Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store

Escherichia coli K-12 substr. MG1655 Polypeptide: GroES cochaperonin

Gene: groS Accession Numbers: EG10600 (EcoCyc), b4142, ECK4136

Synonyms: groES, mopB, cpn10

Regulation Summary Diagram

Regulation summary diagram for groS

Component of: GroEL-GroES chaperonin complex (extended summary available)

groS is one of a network of 93 genes believed to play a role in promoting the stress-induced mutagenesis (SIM) response of E. coli K-12 [Al12].

Citations: [Chandrasekhar86, Tilly81a]

Gene Citations: [Wang03c, Segal96, Fayet89, Yamamori80]

Locations: cytosol

Map Position: [4,368,711 -> 4,369,004] (94.16 centisomes, 339°)
Length: 294 bp / 97 aa

Molecular Weight of Polypeptide: 10.387 kD (from nucleotide sequence), 10 kD (experimental) [Xu97]

Unification Links: ASAP:ABE-0013566, CGSC:493, DIP:DIP-9835N, EchoBASE:EB0595, EcoGene:EG10600, EcoliWiki:b4142, Mint:MINT-5232475, ModBase:P0A6F9, OU-Microarray:b4142, PortEco:groS, PR:PRO_000022839, Pride:P0A6F9, Protein Model Portal:P0A6F9, RefSeq:NP_418566, RegulonDB:EG10600, SMR:P0A6F9, String:511145.b4142, UniProt:P0A6F9

Relationship Links: InterPro:IN-FAMILY:IPR011032, InterPro:IN-FAMILY:IPR018369, InterPro:IN-FAMILY:IPR020818, Panther:IN-FAMILY:PTHR10772, PDB:Structure:1AON, PDB:Structure:1EGS, PDB:Structure:1GRU, PDB:Structure:1PCQ, PDB:Structure:1PF9, PDB:Structure:1SVT, PDB:Structure:1SX4, PDB:Structure:2C7C, PDB:Structure:2C7D, PDB:Structure:3WVL, PDB:Structure:3ZPZ, PDB:Structure:3ZQ0, PDB:Structure:3ZQ1, Pfam:IN-FAMILY:PF00166, Prints:IN-FAMILY:PR00297, Prosite:IN-FAMILY:PS00681, Smart:IN-FAMILY:SM00883

Gene-Reaction Schematic

Gene-Reaction Schematic

GO Terms:
Biological Process:
Inferred from experimentInferred by computational analysisGO:0006457 - protein folding [GOA06, GOA01a, Laminet90, Kusukawa89]
Inferred from experimentGO:0009408 - response to heat [Chuang93]
Inferred from experimentGO:0019068 - virion assembly [Tilly81]
Inferred from experimentGO:0051085 - chaperone mediated protein folding requiring cofactor [Goloubinoff89]
Inferred by computational analysisGO:0007049 - cell cycle [UniProtGOA11a]
Inferred by computational analysisGO:0051301 - cell division [UniProtGOA11a]
Molecular Function:
Inferred from experimentGO:0005515 - protein binding [Chandrasekhar86, Chen13a, Motojima10, Yokokawa06, Xu97, Chaudhry04, Chaudhry03, Ranson01, Horowitz99, Azem95, Sharma08, KoikeTakeshita06]
Inferred from experimentGO:0042802 - identical protein binding [Chandrasekhar86, Lasserre06, Horowitz99]
Inferred by computational analysisGO:0005524 - ATP binding [GOA01a]
Cellular Component:
Inferred from experimentInferred by computational analysisGO:0005829 - cytosol [DiazMejia09, Ishihama08, LopezCampistrou05, Lasserre06]
Inferred from experimentGO:1990220 - GroEL-GroES complex [Xu97]
Inferred by computational analysisGO:0005737 - cytoplasm [UniProtGOA11, UniProtGOA11a, GOA06, GOA01a]

MultiFun Terms: cell processescell division
information transferprotein relatedchaperoning, repair (refolding)

Essentiality data for groS knockouts:

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB LennoxNo 37 Aerobic 7   No [Baba06, Comment 1]

Subunit of: GroEL-GroES chaperonin complex

Inferred from experiment

Synonyms: GroE

Subunit composition of GroEL-GroES chaperonin complex = [GroL]14[GroS]14
         GroEL chaperonin = GroL
         GroES cochaperonin = GroS (summary available)

The Escherichia coli chaperonin protein GroEL and its co-chaperonin GroES mediate the ATP dependent folding of newly translated proteins [Hemmingsen88, Kusukawa89, Goloubinoff89, Martin91, Horwich93]. The crystal structure of GroEL has been determined to a resolution of 2.8 angstroms. GroEL forms an 800 kDa cylinder from two back-to-back heptameric rings of 57 kDa subunits [Braig94, Braig95] - the GroEL double toroid. X-ray crystallography to a resolution of 3.0 angstroms has determined the structure of GroEL-GroES complexed with seven ADP molecules. GroES forms a heptamer of 10 kDa subunits which can bind to either end of the GroEL complex, forming a lid on the chamber [Xu97, Donald05]. Binding of GroES creates a large dome-shaped cavity with a highly polar inner surface in which a non-native protein has the opportunity to fold into its native form [Xu97].

