Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

Escherichia coli K-12 substr. MG1655 Pathway: succinate to cytochrome bd oxidase electron transfer

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Genetic Regulation Schematic: ?

Superclasses: Generation of Precursor Metabolites and Energy Electron Transfer
Generation of Precursor Metabolites and Energy Respiration Aerobic Respiration

Summary:
In the respiratory chain formed by succinate dehydrogenase and cytochrome bd oxidase the transfer of electrons from succinate to cytochrome bd oxidase is coupled to the generation of a proton-motive force across the cytoplasmic membrane.

Succinate is oxidised to fumarate resulting in production of four electrons which are transferred to the cytochrome bd oxidase by a quinone pool which drives proton translocation in the opposite direction. Neither succinate dehydrogenase or cytochrome bd oxidase catalyse vectorial proton translocation, instead the reduction of oxygen by cytochrome bd oxidase contributes four protons to the proton-motive force.

E. coli has two cytochrome bd oxidases. Cytochrome bd-I is expressed in wild-type cells under conditions of limited oxygen [Reid79]. Cytochrome bd-II is expressed only in mutants lacking cytochrome bd-I and cytochrome bo with cytochrome bd activity being observed only when complemented with a chromosomal fragment from Bacillus firmus [Sturr96]. The physiological role of cytochrome bd-II in wild-type E. coli is obscure.

Succinate dehydrogenase is expressed in aerobic conditions and is structurally and functionally homologous to fumarate dehydrogenase [Berg90].

Credits:
Created 17-Aug-2008 by Nolan L , Macquarie University
Last-Curated ? 17-Aug-2008 by Nolan L , Macquarie University


References

Berg90: Berg BL, Stewart V (1990). "Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12." Genetics 1990;125(4);691-702. PMID: 2168848

Reid79: Reid GA, Ingledew WJ (1979). "Characterization and phenotypic control of the cytochrome content of Escherichia coli." Biochem J 182(2);465-72. PMID: 389237

Sturr96: Sturr MG, Krulwich TA, Hicks DB (1996). "Purification of a cytochrome bd terminal oxidase encoded by the Escherichia coli app locus from a delta cyo delta cyd strain complemented by genes from Bacillus firmus OF4." J Bacteriol 178(6);1742-9. PMID: 8626304

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Al12: Al Mamun AA, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM (2012). "Identity and function of a large gene network underlying mutagenic repair of DNA breaks." Science 338(6112);1344-8. PMID: 23224554

Atlung97: Atlung T, Knudsen K, Heerfordt L, Brondsted L (1997). "Effects of sigmaS and the transcriptional activator AppY on induction of the Escherichia coli hya and cbdAB-appA operons in response to carbon and phosphate starvation." J Bacteriol 179(7);2141-6. PMID: 9079897

Barker00: Barker HC, Kinsella N, Jaspe A, Friedrich T, O'Connor CD (2000). "Formate protects stationary-phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide." Mol Microbiol 35(6);1518-29. PMID: 10760151

Bebbington01: Bebbington KJ, Williams HD (2001). "A role for DNA supercoiling in the regulation of the cytochrome bd oxidase of Escherichia coli." Microbiology 147(Pt 3);591-8. PMID: 11238966

Bekker09: Bekker M, de Vries S, Ter Beek A, Hellingwerf KJ, de Mattos MJ (2009). "Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase." J Bacteriol 191(17);5510-7. PMID: 19542282

Belevich05: Belevich I, Borisov VB, Zhang J, Yang K, Konstantinov AA, Gennis RB, Verkhovsky MI (2005). "Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site." Proc Natl Acad Sci U S A 102(10);3657-62. PMID: 15728392

Belevich07: Belevich I, Borisov VB, Verkhovsky MI (2007). "Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement." J Biol Chem 282(39);28514-9. PMID: 17690093

Borisov02: Borisov VB, Liebl U, Rappaport F, Martin JL, Zhang J, Gennis RB, Konstantinov AA, Vos MH (2002). "Interactions between heme d and heme b595 in quinol oxidase bd from Escherichia coli: a photoselection study using femtosecond spectroscopy." Biochemistry 41(5);1654-62. PMID: 11814360

Borisov08: Borisov VB, Belevich I, Bloch DA, Mogi T, Verkhovsky MI (2008). "Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site." Biochemistry 47(30);7907-14. PMID: 18597483

Borisov11: Borisov VB, Murali R, Verkhovskaya ML, Bloch DA, Han H, Gennis RB, Verkhovsky MI (2011). "Aerobic respiratory chain of Escherichia coli is not allowed to work in fully uncoupled mode." Proc Natl Acad Sci U S A 108(42);17320-4. PMID: 21987791

Borisov11a: Borisov VB, Forte E, Sarti P, Giuffre A (2011). "Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate." Biochim Biophys Acta 1807(5);503-9. PMID: 21352800

Borisov11b: Borisov VB, Gennis RB, Hemp J, Verkhovsky MI (2011). "The cytochrome bd respiratory oxygen reductases." Biochim Biophys Acta 1807(11);1398-413. PMID: 21756872

Borisov13: Borisov VB, Verkhovsky MI (2013). "Accommodation of CO in the di-heme active site of cytochrome bd terminal oxidase from Escherichia coli." J Inorg Biochem 118;65-7. PMID: 23123340

Brandsch89: Brandsch R, Bichler V (1989). "Covalent cofactor binding to flavoenzymes requires specific effectors." Eur J Biochem 1989;182(1);125-8. PMID: 2659351

Cammack86: Cammack R, Patil DS, Weiner JH (1986). "Evidence that centre 2 in Escherichia coli fumarate reductase is a [4Fe-4S]cluster." Biochim Biophys Acta 870(3);545-51. PMID: 3008846

Cecchini02: Cecchini G, Schroder I, Gunsalus RP, Maklashina E (2002). "Succinate dehydrogenase and fumarate reductase from Escherichia coli." Biochim Biophys Acta 1553(1-2);140-57. PMID: 11803023

Cecchini03: Cecchini G, Maklashina E, Yankovskaya V, Iverson TM, Iwata S (2003). "Variation in proton donor/acceptor pathways in succinate:quinone oxidoreductases." FEBS Lett 545(1);31-8. PMID: 12788489

Cheng06: Cheng VW, Ma E, Zhao Z, Rothery RA, Weiner JH (2006). "The iron-sulfur clusters in Escherichia coli succinate dehydrogenase direct electron flow." J Biol Chem 281(37);27662-8. PMID: 16864590

Condon85: Condon C, Cammack R, Patil DS, Owen P (1985). "The succinate dehydrogenase of Escherichia coli. Immunochemical resolution and biophysical characterization of a 4-subunit enzyme complex." J Biol Chem 1985;260(16);9427-34. PMID: 2991245

Cotter90: Cotter PA, Chepuri V, Gennis RB, Gunsalus RP (1990). "Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product." J Bacteriol 172(11);6333-8. PMID: 2172211

Showing only 20 references. To show more, press the button "Show all references".


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Wed Dec 17, 2014, BIOCYC13A.