Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store

Escherichia coli K-12 substr. MG1655 Pathway: chitobiose degradation
Inferred from experiment

Pathway diagram: chitobiose degradation

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Schematic showing all replicons, marked with selected genes

Genetic Regulation Schematic

Genetic regulation schematic for chitobiose degradation

Superclasses: Degradation/Utilization/AssimilationCarbohydrates DegradationSugars Degradation

The β-glucoside N,N'-diacetylchitobiose is the major breakdown product of chitin, the second most abundant biopolymer after cellulose. E. coli is capable of using N,N'-diacetylchitobiose as the sole source of carbon [Keyhani97].

Chitobiose is imported and concurrently phosphorylated to N,N'-diacetylchitobiose 6'-phosphate by the chitobiose PTS transporter. Recent evidence suggests that this is followed by deacetylation of the unphosphorylated acetylglucosamine moiety at the reducing end of N,N'-diacetylchitobiose 6'-phosphate by chito-oligosaccharide mono-deacetylase [Verma12]. N-monoacetylchitobiose 6'-phosphate is subsequently hydrolyzed by the glycosyl hydrolase monoacetylchitobiose-6-phosphate hydrolase to D-glucosamine and N-acetyl-D-glucosamine 6-phosphate. N-acetyl-D-glucosamine 6-phosphate enters the N-acetylglucosamine degradation I pathway for conversion to β-D-fructofuranose 6-phosphate, which enters glycolysis. The fate of D-glucosamine is currently unclear; when used as a carbon source, D-glucosamine enters the cell via a PTS transporter and is thereby phosphorylated. It is possible that an intracellular D-glucosamine kinase activity enables utilization of this compound.

Please note that biochemical assays of both chito-oligosaccharide mono-deacetylase and monoacetylchitobiose-6-phosphate hydrolase have involved substrates that are related, but not identical to the compounds in this pathway.

Created 27-Jun-2007 by Johnson A, TIGR
Revised 09-Aug-2012 by Keseler I, SRI International
Last-Curated 09-Aug-2012 by Keseler I, SRI International


Aam10: Aam BB, Heggset EB, Norberg AL, Sorlie M, Varum KM, Eijsink VG (2010). "Production of chitooligosaccharides and their potential applications in medicine." Mar Drugs 8(5);1482-517. PMID: 20559485

Keyhani97: Keyhani NO, Roseman S (1997). "Wild-type Escherichia coli grows on the chitin disaccharide, N,N'-diacetylchitobiose, by expressing the cel operon." Proc Natl Acad Sci U S A 1997;94(26);14367-71. PMID: 9405618

Tilly01: Tilly K, Elias AF, Errett J, Fischer E, Iyer R, Schwartz I, Bono JL, Rosa P (2001). "Genetics and regulation of chitobiose utilization in Borrelia burgdorferi." J Bacteriol 183(19);5544-53. PMID: 11544216

Verma12: Verma SC, Mahadevan S (2012). "The chbG Gene of the Chitobiose (chb) Operon of Escherichia coli Encodes a Chitooligosaccharide Deacetylase." J Bacteriol 194(18);4959-71. PMID: 22797760

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Brombacher03: Brombacher E, Dorel C, Zehnder AJ, Landini P (2003). "The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli." Microbiology 149(Pt 10);2847-57. PMID: 14523117

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Forsythe97: Forsythe RG, Karp PD, Mavrovouniotis ML (1997). "Estimation of Equilibrium Constants Using Automated Group Contribution Methods." CABIOS 13(5):537-543.

GOA01: GOA, MGI (2001). "Gene Ontology annotation based on Enzyme Commission mapping." Genomics 74;121-128.

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA06: GOA, SIB (2006). "Electronic Gene Ontology annotations created by transferring manual GO annotations between orthologous microbial proteins."

Khersonsky11: Khersonsky O, Malitsky S, Rogachev I, Tawfik DS (2011). "Role of chemistry versus substrate binding in recruiting promiscuous enzyme functions." Biochemistry 50(13);2683-90. PMID: 21332126

Plumbridge04: Plumbridge J, Pellegrini O (2004). "Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP." Mol Microbiol 52(2);437-49. PMID: 15066032

Thompson99: Thompson J, Ruvinov SB, Freedberg DI, Hall BG (1999). "Cellobiose-6-phosphate hydrolase (CelF) of Escherichia coli: characterization and assignment to the unusual family 4 of glycosylhydrolases." J Bacteriol 181(23);7339-45. PMID: 10572139

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

UniProtGOA12: UniProt-GOA (2012). "Gene Ontology annotation based on UniPathway vocabulary mapping."

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by Pathway Tools version 19.5 (software by SRI International) on Wed Jan 2, 2002, biocyc12.