Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015

Escherichia coli K-12 substr. MG1655 Pathway: trehalose degradation VI (periplasmic)

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Superclasses: Degradation/Utilization/Assimilation Carbohydrates Degradation Sugars Degradation Trehalose Degradation

General Background

There are several alternative pathways for the degradation of trehalose. Depending on the organism and the particular environmental conditions, trehalose may be broken down outside of the cytoplasm, enter the cell either through a permease, in which case it remains unmodified, or it may be transported by a phosphotransferase system (PTS), resulting in the phosphorylated trehalose-6-phosphate form. Degradation can proceed by different mechanisms: Unmodified trehalose may be degraded by a hydrolyzing trehalase (see trehalose degradation II (trehalase) and trehalose degradation VI (periplasmic)), or it may be split by the action of a trehalose phosphorylase (see trehalose degradation IV and trehalose degradation V). Likewise, trehalose-6-phosphate may be either hydrolyzed by trehalose-6-phosphate hydrolase (see trehalose degradation I (low osmolarity)) or it could be attacked by a trehalose-6-phosphate phosphorylase (see trehalose degradation III).

About This Pathway

Trehalase enzymes hydrolyze a molecule of α,α-trehalose into two molecules of β-D-glucose.

E. coli can grow with trehalose as the sole carbon source, and employs different pathways for its degradation under different osmolarity conditions. Under conditions of high osmolarity, the PTS pathway for uptake of trehalose (trehalose degradation I (low osmolarity)) is blocked. The periplasmic trehalase (TreA) provides the cell the ability to utilize trehalose under those conditions [Gutierrez89]. External trehalose is hydrolyzed by TreA into two molecules of glucose [Boos87], which are then transported into the cytoplasm through the glucose PTS [Styrvold91]. TreA also has a second function: under high osmotic conditions, the bacterium synthesizes large amounts of trehalose to be used as an osmoprotectant. TreA recycles trehalose molecules that leak from the cytoplasm into the periplasm [Giaever88].

Variants: trehalose degradation I (low osmolarity) , trehalose degradation II (trehalase)

Created 26-Mar-2010 by Keseler I , SRI International


Boos87: Boos W, Ehmann U, Bremer E, Middendorf A, Postma P (1987). "Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions." J Biol Chem 1987;262(27);13212-8. PMID: 2820965

Giaever88: Giaever HM, Styrvold OB, Kaasen I, Strom AR (1988). "Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli." J Bacteriol 1988;170(6);2841-9. PMID: 3131312

Gutierrez89: Gutierrez C, Ardourel M, Bremer E, Middendorf A, Boos W, Ehmann U (1989). "Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalase of Escherichia coli K12." Mol Gen Genet 1989;217(2-3);347-54. PMID: 2671658

Styrvold91: Styrvold OB, Strom AR (1991). "Synthesis, accumulation, and excretion of trehalose in osmotically stressed Escherichia coli K-12 strains: influence of amber suppressors and function of the periplasmic trehalase." J Bacteriol 173(3);1187-92. PMID: 1825082

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014."

Cardona09: Cardona F, Parmeggiani C, Faggi E, Bonaccini C, Gratteri P, Sim L, Gloster TM, Roberts S, Davies GJ, Rose DR, Goti A (2009). "Total syntheses of casuarine and its 6-O-alpha-glucoside: complementary inhibition towards glycoside hydrolases of the GH31 and GH37 families." Chemistry 15(7);1627-36. PMID: 19123216

Gibson07: Gibson RP, Gloster TM, Roberts S, Warren RA, Storch de Gracia I, Garcia A, Chiara JL, Davies GJ (2007). "Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors." Angew Chem Int Ed Engl 46(22);4115-9. PMID: 17455176

GOA01: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA01a: GOA, MGI (2001). "Gene Ontology annotation based on Enzyme Commission mapping." Genomics 74;121-128.

GOA06: GOA, SIB (2006). "Electronic Gene Ontology annotations created by transferring manual GO annotations between orthologous microbial proteins."

HenggeAronis91: Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W (1991). "Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli." J Bacteriol 173(24);7918-24. PMID: 1744047

Horlacher96: Horlacher R, Uhland K, Klein W, Ehrmann M, Boos W (1996). "Characterization of a cytoplasmic trehalase of Escherichia coli." J Bacteriol 178(21);6250-7. PMID: 8892826

Khil02: Khil PP, Camerini-Otero RD (2002). "Over 1000 genes are involved in the DNA damage response of Escherichia coli." Mol Microbiol 44(1);89-105. PMID: 11967071

Repoila91: Repoila F, Gutierrez C (1991). "Osmotic induction of the periplasmic trehalase in Escherichia coli K12: characterization of the treA gene promoter." Mol Microbiol 1991;5(3);747-55. PMID: 1710760

Strom93: Strom AR, Kaasen I (1993). "Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression." Mol Microbiol 1993;8(2);205-10. PMID: 8391102

TourinhodosSant94: Tourinho-dos-Santos CF, Bachinski N, Paschoalin VM, Paiva CL, Silva JT, Panek AD (1994). "Periplasmic trehalase from Escherichia coli--characterization and immobilization on spherisorb." Braz J Med Biol Res 27(3);627-36. PMID: 8081287

Uhland00: Uhland K, Mondigler M, Spiess C, Prinz W, Ehrmann M (2000). "Determinants of translocation and folding of TreF, a trehalase of Escherichia coli." J Biol Chem 275(31);23439-45. PMID: 10816581

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Tue Jan 27, 2015, BIOCYC13A.