct-2011 by Keseler I , SRI International


References

Burlingame83: Burlingame R, Chapman PJ (1983). "Catabolism of phenylpropionic acid and its 3-hydroxy derivative by Escherichia coli." J Bacteriol 1983;155(1);113-21. PMID: 6345502

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Boxhammer08: Boxhammer S, Glaser S, Kuhl A, Wagner AK, Schmidt CL (2008). "Characterization of the recombinant Rieske [2Fe-2S] proteins HcaC and YeaW from E. coli." Biometals 21(4):459-67. PMID: 18286376

Bugg93: Bugg TD (1993). "Overproduction, purification and properties of 2,3-dihydroxyphenylpropionate 1,2-dioxygenase from Escherichia coli." Biochim Biophys Acta 1993;1202(2);258-64. PMID: 8399388

Burlingame86: Burlingame RP, Wyman L, Chapman PJ (1986). "Isolation and characterization of Escherichia coli mutants defective for phenylpropionate degradation." J Bacteriol 1986;168(1);55-64. PMID: 3531186

Diaz98: Diaz E, Ferrandez A, Garcia JL (1998). "Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12." J Bacteriol 1998;180(11);2915-23. PMID: 9603882

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Dunn05: Dunn G, Montgomery MG, Mohammed F, Coker A, Cooper JB, Robertson T, Garcia JL, Bugg TD, Wood SP (2005). "The structure of the C-C bond hydrolase MhpC provides insights into its catalytic mechanism." J Mol Biol 346(1);253-65. PMID: 15663942

Ferrandez97: Ferrandez A, Garcia JL, Diaz E (1997). "Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12." J Bacteriol 1997;179(8);2573-81. PMID: 9098055

Fleming00: Fleming SM, Robertson TA, Langley GJ, Bugg TD (2000). "Catalytic mechanism of a C-C hydrolase enzyme: evidence for a gem-diol intermediate, not an acyl enzyme." Biochemistry 39(6);1522-31. PMID: 10684634

Gaudet10: Gaudet P, Livstone M, Thomas P (2010). "Annotation inferences using phylogenetic trees." PMID: 19578431

GOA01: GOA, MGI (2001). "Gene Ontology annotation based on Enzyme Commission mapping." Genomics 74;121-128.

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA06: GOA, SIB (2006). "Electronic Gene Ontology annotations created by transferring manual GO annotations between orthologous microbial proteins."

He99: He Z, Spain JC (1999). "Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway)." Arch Microbiol 171(5);309-16. PMID: 10382261

Henderson97: Henderson IM, Bugg TD (1997). "Pre-steady-state kinetic analysis of 2-hydroxy-6-keto-nona-2,4-diene-1,9-dioic acid 5,6-hydrolase: kinetic evidence for enol/keto tautomerization." Biochemistry 36(40);12252-8. PMID: 9315863

Lam94: Lam WWY, Bugg TDH (1994). "Chemistry of extradiol aromatic ring cleavage: Isolation of a stable dienol ring fission intermediate and stereochemistry of its enzymatic hydrolytic cleavage." J Chem Soc, Chem Commun (1994): 1163-1164.

Lam97: Lam WW, Bugg TD (1997). "Purification, characterization, and stereochemical analysis of a C-C hydrolase: 2-hydroxy-6-keto-nona-2,4-diene-1,9-dioic acid 5,6-hydrolase." Biochemistry 36(40);12242-51. PMID: 9315862

Li05b: Li C, Montgomery MG, Mohammed F, Li JJ, Wood SP, Bugg TD (2005). "Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants." J Mol Biol 346(1);241-51. PMID: 15663941

Li06c: Li JJ, Li C, Blindauer CA, Bugg TD (2006). "Evidence for a gem-diol reaction intermediate in bacterial C-C hydrolase enzymes BphD and MhpC from 13C NMR spectroscopy." Biochemistry 45(41);12461-9. PMID: 17029401

Li06d: Li C, Li JJ, Montgomery MG, Wood SP, Bugg TD (2006). "Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD." Biochemistry 45(41);12470-9. PMID: 17029402

Li08b: Li C, Hassler M, Bugg TD (2008). "Catalytic promiscuity in the alpha/beta-hydrolase superfamily: hydroxamic acid formation, C--C bond formation, ester and thioester hydrolysis in the C--C hydrolase family." Chembiochem 9(1);71-6. PMID: 18058773

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 19.0 on Fri Apr 17, 2015, BIOCYC14B.