GroEL-ES is an active chaperonin (reviewed by [Radford06]). Accelerated folding is due to physical confinement of substrate and a reduction in polypeptide chain entropy in the net negatively charged chaperonin cavity [Tang06, Tang08, Gupta14]. GroEL-ES accelerates the folding of double-mutant maltose binding protein 8-fold relative to it's spontaneous folding rate. A GroEL-ES mutant in which the net negative charge of the cavity wall is removed functions as a passive folding environment [Gupta14]. GroEL-ES is a passive chaperonin which acts to confine the polypeptide chain and prevent multimolecular aggregation [Apetri08, Tyagi11] (and reviewed by [Horwich09]). GroEL-ES activity can be described by an iterative annealing model whereby GroEL repeatedly unfolds and refolds misfolded polypeptides [Todd96, Thirumalai01, Tehver08, Corsepius13] (and see comment by [Horovitz13]). GroEL-GroES functions to release proteins from 'kinetic traps' and place them under conditions that favour productive protein folding [Chakraborty10, Clare12].

Non-native protein substrates bind within GroEL chaperonin rings [Braig93]. Substrate binding is mediated by interactions between exposed hydrophobic side chains of collapsed protein folding intermediates and non-native proteins, and hydrophobic residues located at the apical domains of GroEL [Fenton94, Lin95, Buckle97] (and reviewed in [Houry01]). ATP binds to a pocket in the equatorial domain of GroEL [Boisvert96]. GroEL binds and hydrolyses ATP with positive intra-ring cooperativity and negative inter-ring cooperativity ( [Gray91, Yifrach95] and reviewed by [Horovitz01]). Binding of ATP and GroES results in the formation of a ternary complex and structural rearrangement [Chen94, Weissman94, Roseman96, Cliff06]. The rapid binding of ATP is accompanied by movement of the apical domains of GroEL followed by the slower binding of non-native polypeptide [Tyagi09]. Both asymmetrical complexes (the so-called 'bullet shaped complex), resulting from GroES binding to one end of the GroEL cylinder, and symmetrical complexes ('football shaped') formed when GroES binds to both ends of the GroEL cylinder, have been described [Langer92, Llorca94, Schmidt94, Engel95, Horowitz99, Sameshima08, Inobe08, Sameshima10, KoikeTakeshita14, KoikeTakeshita14a]. The asymmetrical complex is the functional unit [HayerHartl95, HayerHartl99]. The symmetrical complex may represent a catalytic intermediate [Todd94, Corrales96, Torok96]. The symmetrical complex is the folding functional form of the chaperonin in vivo [Ye13, Yang13, Fei14].

The functional cycle of GroEL-GroES protein folding has been described as a 'two-stroke motion' (see comment by [Lorimer97], review by [Horwich11] and references within). Productive protein folding occurs in the cis ring, that is the groEL ring containing bound GroES, substrate and ATP. The cis-ternary complex does not dissociate until ATP hydrolysis is complete - binding of ATP (but not hydrolysis) to the trans GroEL ring results in disassembly of the cis-ternary complex and release of the substrate, properly folded or not [Rye97, Kad98]. ATP hydrolysis in the cis ring must occur before substrate protein and GroES bind to the trans ring; hydrolysis of ATP in the cis ring switches the trans ring from a collapsed to an open state [Rye99]. A new folding cycle commences with binding of substrate and GroES to the GroEL ring with ATP bound (ie. the trans ring becomes the cis ring).

This canonical model of the protein folding cycle has been challenged [KoikeTakeshita08] with reports that symmetric GroEL-GroES2 complexes are the functional form of the chaperonin in vivo. In the presence of substrate proteins there is simultaneous occupancy of both groEL rings by ATP and GroES; in the absence of substrate protein these complexes revert to asymmetric complexes. Symmetric and asymmetric complexes exist in a dynamic equilibrium that is dependent on substrate protein concentration. The residence time of GroES and substrate protein in GroEL is less than 1 second [Ye13, Yang13].

ATP hydrolysis moves the reaction cycle forward but is not required for substrate folding - once the the substrate is encapsulated the slow hydrolysis of ATP provides time for folding to occur within the chamber [Clare12]. GroEL folding of model substrates suggests that proteins released in non-native form can be rapidly rebound by another GroEL complex [Weissman94, Smith95, Taguchi95, Weissman96]. Successive rounds of binding and release may be required for protein folding [Todd94, Beissinger99].

There are 85 cytosolic proteins identified by LC-MS/MS after purification that absolutely require GroEL for proper folding, 13 of which are essential. These substrates were enriched for the (βα)8 triosephosphate isomerase (TIM) barrel domain. There are another approximately 165 that are only partially dependent upon GroEL for proper folding [Kerner05]. Global aggregation of newly translated proteins is observed in a GroEL deficient strain of E. coli - approximately 300 mainly cytosolic proteins were identified by electrophoretic analyses [Charbon11]. Sequence analysis has been performed to determine possible substrate recognition sequences for GroEL binding [Chaudhuri05].

GroEL and GroES are both heat inducible but are also expressed constitutively and are required for growth under all conditions tested [Fayet89]. In groEL temperature-sensitive mutants, a defined group of cytoplasmic proteins--including citrate synthase, ketoglutarate dehydrogenase, and polynucleotide phosphorylase--were translated but failed to reach native form [Horwich93]. Overproduction of either GroEL-GroES or DnaK and DnaJ prevents aggregation of misfolded proteins in vivo. This suggests that GroEL-GroES and the DnaK and DnaJ proteins have complementary functions in the folding and assembly of most proteins [Gragerov92]. GroEL associates transiently with newly synthesized proteins, but it is absent from the ribosomes suggesting that that DnaK and DnaJ play an early role in protein maturation, whereas GroEL acts at a later stage [Gaitanaris94]. GroEL is diffusely distributed under both normal and stress condtions [Charbon11].

Overexpressed GroEL/GroES promotes the folding of enzyme variants carrying mutations generated in vitro suggesting that it helps alleviate the destabilising constraints of protein mutations [Tokuriki09].

