Escherichia coli K-12 substr. MG1655 Polypeptide: holocytochrome c synthetase - CcmF subunit

Gene: ccmF Accession Numbers: EG12054 (EcoCyc), b2196, ECK2188

Synonyms: yejR

Regulation Summary Diagram

Regulation summary diagram for ccmF

Component of: holocytochrome c synthetase (extended summary available)

CcmF is a membrane protein component of the CcmEFGH holocytochrome c synthetase.

Gene Citations: [Darwin95, Grove96]

Locations: inner membrane

Map Position: [2,290,983 <- 2,292,926] (49.38 centisomes, 178°)
Length: 1944 bp / 647 aa

Molecular Weight of Polypeptide: 71.389 kD (from nucleotide sequence)

Unification Links: ASAP:ABE-0007269, CGSC:36590, DIP:DIP-9256N, EchoBASE:EB1985, EcoGene:EG12054, EcoliWiki:b2196, EcoO157Cyc:CCMF-MONOMER, Mint:MINT-225079, OU-Microarray:b2196, PortEco:ccmF, PR:PRO_000022262, Protein Model Portal:P33927, RefSeq:NP_416700, RegulonDB:EG12054, String:511145.b2196, UniProt:P33927

Relationship Links: InterPro:IN-FAMILY:IPR002541, InterPro:IN-FAMILY:IPR003567, InterPro:IN-FAMILY:IPR003568, Panther:IN-FAMILY:PTHR30009:SF0, Pfam:IN-FAMILY:PF01578, Pfam:IN-FAMILY:PF16327, Prints:IN-FAMILY:PR01410, Prints:IN-FAMILY:PR01411

Gene-Reaction Schematic

Gene-Reaction Schematic

Genetic Regulation Schematic

Genetic regulation schematic for ccmF

GO Terms:
Biological Process:
Inferred from experimentGO:0018063 - cytochrome c-heme linkage [RichardFogal09, San14a]
Inferred by computational analysisGO:0015886 - heme transport [GOA01a]
Inferred by computational analysisGO:0017004 - cytochrome complex assembly [UniProtGOA11a, GOA01a]
Molecular Function:
Inferred from experimentGO:0005515 - protein binding [RichardFogal09, Ren02]
Inferred from experimentInferred by computational analysisGO:0020037 - heme binding [GOA01a, RichardFogal09, San11]
Inferred by computational analysisGO:0015232 - heme transporter activity [GOA01a]
Cellular Component:
Inferred from experimentInferred by computational analysisGO:0005886 - plasma membrane [UniProtGOA11, UniProtGOA11a, DiazMejia09, Daley05]
Inferred from experimentInferred by computational analysisGO:0005887 - integral component of plasma membrane [Rapp04, RichardFogal09]
Inferred by computational analysisGO:0016020 - membrane [UniProtGOA11a, GOA01a]
Inferred by computational analysisGO:0016021 - integral component of membrane [UniProtGOA11a]

MultiFun Terms: cell structuremembrane
metabolismbiosynthesis of macromolecules (cellular constituents)large molecule carrierscytochromes

Essentiality data for ccmF knockouts:

Growth Medium Growth? T (°C) O2 pH Osm/L Growth Observations
LB enrichedYes 37 Aerobic 6.95   Yes [Gerdes03, Comment 1]
LB LennoxYes 37 Aerobic 7   Yes [Baba06, Comment 2]
M9 medium with 1% glycerolYes 37 Aerobic 7.2 0.35 Yes [Joyce06, Comment 3]
MOPS medium with 0.4% glucoseYes 37 Aerobic 7.2 0.22 Yes [Baba06, Comment 2]

