Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: 2-oxoglutarate

Synonyms: 2-oxoglutarate, ketoglutarate, α-ketoglutarate, 2-oxoglutaric acid, α-ketoglutaric acid, α-oxoglutarate, 2-ketoglutaric acid, 2-ketoglutarate, 2-oxopentanedionic acid, 2-oxopentanedionate, a-ketoglutaric acid

Superclasses: an acid all carboxy acids a carboxylate a 2-oxo acid a 2-oxo carboxylate
an acid all carboxy acids a carboxylate a 2-oxo carboxylate

Chemical Formula: C5H4O5

Molecular Weight: 144.08 Daltons

Monoisotopic Molecular Weight: 146.0215233031 Daltons

SMILES: C(CC([O-])=O)C(=O)C([O-])=O

InChI: InChI=1S/C5H6O5/c6-3(5(9)10)1-2-4(7)8/h1-2H2,(H,7,8)(H,9,10)/p-2

InChIKey: InChIKey=KPGXRSRHYNQIFN-UHFFFAOYSA-L

Unification Links: CAS:328-50-7 , ChEBI:16810 , ChemSpider:144236 , HMDB:HMDB00208 , IAF1260:33565 , KEGG:C00026 , KNApSAcK:C00000769 , MetaboLights:MTBLC16810 , PubChem:164533