GroEL/GroES can correctly fold both the natural and mirror-image form of DapA (L-DapA and D-DapA respectively) in vitro [Weinstock14]

Reviews: [Georgopoulos90, Sigler98, Fenton97, Xu98, Grallert01, Walter02, Thirumalai01, Horwich09a, Taguchi05, Masters09].
Comments: [Hartl94, Ten95, Lorimer96, Lorimer97, Zhang14a]

Citations: [Motojima10, Goloubinoff89a, Mayhew96, Miyazaki02, Madan08, Motojima03, Clare09, Machida09, Lin04a, Weber98, Weaver14, Makino93, Todd93, Bochkareva92, Grallert00, Huang99a , BenZvi98, Gorovits97, Stegmann98, Motojima00, Taguchi04, Girshovich95, Todd95, Kovacs10, Weissman95, Dahiya14, Kovalenko94, Tilly82, Betancourt99, Dalton15]

Locations: cytosol

Unification Links: PDB:4PKN

Relationship Links: PDB:Structure:1AON, PDB:Structure:1EGS, PDB:Structure:1PCQ, PDB:Structure:1PF9, PDB:Structure:3WVL, PDB:Structure:4PKO

GO Terms:
Biological Process:
Inferred from experimentGO:0006457 - protein folding [Kusukawa89]
Inferred from experimentGO:0019068 - virion assembly [Tilly81]
Inferred from experimentGO:0051085 - chaperone mediated protein folding requiring cofactor [Martin93, Rye97, Goloubinoff89]
Molecular Function:
Inferred from experimentGO:0000287 - magnesium ion binding [Boisvert96]
Inferred from experimentGO:0005524 - ATP binding [Boisvert96]
Inferred from experimentGO:0016887 - ATPase activity [Hendrix79]
Inferred from experimentGO:0043531 - ADP binding [Xu97]
Inferred from experimentGO:0051082 - unfolded protein binding [Fenton94]
Cellular Component:
Inferred from experimentGO:1990220 - GroEL-GroES complex [Xu97]
Inferred by curatorGO:0005829 - cytosol []

Revised 20-Jul-2014 by Mackie A, Macquarie University
Last-Curated 19-Oct-2014 by Mackie A, Macquarie University

Sequence Features

Protein sequence of GroES cochaperonin with features indicated

Feature Class Location Citations Comment
Pfam PF00166 2 -> 95
Inferred by computational analysis[Finn14]
Cpn10 : Chaperonin 10 Kd subunit
N6-succinyllysine-Modification 34
Inferred from experiment[Zhang11f]
UniProt: N6-succinyllysine.
Sequence-Conflict 89
Inferred by curator[Miki88, UniProt15]
UniProt: (in Ref. 2; CAA30738).

Gene Local Context (not to scale -- see Genome Browser for correct scale)

Gene local context diagram

Transcription Units

Transcription-unit diagram

Transcription-unit diagram

Transcription-unit diagram

Transcription-unit diagram


10/20/97 Gene b4142 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG10600; confirmed by SwissProt match.


Al12: Al Mamun AA, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM (2012). "Identity and function of a large gene network underlying mutagenic repair of DNA breaks." Science 338(6112);1344-8. PMID: 23224554

Apetri08: Apetri AC, Horwich AL (2008). "Chaperonin chamber accelerates protein folding through passive action of preventing aggregation." Proc Natl Acad Sci U S A 105(45);17351-5. PMID: 18987317

Azem95: Azem A, Diamant S, Kessel M, Weiss C, Goloubinoff P (1995). "The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer." Proc Natl Acad Sci U S A 92(26);12021-5. PMID: 8618836

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Beissinger99: Beissinger M, Rutkat K, Buchner J (1999). "Catalysis, commitment and encapsulation during GroE-mediated folding." J Mol Biol 289(4);1075-92. PMID: 10369783

BenZvi98: Ben-Zvi AP, Chatellier J, Fersht AR, Goloubinoff P (1998). "Minimal and optimal mechanisms for GroE-mediated protein folding." Proc Natl Acad Sci U S A 95(26);15275-80. PMID: 9860959

Betancourt99: Betancourt MR, Thirumalai D (1999). "Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity." J Mol Biol 287(3);627-44. PMID: 10092464

Bochkareva92: Bochkareva ES, Lissin NM, Flynn GC, Rothman JE, Girshovich AS (1992). "Positive cooperativity in the functioning of molecular chaperone GroEL." J Biol Chem 267(10);6796-800. PMID: 1348056

Boisvert96: Boisvert DC, Wang J, Otwinowski Z, Horwich AL, Sigler PB (1996). "The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S." Nat Struct Biol 3(2);170-7. PMID: 8564544

Braig93: Braig K, Simon M, Furuya F, Hainfeld JF, Horwich AL (1993). "A polypeptide bound by the chaperonin groEL is localized within a central cavity." Proc Natl Acad Sci U S A 90(9);3978-82. PMID: 8097882

Braig94: Braig K, Otwinowski Z, Hegde R, Boisvert DC, Joachimiak A, Horwich AL, Sigler PB (1994). "The crystal structure of the bacterial chaperonin GroEL at 2.8 A." Nature 371(6498);578-86. PMID: 7935790

Braig95: Braig K, Adams PD, Brunger AT (1995). "Conformational variability in the refined structure of the chaperonin GroEL at 2.8 A resolution." Nat Struct Biol 2(12);1083-94. PMID: 8846220

