Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Pathway: nitrate reduction III (dissimilatory)

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Genetic Regulation Schematic: ?

Synonyms: formate to nitrate electron transfer

Superclasses: Degradation/Utilization/Assimilation Inorganic Nutrients Metabolism Nitrogen Compounds Metabolism Nitrate Reduction
Generation of Precursor Metabolites and Energy Electron Transfer
Generation of Precursor Metabolites and Energy Respiration Anaerobic Respiration

Summary:
In the respiratory chain formed by formate dehydrogenase and nitrate reductase the transfer of electrons from formate to nitrate is coupled to the generation of a proton-motive force across the cytoplasmic membrane.

Two electrons are transferred from the formate oxidation site in formate dehydrogenase in the periplasm to the nitrate reduction site of nitrate reductase in the cytoplasm by a menaquinone pool which drives proton translocation in the opposite direction [RuizHerrera69, Enoch74].

Two of E. coli's formate dehydrogenases, N and O, catalyse the oxidation of formate. Expression of formate dehydrogenase N (Fdh-N) is induced by anaerobiosis and the presence of nitrate [Wang03, Berg90] whereas aerobic conditions, and to a lesser extent nitrate under anaerobic conditions, induce expression of formate dehydrogenase O (Fdh-O) [Abaibou95].

Two of the nitrate reductases, A and Z, in E. coli are membrane-bound and act as terminal electron acceptors. Expression of nitrate reductase A (NRA) occurs in response to high levels of nitrate in the environment whereas expression of nitrate reductase Z (NRZ) is not dependent on nitrate levels or anaerobiosis [Wang99b].

Fdh-N and NRA are coupled together in the formate to nitrate electron transfer pathway when levels of nitrate are high. Fdn-O and NRZ also couple together, although it is thought that these enzymes are expressed in the transition between aerobic and anaerobic conditions until the alternate enzymes reach sufficiently high levels to function in the respiratory chain [Abaibou95].

Variants: nitrate reduction VIII (dissimilatory)

Credits:
Created 25-Mar-2008 by Krummenacker M , SRI International
Revised 13-Aug-2008 by Nolan L , Macquarie University


References

Abaibou95: Abaibou H, Pommier J, Benoit S, Giordano G, Mandrand-Berthelot MA (1995). "Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase." J Bacteriol 177(24);7141-9. PMID: 8522521

Berg90: Berg BL, Stewart V (1990). "Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12." Genetics 1990;125(4);691-702. PMID: 2168848

Enoch74: Enoch HG, Lester RL (1974). "The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstruction of formate-nitrate reductase activity of E. coli." Biochem Biophys Res Commun 61(4);1234-41. PMID: 4616697

RuizHerrera69: Ruiz-Herrera J, DeMoss JA (1969). "Nitrate reductase complex of Escherichia coli K-12: participation of specific formate dehydrogenase and cytochrome b1 components in nitrate reduction." J Bacteriol 99(3);720-9. PMID: 4905536

Wang03: Wang H, Gunsalus RP (2003). "Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP." J Bacteriol 185(17);5076-85. PMID: 12923080

Wang99b: Wang H, Tseng CP, Gunsalus RP (1999). "The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite." J Bacteriol 181(17);5303-8. PMID: 10464201

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

AriasCartin10: Arias-Cartin R, Lyubenova S, Ceccaldi P, Prisner T, Magalon A, Guigliarelli B, Grimaldi S (2010). "HYSCORE evidence that endogenous mena- and ubisemiquinone bind at the same Q site (Q(D)) of Escherichia coli nitrate reductase A." J Am Chem Soc 132(17);5942-3. PMID: 20387886

Arifuzzaman06: Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, Ara T, Nakahigashi K, Huang HC, Hirai A, Tsuzuki K, Nakamura S, Altaf-Ul-Amin M, Oshima T, Baba T, Yamamoto N, Kawamura T, Ioka-Nakamichi T, Kitagawa M, Tomita M, Kanaya S, Wada C, Mori H (2006). "Large-scale identification of protein-protein interaction of Escherichia coli K-12." Genome Res 16(5);686-91. PMID: 16606699