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -149.76376 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(5R)-carbapenem carboxylate biosynthesis : (3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + oxygen → (5R)-carbapen-2-em-3-carboxylate + succinate + CO2 + H2O 1,4-dihydroxy-2-naphthoate biosynthesis I , 1,4-dihydroxy-2-naphthoate biosynthesis II (plants) : isochorismate + 2-oxoglutarate + H+ → 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2 2,4-dichlorophenoxyacetate degradation : 2,4-dichlorophenoxyacetate + 2-oxoglutarate + oxygen → 2,4-dichlorophenol + glyoxylate + succinate + CO2 2-aminoethylphosphonate degradation III : (2-aminoethyl)phosphonate + 2-oxoglutarate + oxygen → (2-amino-1-hydroxyethyl)phosphonate + succinate + CO2 2-oxoglutarate decarboxylation to succinyl-CoA : 2-oxoglutarate + a [2-oxoglutarate dehydrogenase E2 protein] N6-lipoyl-L-lysine + H+ → a [2-oxoglutarate dehydrogenase E2 protein] N6-S-succinyldihydrolipoyl-L-lysine + CO2 4-chloro-2-methylphenoxyacetate degradation : 4-chloro-2-methylphenoxyacetate + 2-oxoglutarate + oxygen → 2-methyl-4-chlorophenol + glyoxylate + succinate + CO2 achromobactin biosynthesis : diaminobutyryl-citryl-ethanolamino-α-ketoglutarate + ATP + 2-oxoglutarate → achromobactin + AMP + diphosphate + H+ α-ketoglutaryl-diaminobutyryl-citryl-ethanolamine + ATP + 2-oxoglutarate → achromobactin + AMP + diphosphate + H+ diaminobutyryl-citryl-ethanolamine + ATP + 2-oxoglutarate → diaminobutyryl-citryl-ethanolamino-α-ketoglutarate + AMP + diphosphate + H+ diaminobutyryl-citryl-ethanolamine + ATP + 2-oxoglutarate → α-ketoglutaryl-diaminobutyryl-citryl-ethanolamine + AMP + diphosphate + H+ ammonia assimilation cycle I , glutamate biosynthesis IV : 2 L-glutamate + NAD+ ← L-glutamine + 2-oxoglutarate + NADH + H+ ammonia assimilation cycle II , glutamate biosynthesis V , glutamine biosynthesis III : 2 L-glutamate + 2 an oxidized ferredoxin ← 2-oxoglutarate + L-glutamine + 2 a reduced ferredoxin + 2 H+ anthocyanin biosynthesis (cyanidin 3-O-glucoside) : leucocyanidin + 2-oxoglutarate + oxygen → cyanidin + succinate + CO2 + H+ + 2 H2O leucocyanidin + 2-oxoglutarate + oxygen → a dihydroquercetin + succinate + CO2 + H2O anthocyanin biosynthesis (delphinidin 3-O-glucoside) : leucodelphinidin + 2-oxoglutarate + oxygen → delphinidin + CO2 + succinate + H+ + 2 H2O anthocyanin biosynthesis (pelargonidin 3-O-glucoside) : leucopelargonidin + 2-oxoglutarate + oxygen → pelargonidin + succinate + CO2 + H+ + 2 H2O apigeninidin 5-O-glucoside biosynthesis : apiforol + 2-oxoglutarate + oxygen → apigeninidin + succinate + CO2 + 2 H2O brassicicene C biosynthesis : fusicocca-2,10(14)-diene-8β,16-diol + 2-oxoglutarate + oxygen → fusicocca-1,10(14)-diene-3,8β,16-triol + succinate + CO2 chrysin biosynthesis : (2S)-pinocembrin + 2-oxoglutarate + oxygen → chrysin + succinate + CO2 + H2O clavulanate biosynthesis : proclavaminate + 2-oxoglutarate + oxygen → dihydroclavaminate + CO2 + succinate + H2O dihydroclavaminate + 2-oxoglutarate + oxygen → clavaminate + CO2 + succinate + H2O deoxyamidinoproclavaminate + 2-oxoglutarate + oxygen → amidinoproclavaminate + succinate + CO2 coumarins biosynthesis (engineered) : 4-coumaryl-CoA + 2-oxoglutarate + oxygen → 2,4-dihydroxycinnamoyl-CoA + succinate + CO2 feruloyl-CoA + 2-oxoglutarate + oxygen → 6'-hydroxyferuloyl-CoA + succinate + CO2 D-cycloserine biosynthesis : L-arginine + 2-oxoglutarate + oxygen → Nω-hydroxy-L-arginine + succinate + CO2 deacetylcephalosporin C biosynthesis : deacetoxycephalosporin C + 2-oxoglutarate + oxygen → deacetylcephalosporin-C + succinate + CO2 2-oxoglutarate + penicillin N + oxygen → CO2 + succinate + deacetoxycephalosporin C + H2O dehydrophos biosynthesis : 2-hydroxyethylphosphonate + 2-oxoglutarate + oxygen → 1,2-dihydroxyethylphosphonate + succinate + CO2 DIMBOA-glucoside biosynthesis : DIBOA-β-D-glucoside + 2-oxoglutarate + oxygen → TRIBOA-β-D-glucoside + succinate + CO2 ethylene biosynthesis II (microbes) : L-arginine + 2-oxoglutarate + oxygen → (3S)-3-hydroxy-L-arginine + succinate + CO2 2-oxoglutarate + oxygen + 2 H+ → ethylene + 3 CO2 + H2O ethylene biosynthesis IV : 2-oxoglutarate + L-arginine + oxygen → succinate + CO2 + guanidinium + (S)-1-pyrroline-5-carboxylate + H2O + H+ 2-oxoglutarate + oxygen + 2 H+ → ethylene + 3 CO2 + H2O ethylene biosynthesis V (engineered) : 2-oxoglutarate + oxygen + 2 H+ → ethylene + 3 CO2 + H2O fatty acid α-oxidation II : a 3-methyl-branched 2,3,4-saturated fatty acyl-CoA + 2-oxoglutarate + oxygen → a 2-hydroxy-3-methyl-branched 2,3,4-saturated fatty acyl-CoA + succinate + CO2 flavonoid biosynthesis : (2R)-naringenin + 2-oxoglutarate + oxygen → (-)-dihydrokaempferol + succinate + CO2 (2S)-naringenin + 2-oxoglutarate + oxygen → (+)-dihydrokaempferol + succinate + CO2 flavonoid biosynthesis (in equisetum) : (2S)-naringenin + 2-oxoglutarate + oxygen → apigenin + succinate + CO2 + H2O + H+ eriodictyol + 2-oxoglutarate + oxygen → luteolin + succinate + CO2 + H2O (2S)-naringenin + 2-oxoglutarate + oxygen → (+)-dihydrokaempferol + succinate + CO2 (+)-taxifolin + 2-oxoglutarate + oxygen → quercetin + succinate + CO2 + H2O (+)-dihydrokaempferol + 2-oxoglutarate + oxygen → kaempferol + succinate + CO2 + H2O + H+ eriodictyol + 2-oxoglutarate + oxygen → (+)-taxifolin + succinate + CO2 flavonol biosynthesis : dihydromyricetin + 2-oxoglutarate + oxygen → myricetin + succinate + CO2 + H2O (+)-taxifolin + 2-oxoglutarate + oxygen → quercetin + succinate + CO2 + H2O (+)-dihydrokaempferol + 2-oxoglutarate + oxygen → kaempferol + succinate + CO2 + H2O + H+ FR-900098 and FR-33289 antibiotics