Buckle97: Buckle AM, Zahn R, Fersht AR (1997). "A structural model for GroEL-polypeptide recognition." Proc Natl Acad Sci U S A 94(8);3571-5. PMID: 9108017

Chakraborty10: Chakraborty K, Chatila M, Sinha J, Shi Q, Poschner BC, Sikor M, Jiang G, Lamb DC, Hartl FU, Hayer-Hartl M (2010). "Chaperonin-catalyzed rescue of kinetically trapped states in protein folding." Cell 142(1);112-22. PMID: 20603018

Chandrasekhar86: Chandrasekhar GN, Tilly K, Woolford C, Hendrix R, Georgopoulos C (1986). "Purification and properties of the groES morphogenetic protein of Escherichia coli." J Biol Chem 261(26);12414-9. PMID: 3017973

Charbon11: Charbon G, Wang J, Brustad E, Schultz PG, Horwich AL, Jacobs-Wagner C, Chapman E (2011). "Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid." Bioorg Med Chem Lett 21(20);6067-70. PMID: 21890355

Chaudhry03: Chaudhry C, Farr GW, Todd MJ, Rye HS, Brunger AT, Adams PD, Horwich AL, Sigler PB (2003). "Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics." EMBO J 22(19);4877-87. PMID: 14517228

Chaudhry04: Chaudhry C, Horwich AL, Brunger AT, Adams PD (2004). "Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states." J Mol Biol 342(1);229-45. PMID: 15313620

Chaudhuri05: Chaudhuri TK, Gupta P (2005). "Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach." Cell Stress Chaperones 10(1);24-36. PMID: 15832945

Chen13a: Chen DH, Madan D, Weaver J, Lin Z, Schroder GF, Chiu W, Rye HS (2013). "Visualizing GroEL/ES in the act of encapsulating a folding protein." Cell 153(6);1354-65. PMID: 23746846

Chen94: Chen S, Roseman AM, Hunter AS, Wood SP, Burston SG, Ranson NA, Clarke AR, Saibil HR (1994). "Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy." Nature 371(6494);261-4. PMID: 7915827

Chuang93: Chuang SE, Blattner FR (1993). "Characterization of twenty-six new heat shock genes of Escherichia coli." J Bacteriol 175(16);5242-52. PMID: 8349564

Clare09: Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR (2009). "Chaperonin complex with a newly folded protein encapsulated in the folding chamber." Nature 457(7225);107-10. PMID: 19122642

Clare12: Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR (2012). "ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin." Cell 149(1);113-23. PMID: 22445172

Cliff06: Cliff MJ, Limpkin C, Cameron A, Burston SG, Clarke AR (2006). "Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE." J Biol Chem 281(30);21266-75. PMID: 16684774

Corrales96: Corrales FJ, Fersht AR (1996). "Kinetic significance of GroEL14.(GroES7)2 complexes in molecular chaperone activity." Fold Des 1(4);265-73. PMID: 9079389

Corsepius13: Corsepius NC, Lorimer GH (2013). "Measuring how much work the chaperone GroEL can do." Proc Natl Acad Sci U S A 110(27);E2451-9. PMID: 23723348

Dahiya14: Dahiya V, Chaudhuri TK (2014). "Chaperones GroEL/GroES accelerate the refolding of a multidomain protein through modulating on-pathway intermediates." J Biol Chem 289(1);286-98. PMID: 24247249

Dalton15: Dalton KM, Frydman J, Pande VS (2015). "The Dynamic Conformational Cycle of the Group I Chaperonin C-Termini Revealed via Molecular Dynamics Simulation." PLoS One 10(3);e0117724. PMID: 25822285

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Donald05: Donald LJ, Stokell DJ, Holliday NJ, Ens W, Standing KG, Duckworth HW (2005). "Multiple equilibria of the Escherichia coli chaperonin GroES revealed by mass spectrometry." Protein Sci 14(5);1375-9. PMID: 15802642

Engel95: Engel A, Hayer-Hartl MK, Goldie KN, Pfeifer G, Hegerl R, Muller S, da Silva AC, Baumeister W, Hartl FU (1995). "Functional significance of symmetrical versus asymmetrical GroEL-GroES chaperonin complexes." Science 269(5225);832-6. PMID: 7638600

Fayet89: Fayet O, Ziegelhoffer T, Georgopoulos C (1989). "The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures." J Bacteriol 171(3);1379-85. PMID: 2563997

Fei14: Fei X, Ye X, LaRonde NA, Lorimer GH (2014). "Formation and structures of GroEL:GroES2 chaperonin footballs, the protein-folding functional form." Proc Natl Acad Sci U S A 111(35);12775-80. PMID: 25136110

Fenton94: Fenton WA, Kashi Y, Furtak K, Horwich AL (1994). "Residues in chaperonin GroEL required for polypeptide binding and release." Nature 371(6498);614-9. PMID: 7935796

Fenton97: Fenton WA, Horwich AL (1997). "GroEL-mediated protein folding." Protein Sci 6(4);743-60. PMID: 9098884

Finn14: Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014). "Pfam: the protein families database." Nucleic Acids Res 42(Database issue);D222-30. PMID: 24288371

Gaitanaris94: Gaitanaris GA, Vysokanov A, Hung SC, Gottesman ME, Gragerov A (1994). "Successive action of Escherichia coli chaperones in vivo." Mol Microbiol 14(5);861-9. PMID: 7715448

Georgopoulos90: Georgopoulos C, Ang D (1990). "The Escherichia coli groE chaperonins." Semin Cell Biol 1(1);19-25. PMID: 1983267

Girshovich95: Girshovich AS, Bochkareva ES, Todd MJ, Lorimer GH (1995). "On the distribution of ligands within the asymmetric chaperonin complex, GroEL14.ADP7.GroES7." FEBS Lett 366(1);17-20. PMID: 7789507

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

GOA06: GOA, SIB (2006). "Electronic Gene Ontology annotations created by transferring manual GO annotations between orthologous microbial proteins."