Last-Curated 17-Nov-2014 by Mackie A, Macquarie University

Subunit of: holocytochrome c synthetase

Inferred from experiment

Synonyms: cytochrome c heme lyase

Subunit composition of holocytochrome c synthetase = [CcmE][CcmF][CcmG][CcmH]
         membrane anchored periplasmic heme chaperone CcmE = CcmE (summary available)
         holocytochrome c synthetase - CcmF subunit = CcmF (summary available)
         holocytochrome c synthetase - thiol:disulfide oxidoreductase CcmG = CcmG (summary available)
         holocytochrome c synthetase - thiol:disulfide oxidoreductase CcmH = CcmH (summary available)

The CcmA-H proteins of E. coli K-12 function as a type 1 cytochrome c biogenesis system. In cytochrome c biogenesis, apocytochrome c is translocated across the cytoplasmic membrane into the oxidizing environment of the periplasm through the sec secretion system where it complexes with heme--also transported across the cytoplasmic membrane. An intramolecular disulfide bond in the apocyctochrome c must be reduced to the dithiol form in order for the covalent attachment of heme cofactor to occur; the iron of heme must also be reduced for thoiether bond formation. ccmE, ccmF, ccmG, and ccmH in Escherichia coli are members of an operon whose gene products (CcmA-H) have been shown to be cytoplasmic membrane proteins required for cytochrome c maturation. CcmE is the periplasmic heme chaperone that shuttles heme from the CcmABCD complex to the CcmFGH holocytochrome c synthetase. CcmF interacts with CcmE and CcmH in transferring heme from CcmE to apocytochromes c. CcmG and CcmH are thiol:disulfide oxidoreductase which form a periplasmic thiol reduction pathways to maintain apocytochromes c in the reduced dithiol form so that attachment of heme can occur.

Radiolabeling and spectroscopic analyses indicate that CcmE is a heme-binding protein, and site-directed mutagenesis showed that heme binds transiently to a conserved periplasmic histidine residue [Schulz98]. The CcmE protein has a rigid β-barrel core with a hydrophobic surface for heme binding; a flexible α helical domain may function to protect the bound heme [Enggist02]. CcmF is an integral membrane protein; sequence analysis predicts 15 transmembrane domains (TMDs) [Rapp04]; however experimental results suggests the presence of 13 [RichardFogal09]. CcmF interacts directly with CcmE and CcmH, but not apocytochrome c [Ren02].

CcmG contains a hydrophobic N-terminal domain (residues 5-25) that anchors the protein to the inner membrane and a hydrophilic C-terminal domain that faces the periplasm [Missiakas97a, Fabianek98, Ouyang06]. The structure of CcmG in a mixed disulfide complex with DsbD has been determined to a resolution of 1.94 Å [Stirnimann05]. CcmG and CcmH contain the characteristic C-X-X-C motif of oxidoreductases; the two proteins contribute to a periplasmic thiol reduction pathway required for cytochrome c maturation [Fabianek98, Fabianek99, Edeling04]. CcmH is a membrane-bound protein; it has three domains - an N-terminal periplasmic domain containing the C-X-X-C motif, a transmembrane region and a C-terminal periplasmic domain - this latter domain is not required for CcmH function [Fabianek99]. The purified N-terminal domain (CcmH19-99) forms a homodimer but it is not clear if this is a physiologically relevant structure [Ahuja08].

Purification and characterisation of the complexes of the Ccm pathway has helped elucidate the mechanisms of haem binding and trafficking [RichardFogal09]. Purified CcmF/H complex contains β-haem which is a stable component of the the CcmF protein. β-haem is bound to the CcmF/H complex with a stoichiometry of 1:1; His261 and His491, which reside in the transmembrane region of CcmF, function as β-heme ligands; β-haem of CcmF is reduced by ubiquinol-1 and dimethylquinone [RichardFogal09, San11]. The physiological role of CcmF may be to reduce the iron of holoCcmE (Fe3+ to Fe2+) before covalent bonding to apocytochromes c. Two conserved histidine residues in CcmF (His173 and His303) located in periplasmic domains flanking a tryptophan rich domain (the WWD domain), function as the ligands for heme in holoCcmE [San14a]. HoloCcmE interacts directly with CcmF; holeCcmE must be released from CcmCD before interaction with CcmF; apoCcmE does not interact with CcmF [San14]. Cytochrome c maturation has been engineered in the absence of CcmABCDE; the cytochrome c produced by CcmFH and CcmG is identical to that produced by the complete pathway [San14a].

