Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 tRNA: tRNAlysY



Gene: lysY Accession Numbers: G6390 (EcoCyc), b0747, ECK0736

Synonyms: lysTg, lysTgamma

Superclasses: tRNAlys

Regulation Summary Diagram: ?

Summary:
tRNA(lysY) is one of six lysine tRNAs.

tRNAs are the adapters that allow synthesis of proteins from mRNAs. Each tRNA carries a specific amino acid to the ribosome for protein synthesis. There, the tRNA recognizes an RNA codon with its own three-nucleotide anticodon, thus allowing synthesis of a specific peptide based on an mRNA template.

tRNAs are processed to their active, mature forms by RNA cleavage and by modification of their bases. RNA cleavage consists of removal of both 5' and 3' extensions in a multistep process involving many RNases [Morl01]. RNases taking part in tRNA processing include ribonuclease E, RNase BN, RNase D, ribonuclease II, and RNase T. tRNAs are also subject to a wide variety of base modifications catalyzed by proteins such as tRNA-dihydrouridine synthase A, tRNA(i6A37) synthase, isopentenyl-adenosine A37 tRNA methylthiolase, tRNA-specific 2-thiouridylase, fused 5-methylaminomethyl-2-thiouridine-forming methyltransferase and FAD-dependent demodification enzyme, tRNA-guanine transglycosylase, tRNA m7G46 methyltransferase, tRNA pseudouridine 13 synthase, tRNA pseudouridine 65 synthase, tRNA pseudouridine 55 synthase, tRNA pseudouridine synthase I, tRNA (Gm18) 2'-O-methyltransferase, and tRNA m5U54 methyltransferase.

Mature tRNAs are linked via a 3' CCA sequence to their cognate amino acid in an ATP-dependent fashion by the appropriate amino-acid-tRNA synthetase, as shown in the tRNA charging. Subsequently, these charged tRNAs interact with the ribosome and template mRNA to generate polypeptides. The discovery of the role of tRNA in protein synthesis is reviewed in detail in [Siekevitz81].

Map Position: [780,370 -> 780,445] (16.82 centisomes)
Length: 76 bp

Anticodon: UUU

Reactions known to consume the compound:

tRNA charging :
L-lysine + tRNAlys + ATP + H+ → L-lysyl-tRNAlys + AMP + diphosphate

Reactions known to produce the compound:

tRNA processing :
a tRNA precursor with a short 3' extension → an uncharged tRNA + n a nucleoside 5'-monophosphate
a tRNA precursor with a short 3' extension + n phosphate → an uncharged tRNA + n a ribonucleoside diphosphate
a tRNA precursor with a 5' extension + H2O → an uncharged tRNA + a single-stranded RNA

Not in pathways:
an N-modified aminoacyl-tRNA + H2O → a tRNA + an N-modified amino acid + 2 H+
a tRNA precursor + H2O → a tRNA + a nucleoside 5'-monophosphate
a D-aminoacyl-tRNA + H2O → a D-amino acid + a tRNA + 2 H+

tRNA processing :
a tRNA precursor with a 5' extension and a short 3' extension + H2O → a tRNA precursor with a short 3' extension + a single-stranded RNA
a tRNA precursor with a 5' extension + H2O → an uncharged tRNA + a single-stranded RNA


an mRNA + H2O → a single-stranded RNA + a single-stranded RNA
an mRNA + H2O → a single-stranded RNA + a single-stranded RNA
RNase E degradation substrate mRNA + n H2O → n a single-stranded RNA
YhaV endonuclease degradation substrate rRNA + H2O → 2 a single-stranded RNA
YhaV endonuclease degradation substrate mRNA + H2O → 2 a single-stranded RNA
RNase III mRNA processing substrate + 2 H2O → RNase III processing product mRNA + 2 a single-stranded RNA
23S rRNA[periplasmic space] + H2O[periplasmic space] → 2 a single-stranded RNA[periplasmic space]
an mRNA[periplasmic space] + H2O[periplasmic space] → 2 a single-stranded RNA[periplasmic space]
RNase G degradation substrate mRNA + H2O → 2 a single-stranded RNA
9S rRNA + 2 H2O → 5S rRNA + 2 a single-stranded RNA
RNase E mRNA processing substrate + n H2O → RNase E processing product mRNA + n a single-stranded RNA

Reactions known to both consume and produce the compound:

Not in pathways:
a single-stranded RNA + phosphate ↔ a single-stranded RNA + a nucleoside diphosphate

In Reactions of unknown directionality:

Not in pathways:
rRNA[periplasmic space] = 2 a single-stranded RNA[periplasmic space]

Gene-Reaction Schematic: ?

Unification Links: ASAP:ABE-0002533 , EchoBASE:EB4286 , EcoGene:EG31123 , EcoliWiki:b0747 , OU-Microarray:b0747 , PortEco:lysY , RegulonDB:G6390

GO Terms:

Molecular Function: GO:0030533 - triplet codon-amino acid adaptor activity
Cellular Component: GO:0005737 - cytoplasm
GO:0005829 - cytosol

MultiFun Terms: information transfer RNA related tRNA


Gene Local Context (not to scale): ?

Transcription Unit:

Notes:

History:
Peter D. Karp on Wed Jan 18, 2006:
Gene left-end and right-end positions adjusted based on analysis performed in the 2005 E. coli annotation update [Riley06 ].
Markus Krummenacker on Tue Oct 14, 1997:
Gene object created from Blattner lab Genbank (v. M52) entry.

Credits:
Last-Curated ? 26-Apr-2006 by Shearer A , SRI International


References

Morl01: Morl M, Marchfelder A (2001). "The final cut. The importance of tRNA 3'-processing." EMBO Rep 2(1);17-20. PMID: 11252717

Riley06: Riley M, Abe T, Arnaud MB, Berlyn MK, Blattner FR, Chaudhuri RR, Glasner JD, Horiuchi T, Keseler IM, Kosuge T, Mori H, Perna NT, Plunkett G, Rudd KE, Serres MH, Thomas GH, Thomson NR, Wishart D, Wanner BL (2006). "Escherichia coli K-12: a cooperatively developed annotation snapshot--2005." Nucleic Acids Res 34(1);1-9. PMID: 16397293

Siekevitz81: Siekevitz P, Zamecnik PC (1981). "Ribosomes and protein synthesis." J Cell Biol 91(3 Pt 2);53s-65s. PMID: 7033244


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Fri Dec 19, 2014, biocyc14.