Goloubinoff89: Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989). "Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP." Nature 342(6252);884-9. PMID: 10532860

Goloubinoff89a: Goloubinoff P, Gatenby AA, Lorimer GH (1989). "GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli." Nature 337(6202);44-7. PMID: 2562907

Gorovits97: Gorovits BM, Ybarra J, Seale JW, Horowitz PM (1997). "Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides." J Biol Chem 272(43);26999-7004. PMID: 9341138

Gragerov92: Gragerov A, Nudler E, Komissarova N, Gaitanaris GA, Gottesman ME, Nikiforov V (1992). "Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli." Proc Natl Acad Sci U S A 89(21);10341-4. PMID: 1359538

Grallert00: Grallert H, Rutkat K, Buchner J (2000). "Limits of protein folding inside GroE complexes." J Biol Chem 275(27);20424-30. PMID: 10779510

Grallert01: Grallert H, Buchner J (2001). "Review: a structural view of the GroE chaperone cycle." J Struct Biol 135(2);95-103. PMID: 11580259

Gray91: Gray TE, Fersht AR (1991). "Cooperativity in ATP hydrolysis by GroEL is increased by GroES." FEBS Lett 292(1-2);254-8. PMID: 1683631

Gupta14: Gupta AJ, Haldar S, Miličić G, Hartl FU, Hayer-Hartl M (2014). "Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level." J Mol Biol 426(15);2739-54. PMID: 24816391

Hartl94: Hartl FU (1994). "Protein folding. Secrets of a double-doughnut." Nature 371(6498);557-9. PMID: 7935786

HayerHartl95: Hayer-Hartl MK, Martin J, Hartl FU (1995). "Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding." Science 269(5225);836-41. PMID: 7638601

HayerHartl99: Hayer-Hartl MK, Ewalt KL, Hartl FU (1999). "On the role of symmetrical and asymmetrical chaperonin complexes in assisted protein folding." Biol Chem 380(5);531-40. PMID: 10384959

Hemmingsen88: Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988). "Homologous plant and bacterial proteins chaperone oligomeric protein assembly." Nature 333(6171);330-4. PMID: 2897629

Hendrix79: Hendrix RW (1979). "Purification and properties of groE, a host protein involved in bacteriophage assembly." J Mol Biol 129(3);375-92. PMID: 379350

Horovitz01: Horovitz A, Fridmann Y, Kafri G, Yifrach O (2001). "Review: allostery in chaperonins." J Struct Biol 135(2);104-14. PMID: 11580260

Horovitz13: Horovitz A (2013). "Putting handcuffs on the chaperonin GroEL." Proc Natl Acad Sci U S A 110(27);10884-5. PMID: 23784780

Horowitz99: Horowitz PM, Lorimer GH, Ybarra J (1999). "GroES in the asymmetric GroEL14-GroES7 complex exchanges via an associative mechanism." Proc Natl Acad Sci U S A 96(6);2682-6. PMID: 10077571

Horwich09: Horwich AL, Apetri AC, Fenton WA (2009). "The GroEL/GroES cis cavity as a passive anti-aggregation device." FEBS Lett 583(16);2654-62. PMID: 19577567

Horwich09a: Horwich AL, Fenton WA (2009). "Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding." Q Rev Biophys 42(2);83-116. PMID: 19638247

Horwich11: Horwich AL (2011). "Protein folding in the cell: an inside story." Nat Med 17(10);1211-6. PMID: 21989012

Horwich93: Horwich AL, Low KB, Fenton WA, Hirshfield IN, Furtak K (1993). "Folding in vivo of bacterial cytoplasmic proteins: role of GroEL." Cell 74(5);909-17. PMID: 8104102

Houry01: Houry WA (2001). "Mechanism of substrate recognition by the chaperonin GroEL." Biochem Cell Biol 79(5);569-77. PMID: 11716298

Huang99a: Huang YS, Chuang DT (1999). "Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro." J Biol Chem 274(15);10405-12. PMID: 10187830

Inobe08: Inobe T, Takahashi K, Maki K, Enoki S, Kamagata K, Kadooka A, Arai M, Kuwajima K (2008). "Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering." Biophys J 94(4);1392-402. PMID: 17981896

Ishihama08: Ishihama Y, Schmidt T, Rappsilber J, Mann M, Hartl FU, Kerner MJ, Frishman D (2008). "Protein abundance profiling of the Escherichia coli cytosol." BMC Genomics 9;102. PMID: 18304323

Kad98: Kad NM, Ranson NA, Cliff MJ, Clarke AR (1998). "Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings." J Mol Biol 278(1);267-78. PMID: 9571049

Kerner05: Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M, Hartl FU (2005). "Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli." Cell 122(2);209-20. PMID: 16051146

KoikeTakeshita06: Koike-Takeshita A, Shimamura T, Yokoyama K, Yoshida M, Taguchi H (2006). "Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL." J Biol Chem 281(2);962-7. PMID: 16239229

KoikeTakeshita08: Koike-Takeshita A, Yoshida M, Taguchi H (2008). "Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant." J Biol Chem 283(35);23774-81. PMID: 18567584

KoikeTakeshita14: Koike-Takeshita A, Arakawa T, Taguchi H, Shimamura T (2014). "Crystal Structure of a Symmetric Football-Shaped GroEL:GroES2-ATP14 Complex Determined at 3.8Å Reveals Rearrangement between Two GroEL Rings." J Mol Biol 426(21);3634-41. PMID: 25174333