ccmA, ccmB, ccmC, ccmD, ccmE, ccmF, ccmG, and ccmH mutants are deficient in the ability to produce c-type cytochromes [ThonyMeyer95, Grove96, Grove96a, ThroneHolst97, Fabianek98, Tanapongpipat98, Schulz98, Fabianek99, Reid01, Enggist03, Edeling04, Ahuja06]. In the absence of CcmF, CcmG, or CcmH, heme is not released from CcmE to apocytochrome c, and heme-bound CcmE accumulates [Schulz98, Reid98, Ren02]. Deletion mutation studies suggest that CcmF and CcmH form part of a heme lyase complex required to transfer heme from CcmE to the C-X-X-C-H heme-binding domains of apocytochromes c [Grove96a], and that only the N-terminal domain of CcmH containing a conserved C-X-X-C redox motif was required for cytochrome-c maturation [Fabianek99]. CcmH mutants could be complemented by addition of 2-mercapto-ethanesulfonic acid suggesting CcmH maintains the heme-binding sites of apocytochromes c in reduced form for heme ligation [Fabianek99]. CcmG mutants are unable to reduce the disulfide bonds of cytochromes c for attachment of heme [Fabianek98, Reid98, Ahuja06], but were not significantly affected in general redox reactions in the periplasm [Reid01]. Purified CcmG mutants were used to determine the kinetics of disulfide exchange between CcmG and DsbD revealing electron transfer from DsbD to CcmG [Stirnimann05] rather than to CcmH or a CcmH-CcmG mixed disulfide as suggested by other experiments [Reid01].

Expression of ccmABCDEFGH occurs from the napF promoter or from the ccmA promoter, and there is also a weak promoter within ccmD that enables transcription of downstream genes [Grove96, Tanapongpipat98].

Reviews: [ThonyMeyer97, Kranz98, Fabianek00, ThonyMeyer00, Stevens05, SkorkoGlonekv05, Stevens11]

Citations: [Stevens06, Harvat05, Li01a, IobbiNivol94, Mavridou12, Harvat09, Ouyang03, Allen05, Allen08]

GO Terms:
Biological Process:
Inferred from experimentGO:0017003 - protein-heme linkage [Schulz98]
Inferred from experimentGO:0018063 - cytochrome c-heme linkage [San14a, San14]
Molecular Function:
Inferred from experimentGO:0020037 - heme binding [RichardFogal09]

Last-Curated 18-Nov-2014 by Mackie A, Macquarie University

Sequence Features

Protein sequence of holocytochrome c synthetase - CcmF subunit with features indicated