Augier93: Augier V, Asso M, Guigliarelli B, More C, Bertrand P, Santini CL, Blasco F, Chippaux M, Giordano G (1993). "Removal of the high-potential [4Fe-4S] center of the beta-subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutated enzymes." Biochemistry 32(19);5099-108. PMID: 8388253

Augier93a: Augier V, Guigliarelli B, Asso M, Bertrand P, Frixon C, Giordano G, Chippaux M, Blasco F (1993). "Site-directed mutagenesis of conserved cysteine residues within the beta subunit of Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of the mutated enzymes." Biochemistry 32(8);2013-23. PMID: 8383531

Avazeri97: Avazeri C, Turner RJ, Pommier J, Weiner JH, Giordano G, Vermeglio A (1997). "Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite." Microbiology 143 ( Pt 4);1181-9. PMID: 9141681

Banci05: Banci L, Bertini I, Ciofi-Baffoni S, Chasapis CT, Hadjiliadis N, Rosato A (2005). "An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein." FEBS J 272(3);865-71. PMID: 15670166

Barker00: Barker HC, Kinsella N, Jaspe A, Friedrich T, O'Connor CD (2000). "Formate protects stationary-phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide." Mol Microbiol 35(6);1518-29. PMID: 10760151

Benoit98: Benoit S, Abaibou H, Mandrand-Berthelot MA (1998). "Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli." J Bacteriol 1998;180(24);6625-34. PMID: 9852007

Berg91: Berg BL, Li J, Heider J, Stewart V (1991). "Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine." J Biol Chem 1991;266(33);22380-5. PMID: 1834669

Berks95: Berks BC, Ferguson SJ, Moir JW, Richardson DJ (1995). "Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions." Biochim Biophys Acta 1232(3);97-173. PMID: 8534676

Berks95a: Berks BC, Page MD, Richardson DJ, Reilly A, Cavill A, Outen F, Ferguson SJ (1995). "Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop." Mol Microbiol 15(2);319-31. PMID: 7746153

Bertero03: Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC (2003). "Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A." Nat Struct Biol 10(9);681-7. PMID: 12910261

Bertero05: Bertero MG, Rothery RA, Boroumand N, Palak M, Blasco F, Ginet N, Weiner JH, Strynadka NC (2005). "Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A." J Biol Chem 280(15);14836-43. PMID: 15615728

Blasco01: Blasco F, Guigliarelli B, Magalon A, Asso M, Giordano G, Rothery RA (2001). "The coordination and function of the redox centres of the membrane-bound nitrate reductases." Cell Mol Life Sci 58(2);179-93. PMID: 11289300

Blasco89: Blasco F, Iobbi C, Giordano G, Chippaux M, Bonnefoy V (1989). "Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the alpha and beta subunits in iron binding and electron transfer." Mol Gen Genet 218(2);249-56. PMID: 2674654

Blasco90: Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V, Chippaux M (1990). "Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon." Mol Gen Genet 1990;222(1);104-11. PMID: 2233673

Blasco92: Blasco F, Pommier J, Augier V, Chippaux M, Giordano G (1992). "Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli." Mol Microbiol 1992;6(2);221-30. PMID: 1545706

Blasco98: Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL, Giordano G (1998). "NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli." Mol Microbiol 28(3);435-47. PMID: 9632249

Blum82: Blum H, Poole RK (1982). "The molybdenum and iron-sulphur centres of Escherichia coli nitrate reductase are non-randomly oriented in the membrane." Biochem Biophys Res Commun 107(3);903-9. PMID: 6291520

Bonnefoy94: Bonnefoy V, Demoss JA (1994). "Nitrate reductases in Escherichia coli." Antonie Van Leeuwenhoek 1994;66(1-3);47-56. PMID: 7747940

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Fri Dec 19, 2014, biocyc14.