KoikeTakeshita14a: Koike-Takeshita A, Mitsuoka K, Taguchi H (2014). "Asp52 in Combination with Asp398 Plays a Critical Role in ATP Hydrolysis of Chaperonin GroEL." J Biol Chem. PMID: 25202010

Kovacs10: Kovacs E, Sun Z, Liu H, Scott DJ, Karsisiotis AI, Clarke AR, Burston SG, Lund PA (2010). "Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity." J Mol Biol 396(5);1271-83. PMID: 20006619

Kovalenko94: Kovalenko O, Yifrach O, Horovitz A (1994). "Residue lysine-34 in GroES modulates allosteric transitions in GroEL." Biochemistry 33(50);14974-8. PMID: 7999753

Kusukawa89: Kusukawa N, Yura T, Ueguchi C, Akiyama Y, Ito K (1989). "Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli." EMBO J 8(11);3517-21. PMID: 2573517

Laminet90: Laminet AA, Ziegelhoffer T, Georgopoulos C, Pluckthun A (1990). "The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta-lactamase precursor." EMBO J 9(7);2315-9. PMID: 2192863

Langer92: Langer T, Pfeifer G, Martin J, Baumeister W, Hartl FU (1992). "Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity." EMBO J 11(13);4757-65. PMID: 1361169

Lasserre06: Lasserre JP, Beyne E, Pyndiah S, Lapaillerie D, Claverol S, Bonneu M (2006). "A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis." Electrophoresis 27(16);3306-21. PMID: 16858726

Lin04a: Lin Z, Rye HS (2004). "Expansion and compression of a protein folding intermediate by GroEL." Mol Cell 16(1);23-34. PMID: 15469819

Lin95: Lin Z, Schwartz FP, Eisenstein E (1995). "The hydrophobic nature of GroEL-substrate binding." J Biol Chem 270(3);1011-4. PMID: 7836352

Llorca94: Llorca O, Marco S, Carrascosa JL, Valpuesta JM (1994). "The formation of symmetrical GroEL-GroES complexes in the presence of ATP." FEBS Lett 345(2-3);181-6. PMID: 7911087

LopezCampistrou05: Lopez-Campistrous A, Semchuk P, Burke L, Palmer-Stone T, Brokx SJ, Broderick G, Bottorff D, Bolch S, Weiner JH, Ellison MJ (2005). "Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth." Mol Cell Proteomics 4(8);1205-9. PMID: 15911532

Lorimer96: Lorimer GH, Todd MJ (1996). "GroE structures galore." Nat Struct Biol 3(2);116-21. PMID: 8564534

Lorimer97: Lorimer G (1997). "Protein folding. Folding with a two-stroke motor." Nature 388(6644);720-1, 723. PMID: 9285577

Machida09: Machida K, Fujiwara R, Tanaka T, Sakane I, Hongo K, Mizobata T, Kawata Y (2009). "Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins." Biochim Biophys Acta 1794(9);1344-54. PMID: 19130907

Madan08: Madan D, Lin Z, Rye HS (2008). "Triggering protein folding within the GroEL-GroES complex." J Biol Chem 283(46);32003-13. PMID: 18782766

Makino93: Makino Y, Taguchi H, Yoshida M (1993). "Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP." FEBS Lett 336(2);363-7. PMID: 7903258

Martin91: Martin J, Langer T, Boteva R, Schramel A, Horwich AL, Hartl FU (1991). "Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate." Nature 352(6330);36-42. PMID: 1676490

Martin93: Martin J, Mayhew M, Langer T, Hartl FU (1993). "The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding." Nature 366(6452);228-33. PMID: 7901770

Masters09: Masters M, Blakely G, Coulson A, McLennan N, Yerko V, Acord J (2009). "Protein folding in Escherichia coli: the chaperonin GroE and its substrates." Res Microbiol 160(4);267-77. PMID: 19393741

Mayhew96: Mayhew M, da Silva AC, Martin J, Erdjument-Bromage H, Tempst P, Hartl FU (1996). "Protein folding in the central cavity of the GroEL-GroES chaperonin complex." Nature 379(6564);420-6. PMID: 8559246

Miki88: Miki T, Orita T, Furuno M, Horiuchi T (1988). "Control of cell division by sex factor F in Escherichia coli. III. Participation of the groES (mopB) gene of the host bacteria." J Mol Biol 201(2);327-38. PMID: 2901493

Miyazaki02: Miyazaki T, Yoshimi T, Furutsu Y, Hongo K, Mizobata T, Kanemori M, Kawata Y (2002). "GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle." J Biol Chem 277(52);50621-8. PMID: 12377767

Motojima00: Motojima F, Makio T, Aoki K, Makino Y, Kuwajima K, Yoshida M (2000). "Hydrophilic residues at the apical domain of GroEL contribute to GroES binding but attenuate polypeptide binding." Biochem Biophys Res Commun 267(3);842-9. PMID: 10673379

Motojima03: Motojima F, Yoshida M (2003). "Discrimination of ATP, ADP, and AMPPNP by chaperonin GroEL: hexokinase treatment revealed the exclusive role of ATP." J Biol Chem 278(29);26648-54. PMID: 12736270

Motojima10: Motojima F, Yoshida M (2010). "Polypeptide in the chaperonin cage partly protrudes out and then folds inside or escapes outside." EMBO J. PMID: 20959808

Radford06: Radford SE (2006). "GroEL: More than Just a folding cage." Cell 125(5);831-3. PMID: 16751091