biosynthesis : FR-900098 + 2-oxoglutarate + oxygen → FR-33289 + succinate + CO2 fumitremorgin A biosynthesis : fumitremorgin B + 2-oxoglutarate + a reduced electron acceptor + 2 oxygen → verruculogen + succinate + CO2 + an oxidized electron acceptor + H2O fusicoccin A biosynthesis : fusicocca-2,10(14)-diene-8β,16-diol + 2-oxoglutarate + oxygen → 8β-hydroxyfusicocca-1,10(14)-diene-16-al + succinate + CO2 + H2O γ-butyrobetaine degradation : γ-butyrobetaine + 2-oxoglutarate + oxygen → L-carnitine + succinate + CO2 gibberellin biosynthesis I (non C-3, non C-13 hydroxylation) : gibberellin A24 + 2-oxoglutarate + oxygen → gibberellin A9 + 2 CO2 + succinate + H+ gibberellin A12 + 2-oxoglutarate + oxygen → gibberellin A15 (open lactone form) + CO2 + succinate gibberellin A24 + 2-oxoglutarate + oxygen → gibberellin A25 + CO2 + succinate + H+ gibberellin A15 (open lactone form) + 2-oxoglutarate + oxygen → gibberellin A24 + succinate + CO2 + H2O gibberellin A25 + 2-oxoglutarate + oxygen → gibberellin A13 + succinate + CO2 gibberellin A9 + 2-oxoglutarate + oxygen → gibberellin A4 + succinate + CO2 gibberellin A24 + 2-oxoglutarate + oxygen → gibberellin A36 + succinate + CO2 gibberellin biosynthesis II (early C-3 hydroxylation) : gibberellin A36 + 2-oxoglutarate + oxygen → gibberellin A4 + succinate + 2 CO2 + H+ gibberellin A14 + 2-oxoglutarate + oxygen → gibberellin A37 + CO2 + succinate gibberellin A37 + 2-oxoglutarate + oxygen → gibberellin A36 + succinate + CO2 + H2O gibberellin A12 + 2-oxoglutarate + oxygen → gibberellin A14 + succinate + CO2 gibberellin A15 (open lactone form) + 2-oxoglutarate + oxygen → gibberellin A37 + succinate + CO2 gibberellin biosynthesis III (early C-13 hydroxylation) : gibberellin44 (open lactone form) + 2-oxoglutarate + oxygen → gibberellin A19 + succinate + CO2 + H2O gibberellin44 (open lactone form) + 2-oxoglutarate + H+ + oxygen → gibberellin A38 + succinate + CO2 + H2O gibberellin A19 + 2-oxoglutarate + oxygen → gibberellin A17 + succinate + CO2 + H+ gibberellin A19 + 2-oxoglutarate + oxygen → gibberellin A20 + 2 CO2 + succinate + H+ gibberellin A53 + 2-oxoglutarate + oxygen → gibberellin44 (open lactone form) + CO2 + succinate gibberellin A20 + 2-oxoglutarate + oxygen → gibberellin A1 + succinate + CO2 gibberellin biosynthesis V : gibberellin A5 + 2-oxoglutarate + oxygen → gibberellin A6 + succinate + CO2 gibberellin A5 + 2-oxoglutarate + oxygen → gibberellin A3 + succinate + CO2 gibberellin inactivation I (2β-hydroxylation) : gibberellin A53 + 2-oxoglutarate + oxygen → gibberellin A97 + succinate + CO2 gibberellin A12 + 2-oxoglutarate + oxygen → gibberellin A110 + succinate + CO2 gibberellin A44 (closed lactone form) + 2-oxoglutarate + 2 H+ + oxygen → gibberellin A98 + succinate + CO2 gibberellin A34 + 2-oxoglutarate + oxygen → gibberellin A34-catabolite + succinate + CO2 + H+ + H2O gibberellin A51 + 2-oxoglutarate + oxygen → gibberellin A51-catabolite + succinate + CO2 + H+ + H2O gibberellin A9 + 2-oxoglutarate + oxygen → gibberellin A51 + succinate + CO2 gibberellin A8 + 2-oxoglutarate + oxygen → gibberellin A8-catabolite + succinate + CO2 + H+ + H2O gibberellin A1 + 2-oxoglutarate + oxygen → gibberellin A8 + succinate + CO2 gibberellin A29 + 2-oxoglutarate + oxygen → gibberellin A29-catabolite + succinate + CO2 + H+ + H2O gibberellin A20 + 2-oxoglutarate + oxygen → gibberellin A29 + succinate + CO2 gibberellin A4 + 2-oxoglutarate + oxygen → gibberellin A34 + succinate + CO2 glutamate biosynthesis I , glutamine degradation II : 2 L-glutamate + NADP+ ← L-glutamine + 2-oxoglutarate + NADPH + H+ hydroxylated mugineic acid phytosiderophore biosynthesis : 2'-deoxymugineate + 2-oxoglutarate + oxygen → 3-epihydroxy-2'-deoxymugineate + succinate + CO2 + H+ mugineate + 2-oxoglutarate + oxygen → 3-epihydroxymugineate + succinate + CO2 2'-deoxymugineate + 2-oxoglutarate + oxygen → mugineate + succinate + CO2 + H+ hyoscyamine and scopolamine biosynthesis : (6S)-hydroxyhyoscyamine + 2-oxoglutarate + oxygen → scopolamine + succinate + CO2 + H+ + H2O L-hyoscyamine + 2-oxoglutarate + oxygen → (6S)-hydroxyhyoscyamine + succinate + CO2 isoflavonoid biosynthesis II : (2S)-naringenin + 2-oxoglutarate + oxygen → apigenin + succinate + CO2 + H2O + H+ isoleucine biosynthesis III : (2S, 3S)-3-methylaspartate + 2-oxoglutarate → L-glutamate + methyloxaloacetate kanamycin biosynthesis : kanamycin B + 2-oxoglutarate + oxygen → 2'-dehydrokanamycin A + succinate + ammonium + CO2 L-carnitine biosynthesis : γ-butyrobetaine + 2-oxoglutarate + oxygen → L-carnitine + succinate + CO2 N6,N6,N6-trimethyl-L-lysine + 2-oxoglutarate + oxygen → 3-hydroxy-N6,N6,N6-trimethyl-L-lysine + succinate + CO2 leucine degradation II : (3R)-β-leucine + 2-oxoglutarate → L-glutamate + β-ketoisocaproate leucodelphinidin biosynthesis : (2S)-dihydrotricetin + 2-oxoglutarate + oxygen → dihydromyricetin + succinate + CO2 leucopelargonidin and leucocyanidin biosynthesis : eriodictyol + 2-oxoglutarate + oxygen → (+)-taxifolin + succinate + CO2 luteolin biosynthesis : (2S)-naringenin + 2-oxoglutarate + oxygen → apigenin + succinate + CO2 + H2O + H+ eriodictyol + 2-oxoglutarate + oxygen → luteolin + succinate + CO2 + H2O luteolinidin 5-O-glucoside biosynthesis : luteoforol + 2-oxoglutarate + oxygen + H+ → luteolinidin + succinate + CO2 + 2 H2O lysine degradation II (mammalian) : L-saccharopine + NADP+ + H2O ← L-lysine + 2-oxoglutarate + NADPH + H+ lysine degradation II (pipecolate pathway) : L-lysine + 2-oxoglutarate → 2-keto-6-aminocaproate + L-glutamate methanofuran biosynthesis : trans-homoaconitate + coenzyme A + H+2-oxoglutarate + acetyl-CoA

