Metabolic Modeling Tutorial
registration ends
Sat Mar 7th, 2015
Metabolic Modeling Tutorial
registration ends
Sat Mar 7th, 2015
Metabolic Modeling Tutorial
registration ends
Sat Mar 7th, 2015
Metabolic Modeling Tutorial
registration ends
Sat Mar 7th, 2015
Metabolic Modeling Tutorial
registration ends
Sat Mar 7th, 2015

Escherichia coli K-12 substr. MG1655 Pathway: formate to dimethyl sulfoxide electron transfer

If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Locations of Mapped Genes:

Genetic Regulation Schematic: ?

Superclasses: Generation of Precursor Metabolites and Energy Electron Transfer
Generation of Precursor Metabolites and Energy Respiration Anaerobic Respiration

In the respiratory chain formed by formate dehydrogenase and dimethyl sulfoxide (DMSO) reductase the transfer of electrons from formate to DMSO is coupled to the generation of a proton-motive force across the cytoplasmic membrane.

Two electrons are transferred from the formate oxidation site to the DMSO reduction site by a menaquinone pool. Neither formate dehydrogenase nor DMSO reductase catalyse vectorial proton translocation however, the reduction of DMSO and many other amine-N-oxides and methyl-sulfoxides, including trimethylamine N-oxide (TMAO), contributes two protons to the proton-motive force.

Two of E. coli's formate dehydrogenases, N and O, catalyse the oxidation of formate. Expression of formate dehydrogenase N (Fdh-N) is induced by anaerobiosis and the presence of nitrate [Wang03, Berg90] whereas aerobic conditions, and to a lesser extent nitrate under anaerobic conditions, induce expression of formate dehydrogenase O (Fdh-O) [Abaibou95].

DMSO reductase is functionally similar to the TMAO reductases but genetically distinct [Bilous88]. This enzyme functions under anaerobic conditions and in the absence of nitrate (a preferred electron acceptor) [Cotter89]. DMSO is the preferred substrate for this enzyme [Weiner88].

Created 17-Aug-2008 by Nolan L , Macquarie University


Abaibou95: Abaibou H, Pommier J, Benoit S, Giordano G, Mandrand-Berthelot MA (1995). "Expression and characterization of the Escherichia coli fdo locus and a possible physiological role for aerobic formate dehydrogenase." J Bacteriol 177(24);7141-9. PMID: 8522521

Berg90: Berg BL, Stewart V (1990). "Structural genes for nitrate-inducible formate dehydrogenase in Escherichia coli K-12." Genetics 1990;125(4);691-702. PMID: 2168848

Bilous88: Bilous PT, Weiner JH (1988). "Molecular cloning and expression of the Escherichia coli dimethyl sulfoxide reductase operon." J Bacteriol 170(4);1511-8. PMID: 2832366

Cotter89: Cotter PA, Gunsalus RP (1989). "Oxygen, nitrate, and molybdenum regulation of dmsABC gene expression in Escherichia coli." J Bacteriol 171(7);3817-23. PMID: 2544558

Wang03: Wang H, Gunsalus RP (2003). "Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP." J Bacteriol 185(17);5076-85. PMID: 12923080

Weiner88: Weiner JH, MacIsaac DP, Bishop RE, Bilous PT (1988). "Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity." J Bacteriol 1988;170(4);1505-10. PMID: 3280546

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Arifuzzaman06: Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, Ara T, Nakahigashi K, Huang HC, Hirai A, Tsuzuki K, Nakamura S, Altaf-Ul-Amin M, Oshima T, Baba T, Yamamoto N, Kawamura T, Ioka-Nakamichi T, Kitagawa M, Tomita M, Kanaya S, Wada C, Mori H (2006). "Large-scale identification of protein-protein interaction of Escherichia coli K-12." Genome Res 16(5);686-91. PMID: 16606699

Bairoch93: Bairoch A, Boeckmann B (1993). "The SWISS-PROT protein sequence data bank, recent developments." Nucleic Acids Res. 21:3093-3096. PMID: 8332529

Barker00: Barker HC, Kinsella N, Jaspe A, Friedrich T, O'Connor CD (2000). "Formate protects stationary-phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide." Mol Microbiol 35(6);1518-29. PMID: 10760151

Benoit98: Benoit S, Abaibou H, Mandrand-Berthelot MA (1998). "Topological analysis of the aerobic membrane-bound formate dehydrogenase of Escherichia coli." J Bacteriol 1998;180(24);6625-34. PMID: 9852007

Berg91: Berg BL, Li J, Heider J, Stewart V (1991). "Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine." J Biol Chem 1991;266(33);22380-5. PMID: 1834669

Bilous88a: Bilous PT, Cole ST, Anderson WF, Weiner JH (1988). "Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli." Mol Microbiol 2(6);785-95. PMID: 3062312

Boonstra75: Boonstra J, Huttunen MT, Konings WN (1975). "Anaerobic transport in Escherichia coli membrane vesicles." J Biol Chem 250(17);6792-8. PMID: 1099094

BRENDA14: BRENDA team (2014). "Imported from BRENDA version existing on Aug 2014."

Butland05: Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005). "Interaction network containing conserved and essential protein complexes in Escherichia coli." Nature 433(7025);531-7. PMID: 15690043

Cammack90: Cammack R, Weiner JH (1990). "Electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli." Biochemistry 1990;29(36);8410-6. PMID: 2174699

Chan09: Chan CS, Chang L, Rommens KL, Turner RJ (2009). "Differential interactions between Tat-specific redox enzyme peptides and their chaperones." J Bacteriol 191(7):2091-101. PMID: 19151138

Chan10: Chan CS, Chang L, Winstone TM, Turner RJ (2010). "Comparing system-specific chaperone interactions with their Tat dependent redox enzyme substrates." FEBS Lett 584(22);4553-8. PMID: 20974141

Charlson87: Charlson, RJ, Lovelock, JE, Andreae, MO, Warren, SG (1987). "Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate." Nature 326:655-661.

Collins81: Collins MD, Jones D (1981). "Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication." Microbiol Rev 45(2);316-54. PMID: 7022156

Daley05: Daley DO, Rapp M, Granseth E, Melen K, Drew D, von Heijne G (2005). "Global topology analysis of the Escherichia coli inner membrane proteome." Science 308(5726);1321-3. PMID: 15919996

DiazMejia09: Diaz-Mejia JJ, Babu M, Emili A (2009). "Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome." FEMS Microbiol Rev 33(1);66-97. PMID: 19054114

Enoch74: Enoch HG, Lester RL (1974). "The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstruction of formate-nitrate reductase activity of E. coli." Biochem Biophys Res Commun 61(4);1234-41. PMID: 4616697

Enoch75: Enoch HG, Lester RL (1975). "The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli." J Biol Chem 1975;250(17);6693-705. PMID: 1099093

Enoch82: Enoch HG, Lester RL (1982). "Formate dehydrogenase from Escherichia coli." Methods Enzymol 89 Pt D;537-43. PMID: 6755185

Fujimoto12: Fujimoto N., Kosaka T., Yamada M. (2012). "Menaquinone as Well as Ubiquinone as a Crucial Component in the Escherichia coli Respiratory Chain." Chapter 10 in Chemical Biology, edited by D Ekinci, ISBN 978-953-51-0049-2.

Showing only 20 references. To show more, press the button "Show all references".

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of EcoCyc: Nucleic Acids Research 41:D605-12 2013
Page generated by SRI International Pathway Tools version 18.5 on Thu Mar 5, 2015, BIOCYC14A.