Ranson01: Ranson NA, Farr GW, Roseman AM, Gowen B, Fenton WA, Horwich AL, Saibil HR (2001). "ATP-bound states of GroEL captured by cryo-electron microscopy." Cell 107(7);869-79. PMID: 11779463

Roseman96: Roseman AM, Chen S, White H, Braig K, Saibil HR (1996). "The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL." Cell 87(2);241-51. PMID: 8861908

Rye97: Rye HS, Burston SG, Fenton WA, Beechem JM, Xu Z, Sigler PB, Horwich AL (1997). "Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL." Nature 388(6644);792-8. PMID: 9285593

Rye99: Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, Horwich AL (1999). "GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings." Cell 97(3);325-38. PMID: 10319813

Sameshima08: Sameshima T, Ueno T, Iizuka R, Ishii N, Terada N, Okabe K, Funatsu T (2008). "Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle." J Biol Chem 283(35);23765-73. PMID: 18567585

Sameshima10: Sameshima T, Iizuka R, Ueno T, Funatsu T (2010). "Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex." Biochem J 427(2);247-54. PMID: 20121703

Schmidt94: Schmidt M, Rutkat K, Rachel R, Pfeifer G, Jaenicke R, Viitanen P, Lorimer G, Buchner J (1994). "Symmetric complexes of GroE chaperonins as part of the functional cycle." Science 265(5172);656-9. PMID: 7913554

Segal96: Segal R, Ron EZ (1996). "Regulation and organization of the groE and dnaK operons in Eubacteria." FEMS Microbiol Lett 138(1);1-10. PMID: 8674965

Sharma08: Sharma S, Chakraborty K, Muller BK, Astola N, Tang YC, Lamb DC, Hayer-Hartl M, Hartl FU (2008). "Monitoring protein conformation along the pathway of chaperonin-assisted folding." Cell 133(1);142-53. PMID: 18394994

Sigler98: Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL (1998). "Structure and function in GroEL-mediated protein folding." Annu Rev Biochem 67;581-608. PMID: 9759498

Smith95: Smith KE, Fisher MT (1995). "Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding." J Biol Chem 270(37);21517-23. PMID: 7665563

Stegmann98: Stegmann R, Manakova E, Rossle M, Heumann H, Nieba-Axmann SE, Pluckthun A, Hermann T, May RP, Wiedenmann A (1998). "Structural changes of the Escherichia coli GroEL-GroES chaperonins upon complex formation in solution: a neutron small angle scattering study." J Struct Biol 121(1);30-40. PMID: 9573618

Taguchi04: Taguchi H, Tsukuda K, Motojima F, Koike-Takeshita A, Yoshida M (2004). "BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers." J Biol Chem 279(44);45737-43. PMID: 15347650

Taguchi05: Taguchi H (2005). "Chaperonin GroEL meets the substrate protein as a "load" of the rings." J Biochem (Tokyo) 137(5);543-9. PMID: 15944406

Taguchi95: Taguchi H, Yoshida M (1995). "Chaperonin releases the substrate protein in a form with tendency to aggregate and ability to rebind to chaperonin." FEBS Lett 359(2-3);195-8. PMID: 7867798

Tang06: Tang YC, Chang HC, Roeben A, Wischnewski D, Wischnewski N, Kerner MJ, Hartl FU, Hayer-Hartl M (2006). "Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein." Cell 125(5);903-14. PMID: 16751100

Tang08: Tang YC, Chang HC, Chakraborty K, Hartl FU, Hayer-Hartl M (2008). "Essential role of the chaperonin folding compartment in vivo." EMBO J 27(10);1458-68. PMID: 18418386

Tehver08: Tehver R, Thirumalai D (2008). "Kinetic model for the coupling between allosteric transitions in GroEL and substrate protein folding and aggregation." J Mol Biol 377(4);1279-95. PMID: 18313071

Ten95: Ten Eyck LF (1995). "Gro-ing pains." Nat Struct Biol 2(12);1038-42. PMID: 8846212

Thirumalai01: Thirumalai D, Lorimer GH (2001). "Chaperonin-mediated protein folding." Annu Rev Biophys Biomol Struct 30;245-69. PMID: 11340060

Tilly81: Tilly K, Murialdo H, Georgopoulos C (1981). "Identification of a second Escherichia coli groE gene whose product is necessary for bacteriophage morphogenesis." Proc Natl Acad Sci U S A 78(3);1629-33. PMID: 7015340

Tilly81a: Tilly K, McKittrick N, Georgopoulos C, Murialdo H (1981). "Studies on Escherichia coli mutants which block bacteriophage morphogenesis." Prog Clin Biol Res 64;35-45. PMID: 6460256

Tilly82: Tilly K, Georgopoulos C (1982). "Evidence that the two Escherichia coli groE morphogenetic gene products interact in vivo." J Bacteriol 149(3);1082-8. PMID: 6460751

Todd93: Todd MJ, Viitanen PV, Lorimer GH (1993). "Hydrolysis of adenosine 5'-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion." Biochemistry 32(33);8560-7. PMID: 8102879

Todd94: Todd MJ, Viitanen PV, Lorimer GH (1994). "Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding." Science 265(5172);659-66. PMID: 7913555

Todd95: Todd MJ, Lorimer GH (1995). "Stability of the asymmetric Escherichia coli chaperonin complex. Guanidine chloride causes rapid dissociation." J Biol Chem 270(10);5388-94. PMID: 7890652

Todd96: Todd MJ, Lorimer GH, Thirumalai D (1996). "Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism." Proc Natl Acad Sci U S A 93(9);4030-5. PMID: 8633011