Feature Class Location Common Name Citations Comment
Transmembrane-Region 9 -> 29  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Protein-Segment 9 -> 28  
Author statement[RichardFogal09]
Hydrophobic region, predicted to be in the periplasm by similarity to the CcmF protein from Rhodobacter sphaeroides
Protein-Segment 41 -> 63  
Author statement[RichardFogal09]
Hydrophobic region, predicted to be in the periplasm by similarity to the CcmF protein from Rhodobacter sphaeroides
Transmembrane-Region 42 -> 62  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 94 -> 114  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 100 -> 118 TM 1
Author statement[RichardFogal09]
Transmembrane-Region 121 -> 141  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 126 -> 143 TM 2
Author statement[RichardFogal09]
Metal-Binding-Site 173, 303  
Inferred from experiment[San14a]
conserved histidines located in periplasmic regions on either side of the WWD region; ligands for heme in holoCcmE
Transmembrane-Region 176 -> 196  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 179 -> 195 TM 3
Author statement[RichardFogal09]
Transmembrane-Region 211 -> 231  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 211 -> 227 TM 4
Author statement[RichardFogal09]
Protein-Segment 234 -> 254 WWD region
Inferred by computational analysis[San14a]
tryptophan rich region; proposed to be involved in binding holoCcmE
Transmembrane-Region 236 -> 256  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 248 -> 266 TM 5
Author statement[RichardFogal09]
Metal-Binding-Site 261, 491  
Inferred from experiment[RichardFogal09, San11]
Ligands to b heme
Transmembrane-Region 274 -> 294  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 275 -> 294 TM 6
Author statement[RichardFogal09]
Transmembrane-Region 312 -> 332 TM 7
Author statement[RichardFogal09]
Transmembrane-Region 351 -> 371  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 357 -> 376 TM 8
Author statement[RichardFogal09]
Transmembrane-Region 390 -> 410  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 394 -> 410 TM 9
Author statement[RichardFogal09]
Transmembrane-Region 425 -> 445  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 426 -> 443 TM 10
Author statement[RichardFogal09]
Transmembrane-Region 448 -> 468  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 451 -> 468 TM 11
Author statement[RichardFogal09]
Transmembrane-Region 482 -> 502  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 486 -> 509 TM 12
Author statement[RichardFogal09]
Transmembrane-Region 609 -> 629  
Inferred by computational analysis[UniProt15]
UniProt: Helical.
Transmembrane-Region 612 -> 629 TM 13
Author statement[RichardFogal09]

Sequence Pfam Features

Protein sequence of holocytochrome c synthetase - CcmF subunit with features indicated

Feature Class Location Citations Comment
Pfam PF01578 89 -> 296
Inferred by computational analysis[Finn14]
Cytochrom_C_asm : Cytochrome C assembly protein
Pfam PF16327 316 -> 630
Inferred by computational analysis[Finn14]
CcmF_C : Cytochrome c-type biogenesis protein CcmF C-terminal

Gene Local Context (not to scale -- see Genome Browser for correct scale)

Gene local context diagram

Transcription Units

Transcription-unit diagram

Transcription-unit diagram

Transcription-unit diagram

Transcription-unit diagram


10/20/97 Gene b2196 from Blattner lab Genbank (v. M52) entry merged into EcoCyc gene EG12054; confirmed by SwissProt match.


Ahuja06: Ahuja U, Thony-Meyer L (2006). "The membrane anchors of the heme chaperone CcmE and the periplasmic thioredoxin CcmG are functionally important." FEBS Lett 580(1);216-22. PMID: 16364305

Ahuja08: Ahuja U, Rozhkova A, Glockshuber R, Thony-Meyer L, Einsle O (2008). "Helix swapping leads to dimerization of the N-terminal domain of the c-type cytochrome maturation protein CcmH from Escherichia coli." FEBS Lett 582(18);2779-86. PMID: 18625227

Allen05: Allen JW, Leach N, Ferguson SJ (2005). "The histidine of the c-type cytochrome CXXCH haem-binding motif is essential for haem attachment by the Escherichia coli cytochrome c maturation (Ccm) apparatus." Biochem J 389(Pt 2);587-92. PMID: 15801911

Allen08: Allen JW, Sawyer EB, Ginger M, Barker PD, Ferguson SJ (2008). "Variant c-type cytochromes as probes of the substrate specificity of the E. coli cytochrome c maturation (Ccm) apparatus." Biochem J. PMID: 19090787

Baba06: Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006). "Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection." Mol Syst Biol 2;2006.0008. PMID: 16738554

Daley05: Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005). "Global topology analysis of the Escherichia coli inner membrane proteome." Science 308(5726);1321-3. PMID: 15919996

Darwin95: Darwin AJ, Stewart V (1995). "Nitrate and nitrite regulation of the Fnr-dependent aeg-46.5 promoter of Escherichia coli K-12 is mediated by competition between homologous response regulators (NarL and NarP) for a common DNA-binding site." J Mol Biol 1995;251(1);15-29. PMID: 7643383