Reactions known to produce the compound:

5-hydroxymethylfurfural degradation , furfural degradation :
2-oxoglutaryl-CoA + H2O → 2-oxoglutarate + coenzyme A + H+

bactoprenyl-diphospho-acetamido-4-amino-6-deoxygalactopyranose biosynthesis :
UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex4-ulose + L-glutamate → UDP-acetamido-4-amino-6-deoxygalactopyranose + 2-oxoglutarate

D-arabinose degradation III , D-galactarate degradation II , D-glucarate degradation II , trans-4-hydroxy-L-proline degradation II , xylose degradation III :
2,5-dioxopentanoate + NADP+ + H2O → 2-oxoglutarate + NADPH + 2 H+

GDP-L-colitose biosynthesis :
GDP-4-dehydro-α-D-rhamnose + L-glutamate → GDP-(2S,3S,6R)-3-hydroxy-5-amino-6-methyl-3,6-dihydro-2H-pyran + 2-oxoglutarate + H2O + H+

gentamicin biosynthesis :
gentamicin X2 + L-glutamate + oxygen → JI-20A + hydrogen peroxide + 2-oxoglutarate
G-418 + L-glutamate + oxygen → JI-20B + hydrogen peroxide + 2-oxoglutarate
gentamicin A2 + S-adenosyl-L-methionine + L-glutamate + oxygen → gentamicin A + S-adenosyl-L-homocysteine + hydrogen peroxide + 2-oxoglutarate + H+

glutamine biosynthesis III , TCA cycle II (plants and fungi) , TCA cycle III (animals) :
D-threo-isocitrate[mitochondrial lumen] + NAD+[mitochondrial lumen]2-oxoglutarate[mitochondrial lumen] + CO2[mitochondrial lumen] + NADH[mitochondrial lumen]

histidine biosynthesis :
imidazole acetol-phosphate + L-glutamate → L-histidinol-phosphate + 2-oxoglutarate

histidine degradation VI :
4-oxoglutaramate + H2O → 2-oxoglutarate + ammonium

hopanoid biosynthesis (bacteria) :
formyl hopane + L-glutamate → aminobacteriohopanetriol + 2-oxoglutarate

L-arabinose degradation III , L-lyxonate degradation :
2,5-dioxopentanoate + NAD(P)+ + H2O → 2-oxoglutarate + NAD(P)H + 2 H+

lysine biosynthesis II :
L-2-acetamido-6-oxoheptanedioate + L-glutamate → N-acetyl-L,L-2,6-diaminopimelate + 2-oxoglutarate

lysine biosynthesis IV :
L-saccharopine + NAD+ + H2O → 2-oxoglutarate + L-lysine + NADH + H+

mannojirimycin biosynthesis :
D-fructose 6-phosphate + L-glutamate → 2-amino-2-deoxy-mannitol-6-phosphate + 2-oxoglutarate

nicotine degradation I , S-methyl-5-thio-α-D-ribose 1-phosphate degradation :
2-oxoglutaramate + H2O → 2-oxoglutarate + ammonium

nopaline degradation :
D-nopaline + an oxidized electron acceptor + H2O → 2-oxoglutarate + L-arginine + a reduced electron acceptor

Not in pathways:
(S)-2-hydroxyglutarate + oxygen → 2-oxoglutarate + hydrogen peroxide
oxalosuccinate + H+2-oxoglutarate + CO2
D-glutamate + oxygen + H2O → ammonium + hydrogen peroxide + 2-oxoglutarate
L-glutamate + oxygen + H2O → ammonium + hydrogen peroxide + 2-oxoglutarate

methanofuran biosynthesis :
2-furaldehyde phosphate + a standard α amino acid → 2-methylamine-furan phosphate + a 2-oxo carboxylate

rhizocticin A and B biosynthesis :
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acid → L-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate


an (S)-2-hydroxyacid + oxygen → hydrogen peroxide + a 2-oxo carboxylate
a D-amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate
a standard α amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate
a D-amino acid[in] + an electron-transfer-related quinone[CCO-OUT-CCO-IN] + H2O[in]a 2-oxo carboxylate[in] + ammonium[in] + an electron-transfer-related quinol[CCO-OUT-CCO-IN]

prodigiosin biosynthesis :
(S)-3-acetyloctanal + an L-amino acid → 2-methyl-3-n-amyl-dihydropyrrole + a 2-oxo acid + H2O

3,3'-thiodipropionate degradation :
3-sulfinopropionate + an acyl-CoA → 3-sulfinopropanoyl-CoA + a carboxylate

dimethylsulfoniopropionate degradation II (cleavage) :
dimethylsulfoniopropanoate + an acyl-CoA → dimethylsulfoniopropioyl-CoA + a carboxylate

NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast) :
an aldehyde + NADP+ + H2O → a carboxylate + NADPH + 2 H+
an aldehyde + NAD+ + H2O → a carboxylate + NADH + 2 H+

phosphatidylcholine resynthesis via glycerophosphocholine :
a phosphatidylcholine + 2 H2O → sn-glycero-3-phosphocholine + 2 a carboxylate + 2 H+


an acyl-CoA + H2O → a carboxylate + coenzyme A + H+
an L-1-phosphatidyl-inositol + H2O → 1-acyl-sn-glycero-3-phospho-D-myo-inositol + a carboxylate + H+
a carboxylic ester + H2O → an alcohol + a carboxylate + H+
an aldehyde + oxygen + H2O → a carboxylate + hydrogen peroxide + H+
a 1-lysophosphatidylcholine[periplasmic space] + H2O[periplasmic space]a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an aldehyde + FMNH2 + oxygen → hν + a carboxylate + FMN + H2O + 2 H+
an acylcholine + H2O → choline + a carboxylate + H+
a 1,2-diacyl-3-β-D-galactosyl-sn-glycerol + 2 H2O → 2 a carboxylate + 3-β-D-galactosyl-sn-glycerol + 2 H+
an acyl phosphate + H2O → a carboxylate + phosphate + H+
an S-acylglutathione + H2O → a carboxylate + glutathione
an N-acyl-L-aspartate + H2O → L-aspartate + a carboxylate

Reactions known to both consume and produce the compound:

(R)-cysteate degradation , coenzyme M biosynthesis II , sulfolactate degradation III : L-cysteate + 2-oxoglutarate ↔ 3-sulfopyruvate + L-glutamate (S)-reticuline biosynthesis I , 4-hydroxybenzoate biosynthesis I (eukaryotes) , 4-hydroxyphenylpyruvate biosynthesis , atromentin biosynthesis , rosmarinic acid biosynthesis I , tyrosine biosynthesis I , tyrosine degradation I , tyrosine degradation II , tyrosine degradation III , tyrosine degradation IV (to 4-methylphenol) : L-tyrosine + 2-oxoglutarate ↔ 4-hydroxyphenylpyruvate + L-glutamate (S)-reticuline biosynthesis II , rosmarinic acid biosynthesis II : L-dopa + 2-oxoglutarate ↔ 3,4-dihydroxyphenylpyruvate + L-glutamate 2'-deoxymugineic acid phytosiderophore biosynthesis : nicotianamine + 2-oxoglutarate ↔ L-glutamate + 3''-deamino-3''-oxonicotianamine 4-aminobutyrate degradation , 4-aminobutyrate degradation II , 4-aminobutyrate degradation III , glutamate degradation IV , nicotine degradation I : 4-aminobutanoate + 2-oxoglutarate ↔ succinate semialdehyde + L-glutamate 4-aminobutyrate degradation V : L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+ 4-aminobutanoate + 2-oxoglutarate ↔ succinate semialdehyde + L-glutamate alanine biosynthesis I , valine biosynthesis , valine degradation II : L-valine + 2-oxoglutarate ↔ L-glutamate + 3-methyl-2-oxobutanoate alanine biosynthesis II , alanine degradation III : 2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate alanine degradation II (to D-lactate) : L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+ 2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate anaerobic energy metabolism (invertebrates, cytosol) : L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate 2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate arginine biosynthesis II (acetyl cycle) , arginine biosynthesis III (via N-acetyl-L-citrulline) , ornithine biosynthesis : N-acetyl-L-ornithine + 2-oxoglutarate ↔ L-glutamate + N-acetyl-L-glutamate 5-semialdehyde arginine biosynthesis IV (archaebacteria) : an [L-2-aminoadipate carrier protein]-L-ornithine + 2-oxoglutarate ↔ L-glutamate + an [L-2-aminoadipate carrier protein]-L-glutamate 5-semialdehyde arginine degradation I (arginase pathway) , arginine degradation VI (arginase 2 pathway) , citrulline biosynthesis , L-Nδ-acetylornithine biosynthesis , ornithine degradation II (Stickland reaction) , proline biosynthesis II (from arginine) , proline biosynthesis III : L-ornithine + 2-oxoglutarate ↔ L-glutamate + L-glutamate-5-semialdehyde arginine degradation II (AST pathway) : N2-succinyl-L-ornithine + 2-oxoglutarate ↔ L-glutamate + N2-succinyl-L-glutamate 5-semialdehyde arginine degradation XI : L-arginine + 2-oxoglutarate ↔ L-glutamate + 2-ketoarginine asparagine degradation III (mammalian) , aspartate biosynthesis , aspartate degradation I , aspartate degradation II , glutamate degradation II : L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate β-alanine degradation I : β-alanine + 2-oxoglutarate ↔ malonate semialdehyde + L-glutamate C4 photosynthetic carbon assimilation cycle, NAD-ME type : 2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate 2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate C4 photosynthetic carbon assimilation cycle, PEPCK type : 2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate 2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate CMP-legionaminate biosynthesis I : GDP-2-acetamido-2,6-dideoxy-α-D-xylo-hexos-4-ulose + L-glutamate ↔ GDP-4-amino-4,6-dideoxy-α-D-N-acetylglucosamine + 2-oxoglutarate CMP-pseudaminate biosynthesis : UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine + 2-oxoglutarate ↔ UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hexul-4-ose + L-glutamate coenzyme B biosynthesis : 2-oxoglutarate + acetyl-CoA + H2O ↔ (2R)-homocitrate + coenzyme A + H+ dehydrophos biosynthesis : 1-amino-2-phosphorylethylphosphonate + 2-oxoglutarate ↔ 1-oxo-2-phosphorylethylphosphonate + L-glutamate dTDP-3-acetamido-3,6-dideoxy-α-D-galactose biosynthesis : dTDP-3-amino-3,6-dideoxy-α-D-galactopyranose + 2-oxoglutarate ↔ dTDP-3-dehydro-6-deoxy-α-D-galactopyranose + L-glutamate dTDP-3-acetamido-3,6-dideoxy-α-D-glucose biosynthesis , dTDP-α-D-mycaminose biosynthesis : dTDP-3-amino-3,6-dideoxy-α-D-glucopyranose + 2-oxoglutarate ↔ dTDP-3-dehydro-6-deoxy-α-D-glucopyranose + L-glutamate dTDP-β-L-4-epi-vancosamine biosynthesis , dTDP-L-megosamine biosynthesis : dTDP-3-amino-4-dehydro-2,3,6-trideoxy-α-D-glucose + 2-oxoglutarate ↔ dTDP-3,4-didehydro-2,6-dideoxy-α-D-glucose + L-glutamate dTDP-D-desosamine biosynthesis : dTDP-3-amino-3,4,6-trideoxy-α-D-glucopyranose + 2-oxoglutarate ↔ dTDP-3-dehydro-4,6-deoxy-α-D-glucose + L-glutamate 2-oxoglutarate + dTDP-viosamine ↔ L-glutamate + dTDP-4-dehydro-6-deoxy-α-D-glucopyranose dTDP-D-forosamine biosynthesis : dTDP-4-oxo-2,3,6-trideoxy-D-glucose + L-glutamate ↔ dTDP-4-amino-2,3,4,6-tetradeoxy-D-glucose + 2-oxoglutarate dTDP-N-acetylthomosamine biosynthesis : dTDP-thomosamine + 2-oxoglutarate ↔ dTDP-4-dehydro-6-deoxy-α-D-glucopyranose + L-glutamate dTDP-N-acetylviosamine biosynthesis : 2-oxoglutarate + dTDP-viosamine ↔ L-glutamate + dTDP-4-dehydro-6-deoxy-α-D-glucopyranose ectoine biosynthesis , norspermidine biosynthesis , pyoverdine I biosynthesis , rhizobactin 1021 biosynthesis : L-2,4-diaminobutanoate + 2-oxoglutarate ↔ L-aspartate-semialdehyde + L-glutamate ethylene biosynthesis IV , glutamate degradation I : L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+ ethylene biosynthesis V (engineered) , glutamine biosynthesis III , mixed acid fermentation , NAD/NADP-NADH/NADPH cytosolic interconversion (yeast) , TCA cycle I (prokaryotic) , TCA cycle IV (2-oxoglutarate decarboxylase) , TCA cycle VII (acetate-producers) : D-threo-isocitrate + NADP+2-oxoglutarate + CO2 + NADPH GABA shunt : L-glutamate + NAD(P)+ + H2O ↔ 2-oxoglutarate + ammonium + NAD(P)H + H+ 4-aminobutanoate + 2-oxoglutarate ↔ succinate semialdehyde + L-glutamate GDP-D-perosamine biosynthesis : GDP-α-D-perosamine + 2-oxoglutarate ↔ GDP-4-dehydro-α-D-rhamnose + L-glutamate glutamate biosynthesis II , glutamate degradation X : L-glutamate + NAD(P)+ + H2O ↔ 2-oxoglutarate + ammonium + NAD(P)H + H+ glutamate biosynthesis III , nitrate reduction V (assimilatory) , nitrate reduction VI (assimilatory) : L-glutamate + NADP+ + H2O ↔ ammonium + 2-oxoglutarate + NADPH + H+ glutamate degradation V (via hydroxyglutarate) : (R)-2-hydroxyglutarate + NAD+2-oxoglutarate + NADH + H+ L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+ histidine degradation IV , imidazole-lactate degradation : L-histidine + 2-oxoglutarate ↔ L-glutamate + imidazole-pyruvate homotaurine degradation : homotaurine + 2-oxoglutarate ↔ 3-sulfopropanal + L-glutamate hydrogen sulfide biosynthesis I , L-cysteine degradation III : 2-oxoglutarate + L-cysteine ↔ L-glutamate + 3-mercaptopyruvate incomplete reductive TCA cycle , reductive TCA cycle II : 2-oxoglutarate + 2 an oxidized ferredoxin + coenzyme A ↔ succinyl-CoA + CO2 + 2 a reduced ferredoxin + H+ indole-3-acetate biosynthesis II , tryptophan degradation IV (via indole-3-lactate) , tryptophan degradation VII (via indole-3-pyruvate) , tryptophan degradation VIII (to tryptophol) : 2-oxoglutarate + L-tryptophan ↔ L-glutamate + indole-3-pyruvate isoleucine biosynthesis I (from threonine) , isoleucine biosynthesis II , isoleucine biosynthesis III , isoleucine biosynthesis IV , isoleucine biosynthesis V , isoleucine degradation I , isoleucine degradation II : L-isoleucine + 2-oxoglutarate ↔ L-glutamate + (S)-3-methyl-2-oxopentanoate kanamycin biosynthesis : 2'-deamino-2'-hydroxy-6'-dehydroparomamine + L-glutamate ↔ 2'-deamino-2'-hydroxyneamine + 2-oxoglutarate neamine + 2-oxoglutarate ↔ 6'-dehydroparomamine + L-glutamate kanosamine biosynthesis II : D-kanosamine 6-phosphate + 2-oxoglutarate ↔ 3-dehydro-D-glucose 6-phosphate + L-glutamate L-cysteine degradation I : 3-sulfinoalanine + 2-oxoglutarate ↔ L-glutamate + 3-sulfinopyruvate L-dopa degradation : 3-O-methyldopa + 2-oxoglutarate + H+ ↔ 3-methoxy-4-hydroxyphenylpyruvate + L-glutamate leucine biosynthesis , leucine degradation I , leucine degradation III : L-leucine + 2-oxoglutarate ↔ L-glutamate + 4-methyl-2-oxopentanoate lysine biosynthesis I : 2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ↔ L-glutamate + N-succinyl-2-amino-6-ketopimelate lysine biosynthesis IV : 2-oxoglutarate + acetyl-CoA + H2O ↔ (2R)-homocitrate + coenzyme A + H+ L-2-aminoadipate + 2-oxoglutarate ↔ L-glutamate + 2-oxoadipate lysine biosynthesis V : a [LysW]-C-terminal-L-glutamyl-γ-L-lysine + 2-oxoglutarate ↔ a [LysW]-C-terminal-L-glutamyl-γ-L-2-aminoadipate semialdehyde + L-glutamate 2-oxoglutarate + acetyl-CoA + H2O ↔ (2R)-homocitrate + coenzyme A + H+ L-2-aminoadipate + 2-oxoglutarate ↔ L-glutamate + 2-oxoadipate lysine biosynthesis VI : L,L-diaminopimelate + 2-oxoglutarate ↔ (S)-2,3,4,5-tetrahydrodipicolinate + L-glutamate + H2O + H+ lysine degradation II (mammalian) , lysine degradation II (pipecolate pathway) , lysine degradation V : L-2-aminoadipate + 2-oxoglutarate ↔ L-glutamate + 2-oxoadipate lysine degradation III : 5-aminopentanoate + 2-oxoglutarate ↔ L-glutamate + glutarate semialdehyde N6-acetyl-L-lysine + 2-oxoglutarate ↔ L-glutamate + 2-keto-6-acetamidocaproate lysine degradation IV , lysine degradation X : 5-aminopentanoate + 2-oxoglutarate ↔ L-glutamate + glutarate semialdehyde lysine degradation VI : 2-oxoglutarate + L-lysine ↔ L-glutamate + (S)-2-amino-6-oxohexanoate methylaspartate cycle : D-threo-isocitrate + NADP+2-oxoglutarate + CO2 + NADPH L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+ neomycin biosynthesis : neomycin C + 2-oxoglutarate ↔ 6'''-deamino-6'''-oxoneomycin C + L-glutamate nylon-6 oligomer degradation : 6-aminohexanoate + 2-oxoglutarate ↔ 6-oxohexanoate + L-glutamate ornithine de novo biosynthesis : L-glutamate + NAD(P)+ + H2O ↔ 2-oxoglutarate + ammonium + NAD(P)H + H+ L-ornithine + 2-oxoglutarate ↔ L-glutamate + L-glutamate-5-semialdehyde paromomycin biosynthesis : paromomycin + 2-oxoglutarate ↔ 6'''-oxoparomomycin + L-glutamate phenylalanine biosynthesis (cytosolic, plants) , phenylalanine biosynthesis I , phenylalanine degradation II (anaerobic) , phenylalanine degradation III : 2-oxo-3-phenylpropanoate + L-glutamate ↔ L-phenylalanine + 2-oxoglutarate phenylalanine biosynthesis II , tyrosine biosynthesis II , tyrosine biosynthesis III : L-arogenate + 2-oxoglutarate ↔ prephenate + L-glutamate phenylalanine degradation IV (mammalian, via side chain) : L-phenylalanine + 2-oxoglutarate ↔ 2-oxo-3-phenylpropanoate + L-glutamate photorespiration : 2-oxoglutarate + glycine ↔ L-glutamate + glyoxylate polymyxin resistance : UDP-4-amino-4-deoxy-β-L-arabinopyranose + 2-oxoglutarate ↔ UDP-β-L-threo-pentapyranos-4-ulose + L-glutamate proline biosynthesis IV : L-ornithine + 2-oxoglutarate ↔ L-glutamate + 2-keto-ornithine pyridoxal 5'-phosphate biosynthesis I : 2-oxo-3-hydroxy-4-phosphobutanoate + L-glutamate ↔ 4-phospho-hydroxy-L-threonine + 2-oxoglutarate reductive TCA cycle I : D-threo-isocitrate + NADP+2-oxoglutarate + CO2 + NADPH 2-oxoglutarate + 2 an oxidized ferredoxin + coenzyme A ↔ succinyl-CoA + CO2 + 2 a reduced ferredoxin + H+ ribostamycin biosynthesis : neamine + 2-oxoglutarate ↔ 6'-dehydroparomamine + L-glutamate serine biosynthesis : 3-phospho-L-serine + 2-oxoglutarate ↔ L-glutamate + 3-phospho-hydroxypyruvate taurine degradation III : taurine + 2-oxoglutarate ↔ L-glutamate + sulfoacetaldehyde TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) : D-threo-isocitrate + NADP+2-oxoglutarate + CO2 + NADPH 2-oxoglutarate + 2 an oxidized ferredoxin + coenzyme A ↔ succinyl-CoA + CO2 + 2 a reduced ferredoxin + H+ 2-oxoglutarate + an aminated amino group acceptor ↔ L-glutamate + a deaminated amino group acceptor TCA cycle VI (obligate autotrophs) : D-threo-isocitrate + NADP+2-oxoglutarate + CO2 + NADPH L-glutamate + NADP+ + H2O ↔ ammonium + 2-oxoglutarate + NADPH + H+ L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate TCA cycle VIII (helicobacter) : D-threo-isocitrate + NADP+2-oxoglutarate + CO2 + NADPH 2-oxoglutarate + 2 an oxidized ferredoxin + coenzyme A ↔ succinyl-CoA + CO2 + 2 a reduced ferredoxin + H+

