Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound Class: a cyclodextrin

Synonyms: a cyclomaltodextrin, a Schardinger dextrin

Superclasses: all carbohydrates a carbohydrate a glycan a polysaccharide a glucan a linear alpha-D-glucan a 1,4-alpha-D-glucan
all carbohydrates a carbohydrate a glycan a polysaccharide a glucan a linear alpha-D-glucan a dextrin

Summary:
Cyclodextrins (cyclomaltodextrins) are cyclic oligosaccharides composed of α-1,4-linked glucose units. Early literature referred to them as Schardinger dextrins. Cyclodextrins corresponding to 6 to 12 or more glucose units have been characterized (in [DePinto68]) (see α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin). The physicochemical properties of cyclodextrins give them broad applications in the food, cosmetic and pharmaceutical industries (in [Hashimoto01]).

Instances:
α-cyclodextrin ,
β-cyclodextrin ,
γ-cyclodextrin

Unification Links: KEGG:C00973 , PubChem:439354

Reactions known to consume the compound:

starch degradation III , starch degradation IV :
a cyclodextrin + H2O → a maltodextrin

starch biosynthesis :
ADP-α-D-glucose[chloroplast stroma] + n (1,4-α-D-glucosyl)(n)[chloroplast stroma] → ADP[chloroplast stroma] + n α-amylose[chloroplast stroma]
n a 1,4-α-D-glucan → a (1,6)-α-D-glucosyl-(1,4)-α-glucan highly branched + n H2O

Not in pathways:
a 1,4-α-D-glucan + H2O → a 1,4-α-D-glucan + maltose
a 1,4-α-D-glucan + n H2O → n a 1,4-α-D-glucan
a 1,4-α-D-glucan + n H2O → a 1,4-α-D-glucan + n maltotetraose
a 1,4-α-D-glucan + H2O → a 1,4-α-D-glucan + maltotriose
a 1,4-α-D-glucan + H2O → a 1,4-α-D-glucan + maltohexaose
(1,4-α-D-glucosyl)(n) + H2O → (1,4-α-D-glucosyl)(n-1) + α-D-glucose
a 1,4-α-D-glucan[periplasmic space] + n H2O[periplasmic space]a 1,4-α-D-glucan[periplasmic space] + maltohexaose[periplasmic space]

starch degradation II :
a glucan[chloroplast stroma] + D-glucopyranose[chloroplast stroma]a glucan[chloroplast stroma] + maltotriose[chloroplast stroma]


a polysaccharide + H2O → an oligosaccharide

Reactions known to produce the compound:

starch degradation III , starch degradation IV :
starch[extracellular space]a cyclodextrin[extracellular space]

cellulose and hemicellulose degradation (cellulolosome) :
a feruloyl-polysaccharide + H2O → ferulate + a polysaccharide + 2 H+

Not in pathways:
an N-acetyl-β-D-galactosalaminyl-[glycan] + H2O → a glycan + N-acetyl-β-D-galactosamine

Reactions known to both consume and produce the compound:

glycogen biosynthesis I (from ADP-D-Glucose) :
a 1,4-α-D-glucan ↔ a glycogen
ADP-α-D-glucose + (1,4-α-D-glucosyl)(n) ↔ ADP + (1,4-α-D-glucosyl)(n+1)

starch biosynthesis :
ADP-α-D-glucose + (1,4-α-D-glucosyl)(n) ↔ ADP + (1,4-α-D-glucosyl)(n+1)

Not in pathways:
(1,4-α-D-glucosyl)(n) + phosphate ↔ (1,4-α-D-glucosyl)(n-1) + α-D-glucose 1-phosphate

In Reactions of unknown directionality:

Not in pathways:
a 1,4-α-D-glucan = a cyclodextrin


n a 1,4-α-D-glucan = n starch + n H2O
sucrose + (1,4-α-D-glucosyl)(n) = D-fructofuranose + (1,4-α-D-glucosyl)(n+1)
(1,4-α-D-glucosyl)(n) = (1,4-α-D-glucosyl)(n-1) + a (1,6)-α-D-glucosyl-(1,4)-α-glucan
a 1,4-α-D-glucan + a 1,4-α-D-glucan = a 1,4-α-D-glucan + a 1,4-α-D-glucan
α-maltose 1-phosphate + (1,4-α-D-glucosyl)(n-1) = (1,4-α-D-glucosyl)(n+1) + phosphate
a nucleoside diphosphate-glucose + a 1,4-α-D-glucan = a nucleoside diphosphate + a 1,4-α-D-glucan
(1,4-α-D-glucosyl)(n) + (1,6-α-D-glucosyl)(m) = (1,4-α-D-glucosyl)(n-1) + (1,6-α-D-glucosyl)(m+1)


a linear α-D-glucan + sucrose = an alternan
a linear α-D-glucan = n 1,5-anhydro-D-fructose + β-D-glucose
a linear α-D-glucan + ATP + H2O = [phospho-α-glucan] + AMP + phosphate + 2 H+

Enzymes inhibited by a cyclodextrin, sorted by the type of inhibition, are:

Inhibitor (Mechanism unknown) of: pullulanase [Dong97]

Credits:
Revised 30-Jan-2012 by Caspi R , SRI International


References

DePinto68: DePinto JA, Campbell LL (1968). "Purification and properties of the amylase of Bacillus macerans." Biochemistry 7(1);114-20. PMID: 5758537

Dong97: Dong G, Vieille C, Zeikus JG (1997). "Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme." Appl Environ Microbiol 63(9);3577-84. PMID: 9293009

Hashimoto01: Hashimoto Y, Yamamoto T, Fujiwara S, Takagi M, Imanaka T (2001). "Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001." J Bacteriol 183(17);5050-7. PMID: 11489857


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sun Nov 23, 2014, BIOCYC13B.