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Edeling04: Edeling MA, Ahuja U, Heras B, Thony-Meyer L, Martin JL (2004). "The acidic nature of the CcmG redox-active center is important for cytochrome c maturation in Escherichia coli." J Bacteriol 186(12);4030-3. PMID: 15175318

Enggist02: Enggist E, Thony-Meyer L, Guntert P, Pervushin K (2002). "NMR structure of the heme chaperone CcmE reveals a novel functional motif." Structure 10(11);1551-7. PMID: 12429096

Enggist03: Enggist E, Schneider MJ, Schulz H, Thony-Meyer L (2003). "Biochemical and mutational characterization of the heme chaperone CcmE reveals a heme binding site." J Bacteriol 185(1);175-83. PMID: 12486054

Fabianek00: Fabianek RA, Hennecke H, Thony-Meyer L (2000). "Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli." FEMS Microbiol Rev 2000;24(3);303-16. PMID: 10841975

Fabianek98: Fabianek RA, Hennecke H, Thony-Meyer L (1998). "The active-site cysteines of the periplasmic thioredoxin-like protein CcmG of Escherichia coli are important but not essential for cytochrome c maturation in vivo." J Bacteriol 180(7);1947-50. PMID: 9537397

Fabianek99: Fabianek RA, Hofer T, Thony-Meyer L (1999). "Characterization of the Escherichia coli CcmH protein reveals new insights into the redox pathway required for cytochrome c maturation." Arch Microbiol 171(2);92-100. PMID: 9914305

Finn14: Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014). "Pfam: the protein families database." Nucleic Acids Res 42(Database issue);D222-30. PMID: 24288371

Gerdes03: Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003). "Experimental determination and system level analysis of essential genes in Escherichia coli MG1655." J Bacteriol 185(19);5673-84. PMID: 13129938

GOA01a: GOA, DDB, FB, MGI, ZFIN (2001). "Gene Ontology annotation through association of InterPro records with GO terms."

Grove96: Grove J, Tanapongpipat S, Thomas G, Griffiths L, Crooke H, Cole J (1996). "Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm." Mol Microbiol 1996;19(3);467-81. PMID: 8830238

Grove96a: Grove J, Busby S, Cole J (1996). "The role of the genes nrf EFG and ccmFH in cytochrome c biosynthesis in Escherichia coli." Mol Gen Genet 1996;252(3);332-41. PMID: 8842153

Harvat05: Harvat EM, Stevens JM, Redfield C, Ferguson SJ (2005). "Functional characterization of the C-terminal domain of the cytochrome c maturation protein CcmE." J Biol Chem 280(44);36747-53. PMID: 16129669

Harvat09: Harvat EM, Redfield C, Stevens JM, Ferguson SJ (2009). "Probing the Heme-Binding Site of the Cytochrome c Maturation Protein CcmE (dagger)." Biochemistry. PMID: 19178152

IobbiNivol94: Iobbi-Nivol C, Crooke H, Griffiths L, Grove J, Hussain H, Pommier J, Mejean V, Cole JA (1994). "A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12." FEMS Microbiol Lett 1994;119(1-2);89-94. PMID: 8039676

Joyce06: Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006). "Experimental and computational assessment of conditionally essential genes in Escherichia coli." J Bacteriol 188(23);8259-71. PMID: 17012394

Kranz98: Kranz R, Lill R, Goldman B, Bonnard G, Merchant S (1998). "Molecular mechanisms of cytochrome c biogenesis: three distinct systems." Mol Microbiol 29(2);383-96. PMID: 9720859

Li01a: Li Q, Hu HY, Wang WQ, Xu GJ (2001). "Structural and redox properties of the leaderless DsbE (CcmG) protein: both active-site cysteines of the reduced form are involved in its function in the Escherichia coli periplasm." Biol Chem 382(12);1679-86. PMID: 11843181