In Reactions of unknown directionality:

Not in pathways:
N-methyl-2-oxoglutaramate + H2O = methylamine + 2-oxoglutarate
D-threo-isocitrate + NAD+ = 2-oxoglutarate + CO2 + NADH
(S)-2-hydroxyglutarate + an oxidized electron acceptor = 2-oxoglutarate + a reduced electron acceptor
2-hydroxyglutarate + FAD + H+ = 2-oxoglutarate + FADH2
L-glutamate + 2 an oxidized ferredoxin + H2O = ammonium + 2-oxoglutarate + 2 a reduced ferredoxin + 2 H+
(R)-2-hydroxyglutarate + an oxidized electron acceptor = 2-oxoglutarate + a reduced electron acceptor
xanthine + 2-oxoglutarate + oxygen = urate + succinate + CO2
(S)-3-hydroxybutanoate + 2-oxoglutarate = (R)-2-hydroxyglutarate + acetoacetate
a [protein] N6,N6-dimethyl-L-lysine + 2-oxoglutarate + oxygen = a [protein] N6-methyl-L-lysine + succinate + formaldehyde + CO2
2-oxoglutarate + coenzyme A + NADP+ = succinyl-CoA + CO2 + NADPH
2-oxoglutarate + glyoxylate + H+ = 2-hydroxy-3-oxoadipate + CO2
lauroyl-CoA + 2-oxoglutarate + H2O = 3-hydroxytetradecane-1,3,4-tricarboxylate + coenzyme A + H+
L-serine + 2-oxoglutarate = L-glutamate + hydroxypyruvate


S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid
a 2-oxo carboxylate + H+ = an aldehyde + CO2
a 2-oxo carboxylate + 2 an oxidized ferredoxin + coenzyme A = an acyl-CoA + CO2 + 2 a reduced ferredoxin + H+
a (2S)-2-hydroxycarboxylate + NAD(P)+ = a 2-oxo carboxylate + NAD(P)H + H+
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an (R)-2-hydroxycarboxylate + NAD+ = a 2-oxo carboxylate + NADH + H+
a (2R)-hydroxy-carboxylate + an oxidized electron acceptor = a 2-oxo carboxylate + a reduced electron acceptor
a (2S)-2-hydroxycarboxylate + NAD+ = a 2-oxo carboxylate + NADH + H+
an (R)-2-hydroxycarboxylate + NADP+ = a 2-oxo carboxylate + NADPH + H+
2-oxoaldehyde + NAD+ + H2O = a 2-oxo carboxylate + NADH + 2 H+
2-oxoaldehyde + NADP+ + H2O = a 2-oxo carboxylate + NADPH + 2 H+


an (R)-2-hydroxyacid + an electron-transfer-related quinone = a 2-oxo acid + an electron-transfer-related quinol


eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
an aldehyde + pyrroloquinoline quinone + H2O = a carboxylate + pyrroloquinoline quinol + H+
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an oxidized electron acceptor + H2O = a carboxylate + a reduced electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an N-acylated aliphatic-L-amino acid + H2O = a carboxylate + an aliphatic L-amino acid
a D-hexose + an acyl phosphate = a D-hexose-phosphate + a carboxylate
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an N-acyl-D-glutamate + H2O = a carboxylate + D-glutamate
an anilide + H2O = aniline + a carboxylate + H+
a 5'-acylphosphoadenosine + H2O = a carboxylate + AMP + 2 H+
a 3-acylpyruvate + H2O = a carboxylate + pyruvate + H+
an N6acyl-L-lysine + H2O = a carboxylate + L-lysine
an N-acyl-D-aspartate + H2O = a carboxylate + D-aspartate