Tokuriki09: Tokuriki N, Tawfik DS (2009). "Chaperonin overexpression promotes genetic variation and enzyme evolution." Nature 459(7247);668-73. PMID: 19494908

Torok96: Torok Z, Vigh L, Goloubinoff P (1996). "Fluorescence detection of symmetric GroEL14(GroES7)2 heterooligomers involved in protein release during the chaperonin cycle." J Biol Chem 271(27);16180-6. PMID: 8663256

Tyagi09: Tyagi NK, Fenton WA, Horwich AL (2009). "GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state." Proc Natl Acad Sci U S A 106(48);20264-9. PMID: 19915138

Tyagi11: Tyagi NK, Fenton WA, Deniz AA, Horwich AL (2011). "Double mutant MBP refolds at same rate in free solution as inside the GroEL/GroES chaperonin chamber when aggregation in free solution is prevented." FEBS Lett 585(12);1969-72. PMID: 21609718

UniProt15: UniProt Consortium (2015). "UniProt version 2015-08 released on 2015-07-22." Database.

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

Walter02: Walter S (2002). "Structure and function of the GroE chaperone." Cell Mol Life Sci 59(10);1589-97. PMID: 12475168

Wang03c: Wang Y, deHaseth PL (2003). "Sigma 32-dependent promoter activity in vivo: sequence determinants of the groE promoter." J Bacteriol 185(19);5800-6. PMID: 13129951

Weaver14: Weaver J, Rye HS (2014). "The C-terminal Tails of the Bacterial Chaperonin GroEL Stimulate Protein Folding by Directly Altering the Conformation of a Substrate Protein." J Biol Chem. PMID: 24970895

Weber98: Weber F, Keppel F, Georgopoulos C, Hayer-Hartl MK, Hartl FU (1998). "The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding." Nat Struct Biol 5(11);977-85. PMID: 9808043

Weinstock14: Weinstock MT, Jacobsen MT, Kay MS (2014). "Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity." Proc Natl Acad Sci U S A 111(32);11679-84. PMID: 25071217

Weissman94: Weissman JS, Kashi Y, Fenton WA, Horwich AL (1994). "GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms." Cell 78(4);693-702. PMID: 7915201

Weissman95: Weissman JS, Hohl CM, Kovalenko O, Kashi Y, Chen S, Braig K, Saibil HR, Fenton WA, Horwich AL (1995). "Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES." Cell 83(4);577-87. PMID: 7585961

Weissman96: Weissman JS, Rye HS, Fenton WA, Beechem JM, Horwich AL (1996). "Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction." Cell 84(3);481-90. PMID: 8608602

Xu97: Xu Z, Horwich AL, Sigler PB (1997). "The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex." Nature 388(6644);741-50. PMID: 9285585

Xu98: Xu Z, Sigler PB (1998). "GroEL/GroES: structure and function of a two-stroke folding machine." J Struct Biol 124(2-3);129-41. PMID: 10049801

Yamamori80: Yamamori T, Yura T (1980). "Temperature-induced synthesis of specific proteins in Escherichia coli: evidence for transcriptional control." J Bacteriol 142(3);843-51. PMID: 6155374

Yang13: Yang D, Ye X, Lorimer GH (2013). "Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine." Proc Natl Acad Sci U S A 110(46);E4298-305. PMID: 24167279

Ye13: Ye X, Lorimer GH (2013). "Substrate protein switches GroE chaperonins from asymmetric to symmetric cycling by catalyzing nucleotide exchange." Proc Natl Acad Sci U S A 110(46);E4289-97. PMID: 24167257

Yifrach95: Yifrach O, Horovitz A (1995). "Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL." Biochemistry 34(16);5303-8. PMID: 7727391

Yokokawa06: Yokokawa M, Wada C, Ando T, Sakai N, Yagi A, Yoshimura SH, Takeyasu K (2006). "Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL." EMBO J 25(19);4567-76. PMID: 16977315

Zhang11f: Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011). "Identification of lysine succinylation as a new post-translational modification." Nat Chem Biol 7(1);58-63. PMID: 21151122

Zhang14a: Zhang X, Kelly JW (2014). "Chaperonins resculpt folding free energy landscapes to avoid kinetic traps and accelerate protein folding." J Mol Biol 426(15);2736-8. PMID: 24909364

Other References Related to Gene Regulation

Cowing85: Cowing DW, Bardwell JC, Craig EA, Woolford C, Hendrix RW, Gross CA (1985). "Consensus sequence for Escherichia coli heat shock gene promoters." Proc Natl Acad Sci U S A 82(9);2679-83. PMID: 3887408

Nonaka06: Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA (2006). "Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress." Genes Dev 20(13);1776-89. PMID: 16818608

Wade06: Wade JT, Roa DC, Grainger DC, Hurd D, Busby SJ, Struhl K, Nudler E (2006). "Extensive functional overlap between sigma factors in Escherichia coli." Nat Struct Mol Biol 13(9);806-14. PMID: 16892065

Wagner09a: Wagner MA, Zahrl D, Rieser G, Koraimann G (2009). "Growth phase- and cell division-dependent activation and inactivation of the {sigma}32 regulon in Escherichia coli." J Bacteriol 191(5);1695-702. PMID: 19114495

Zahrl06: Zahrl D, Wagner M, Bischof K, Koraimann G (2006). "Expression and assembly of a functional type IV secretion system elicit extracytoplasmic and cytoplasmic stress responses in Escherichia coli." J Bacteriol 188(18);6611-21. PMID: 16952953

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by Pathway Tools version 19.5 (software by SRI International) on Fri Apr 29, 2016, biocyc11.