Mavridou12: Mavridou DA, Ferguson SJ, Stevens JM (2012). "The interplay between the disulfide bond formation pathway and cytochrome c maturation in Escherichia coli." FEBS Lett 586(12);1702-7. PMID: 22569094

Missiakas97a: Missiakas D, Raina S (1997). "Protein folding in the bacterial periplasm." J Bacteriol 1997;179(8);2465-71. PMID: 9098040

Ouyang03: Ouyang N, Chen WY, Li Q, Gao YG, Hu HY, Xia ZX (2003). "Crystallization and preliminary crystallographic studies of Escherichia coli CcmG/DsbE protein." Acta Crystallogr D Biol Crystallogr 59(Pt 9);1674-5. PMID: 12925810

Ouyang06: Ouyang N, Gao YG, Hu HY, Xia ZX (2006). "Crystal structures of E. coli CcmG and its mutants reveal key roles of the N-terminal beta-sheet and the fingerprint region." Proteins 65(4);1021-31. PMID: 17019698

Rapp04: Rapp M, Drew D, Daley DO, Nilsson J, Carvalho T, Melen K, De Gier JW, Von Heijne G (2004). "Experimentally based topology models for E. coli inner membrane proteins." Protein Sci 13(4);937-45. PMID: 15044727

Reid01: Reid E, Cole J, Eaves DJ (2001). "The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly." Biochem J 355(Pt 1);51-8. PMID: 11256948

Reid98: Reid E, Eaves DJ, Cole JA (1998). "The CcmE protein from Escherichia coli is a haem-binding protein." FEMS Microbiol Lett 166(2);369-75. PMID: 9770295

Ren02: Ren Q, Ahuja U, Thony-Meyer L (2002). "A bacterial cytochrome c heme lyase. CcmF forms a complex with the heme chaperone CcmE and CcmH but not with apocytochrome c." J Biol Chem 277(10);7657-63. PMID: 11744735

RichardFogal09: Richard-Fogal CL, Frawley ER, Bonner ER, Zhu H, San Francisco B, Kranz RG (2009). "A conserved haem redox and trafficking pathway for cofactor attachment." EMBO J 28(16);2349-59. PMID: 19629033

San11: San Francisco B, Bretsnyder EC, Rodgers KR, Kranz RG (2011). "Heme ligand identification and redox properties of the cytochrome c synthetase, CcmF." Biochemistry 50(50);10974-85. PMID: 22066495

San14: San Francisco B, Kranz RG (2014). "Interaction of holoCcmE with CcmF in heme trafficking and cytochrome c biosynthesis." J Mol Biol 426(3);570-85. PMID: 24513106

San14a: San Francisco B, Sutherland MC, Kranz RG (2014). "The CcmFH complex is the system I holocytochrome c synthetase: engineering cytochrome c maturation independent of CcmABCDE." Mol Microbiol 91(5);996-1008. PMID: 24397552

Schulz98: Schulz H, Hennecke H, Thony-Meyer L (1998). "Prototype of a heme chaperone essential for cytochrome c maturation." Science 281(5380);1197-200. PMID: 9712585

SkorkoGlonekv05: Skorko-Glonekv J, Sobiecka A (2005). "[Periplasmatic disulfide oxidoreductases from bacterium Escherichia coli--their structure and function]." Postepy Biochem 51(4);459-67. PMID: 16676581

Stevens05: Stevens JM, Uchida T, Daltrop O, Ferguson SJ (2005). "Covalent cofactor attachment to proteins: cytochrome c biogenesis." Biochem Soc Trans 33(Pt 4);792-5. PMID: 16042600

Stevens06: Stevens JM, Uchida T, Daltrop O, Kitagawa T, Ferguson SJ (2006). "Dynamic ligation properties of the Escherichia coli heme chaperone CcmE to non-covalently bound heme." J Biol Chem 281(10);6144-51. PMID: 16373344

