Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

Escherichia coli K-12 substr. MG1655 Reaction: 1.1.5.6

Superclasses: Reactions Classified By Conversion Type Simple Reactions Chemical Reactions Composite Reactions Electron-Transfer-Reactions
Reactions Classified By Substrate Small-Molecule Reactions

EC Number: 1.1.5.6

Enzymes and Genes:
formate dehydrogenase-O Inferred from experiment : fdoG , fdoH , fdoI
formate dehydrogenase-N Inferred from experiment : fdnG , fdnH , fdnI

In Pathway: nitrate reduction III (dissimilatory) , formate to trimethylamine N-oxide electron transfer , formate to dimethyl sulfoxide electron transfer

Note that this reaction equation differs from the official Enzyme Commission reaction equations for this EC number.

Reaction Locations: inner membrane (sensu Gram-negative Bacteria)

The reaction direction shown, that is, A + B ↔ C + D versus C + D ↔ A + B, is in accordance with the Enzyme Commission system.

Most BioCyc compounds have been protonated to a reference pH value of 7.3, and some reactions have been computationally balanced for hydrogen by adding free protons. Please see the PGDB Concepts Guide for more information.

Mass balance status: Balanced.

Enzyme Commission Primary Name: formate dehydrogenase-N

Enzyme Commission Synonyms: Fdh-N, FdnGHI, nitrate-inducible formate dehydrogenase, formate dehydrogenase N, FDH-N, nitrate inducible Fdn, nitrate inducible formate dehydrogenase

Summary:
This is the first step in the metabolism of formate under anaerobic conditions.

Enzyme Commission Summary:
The enzyme contains molybdopterin-guanine dinucleotides, five [4Fe-4S] clusters and two heme b groups. Formate dehydrogenase-N oxidizes formate in the periplasm, transferring electrons via the menaquinone pool in the cytoplasmic membrane to a dissimilatory nitrate reductase (EC 1.7.5.1), which transfers electrons to nitrate in the cytoplasm. The system generates proton motive force under anaerobic conditions [Jormakka02a].

Citations: [Enoch75, Jormakka02]

Gene-Reaction Schematic: ?

Relationship Links: BRENDA:EC:1.1.5.6 , ENZYME:EC:1.1.5.6 , IUBMB-ExplorEnz:EC:1.1.5.6


References

Enoch75: Enoch HG, Lester RL (1975). "The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli." J Biol Chem 1975;250(17);6693-705. PMID: 1099093

Jormakka02: Jormakka M, Tornroth S, Byrne B, Iwata S (2002). "Molecular basis of proton motive force generation: structure of formate dehydrogenase-N." Science 295(5561);1863-8. PMID: 11884747

Jormakka02a: Jormakka M, Tornroth S, Abramson J, Byrne B, Iwata S (2002). "Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli." Acta Crystallogr D Biol Crystallogr 58(Pt 1);160-2. PMID: 11752799


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Sun Dec 21, 2014, BIOCYC13A.