Stevens11: Stevens JM, Mavridou DA, Hamer R, Kritsiligkou P, Goddard AD, Ferguson SJ (2011). "Cytochrome c biogenesis System I." FEBS J 278(22);4170-8. PMID: 21958041

Stirnimann05: Stirnimann CU, Rozhkova A, Grauschopf U, Grutter MG, Glockshuber R, Capitani G (2005). "Structural basis and kinetics of DsbD-dependent cytochrome c maturation." Structure 13(7);985-93. PMID: 16004871

Tanapongpipat98: Tanapongpipat S, Reid E, Cole JA, Crooke H (1998). "Transcriptional control and essential roles of the Escherichia coli ccm gene products in formate-dependent nitrite reduction and cytochrome c synthesis." Biochem J 334 ( Pt 2);355-65. PMID: 9716493

ThonyMeyer00: Thony-Meyer L (2000). "Haem-polypeptide interactions during cytochrome c maturation." Biochim Biophys Acta 1459(2-3);316-24. PMID: 11004446

ThonyMeyer95: Thony-Meyer L, Fischer F, Kunzler P, Ritz D, Hennecke H (1995). "Escherichia coli genes required for cytochrome c maturation." J Bacteriol 177(15);4321-6. PMID: 7635817

ThonyMeyer97: Thony-Meyer L (1997). "Biogenesis of respiratory cytochromes in bacteria." Microbiol Mol Biol Rev 1997;61(3);337-76. PMID: 9293186

ThroneHolst97: Throne-Holst M, Thony-Meyer L, Hederstedt L (1997). "Escherichia coli ccm in-frame deletion mutants can produce periplasmic cytochrome b but not cytochrome c." FEBS Lett 410(2-3);351-5. PMID: 9237661

UniProt15: UniProt Consortium (2015). "UniProt version 2015-08 released on 2015-07-22." Database.

UniProtGOA11: UniProt-GOA (2011). "Gene Ontology annotation based on the manual assignment of UniProtKB Subcellular Location terms in UniProtKB/Swiss-Prot entries."

UniProtGOA11a: UniProt-GOA (2011). "Gene Ontology annotation based on manual assignment of UniProtKB keywords in UniProtKB/Swiss-Prot entries."

Other References Related to Gene Regulation

Choe93: Choe M, Reznikoff WS (1993). "Identification of the regulatory sequence of anaerobically expressed locus aeg-46.5." J Bacteriol 1993;175(4);1165-72. PMID: 8432709

Darwin98: Darwin AJ, Ziegelhoffer EC, Kiley PJ, Stewart V (1998). "Fnr, NarP, and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro." J Bacteriol 1998;180(16);4192-8. PMID: 9696769

McNicholas02: McNicholas PM, Gunsalus RP (2002). "The molybdate-responsive Escherichia coli ModE transcriptional regulator coordinates periplasmic nitrate reductase (napFDAGHBC) operon expression with nitrate and molybdate availability." J Bacteriol 184(12);3253-9. PMID: 12029041

Partridge09: Partridge JD, Bodenmiller DM, Humphrys MS, Spiro S (2009). "NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility." Mol Microbiol 73(4);680-94. PMID: 19656291

Pruss01: Pruss BM, Liu X, Hendrickson W, Matsumura P (2001). "FlhD/FlhC-regulated promoters analyzed by gene array and lacZ gene fusions." FEMS Microbiol Lett 2001;197(1);91-7. PMID: 11287152

Stewart03: Stewart V, Bledsoe PJ, Williams SB (2003). "Dual overlapping promoters control napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12." J Bacteriol 185(19);5862-70. PMID: 13129959

Stewart03a: Stewart V, Bledsoe PJ (2003). "Synthetic lac operator substitutions for studying the nitrate- and nitrite-responsive NarX-NarL and NarQ-NarP two-component regulatory systems of Escherichia coli K-12." J Bacteriol 185(7);2104-11. PMID: 12644479

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by Pathway Tools version 19.5 (software by SRI International) on Wed Nov 25, 2015, biocyc12.