In Transport reactions:
2-oxoglutarate[periplasmic space] + H+[periplasmic space]2-oxoglutarate[cytosol] + H+[cytosol]

In Redox half-reactions:
a 2-oxo carboxylate[in] + ammonium[in] + 2 H+[in] + 2 e- → a D-amino acid[in] + H2O[in]

Enzymes activated by 2-oxoglutarate, sorted by the type of activation, are:

Activator (Allosteric) of: [protein-PII] uridylyltransferase

Activator (Mechanism unknown) of: isocitrate dehydrogenase phosphatase [Nimmo84] , glutamine synthetase deadenylase [Shapiro69, Shapiro68]

Enzymes inhibited by 2-oxoglutarate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: citrate synthase , α-ketoglutarate reductase [Zhao96, Comment 1] , NADP-dependent isocitrate dehydrogenase [ContrerasShanno05] , indolepyruvate decarboxylase [Koga92]

Inhibitor (Mechanism unknown) of: N-succinyldiaminopimelate aminotransferase [Peterkofsky61] , isocitrate lyase , phosphoenolpyruvate synthetase [Chulavatnatol73] , isocitrate dehydrogenase kinase [Nimmo84] , glutamine synthetase adenylyltransferase [Ebner70, Ebner70a, Helmward89, Comment 2] , arginine kinase [Yao09] , methylglutamate dehydrogenase [Bamforth77] , pyruvate carboxylase [Mukhopadhyay98a] , 3,4-dihydroxyphenylalanine oxidative deaminase [Ranjith08] , pyruvate kinase [Plaxton02] , glutamate dehydrogenase (NAD-dependent) [Bonete96]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: deacetoxycephalosporin C hydroxylase , deacetoxycephalosporin C synthase , deacetoxycephalosporin C hydroxylase , deacetoxycephalosporin C synthase


References

Bamforth77: Bamforth CW, Large PJ (1977). "Solubilization, partial purification and properties of N-methylglutamate dehydrogenase from Pseudomonas aminovorans." Biochem J 161(2);357-70. PMID: 15545

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Chulavatnatol73: Chulavatnatol M, Atkinson DE (1973). "Phosphoenolpyruvate synthetase from Escherichia coli. Effects of adenylate energy charge and modifier concentrations." J Biol Chem 248(8);2712-5. PMID: 4572511

ContrerasShanno05: Contreras-Shannon V, Lin AP, McCammon MT, McAlister-Henn L (2005). "Kinetic properties and metabolic contributions of yeast mitochondrial and cytosolic NADP+-specific isocitrate dehydrogenases." J Biol Chem 280(6);4469-75. PMID: 15574419

Ebner70: Ebner E, Wolf D, Gancedo C, Elsasser S, Holzer H (1970). "ATP: glutamine synthetase adenylyltransferase from Escherichia coli B. Purification and properties." Eur J Biochem 1970;14(3);535-44. PMID: 4920894

Ebner70a: Ebner E, Gancedo C, Holzer H "ATP:Glutamine synthetase adenylyltransferase (Escherichia coli B)." Methods in Enzymology 1970; 17A:922-927.

Helmward89: Helmward Z "Handbook of Enzyme Inhibitors. 2nd, revised and enlarged edition." Weinheim, Federal Republic of Germany ; New York, NY, USA , 1989.

Koga92: Koga J, Adachi T, Hidaka H (1992). "Purification and characterization of indolepyruvate decarboxylase. A novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae." J Biol Chem 267(22);15823-8. PMID: 1639814

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Mukhopadhyay98a: Mukhopadhyay B, Stoddard SF, Wolfe RS (1998). "Purification, regulation, and molecular and biochemical characterization of pyruvate carboxylase from Methanobacterium thermoautotrophicum strain deltaH." J Biol Chem 273(9);5155-66. PMID: 9478969

Nimmo84: Nimmo GA, Nimmo HG (1984). "The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase." Eur J Biochem 1984;141(2);409-14. PMID: 6329757

Peterkofsky61: Peterkofsky B, Gilvarg C (1961). "N-Succinyl-L-diaminopimelic-glutamic transaminase." J Biol Chem 236;1432-8. PMID: 13734750

Plaxton02: Plaxton WC, Smith CR, Knowles VL (2002). "Molecular and regulatory properties of leucoplast pyruvate kinase from Brassica napus (rapeseed) suspension cells." Arch Biochem Biophys 400(1);54-62. PMID: 11913971

Ranjith08: Ranjith, N. K., Ramana, C. V., Sasikala, C. (2008). "Purification and characterization of 3,4-dihydroxyphenylalanine oxidative deaminase from Rhodobacter sphaeroides OU5." Can. J. of Microbiol. 54: 829-834.

Shapiro68: Shapiro BM, Stadtman ER (1968). "Glutamine synthetase deadenylylating enzyme." Biochem Biophys Res Commun 1968;30(1);32-7. PMID: 4866293

Shapiro69: Shapiro BM (1969). "The glutamine synthetase deadenylylating enzyme system from Escherichia coli. Resolution into two components, specific nucleotide stimulation, and cofactor requirements." Biochemistry 8(2);659-70. PMID: 4893578

Yao09: Yao CL, Ji PF, Kong P, Wang ZY, Xiang JH (2009). "Arginine kinase from Litopenaeus vannamei: cloning, expression and catalytic properties." Fish Shellfish Immunol 26(3);553-8. PMID: 19239924

Zhao96: Zhao G, Winkler ME (1996). "A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria." J Bacteriol 1996;178(1);232-9. PMID: 8550422


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Thu Nov 27, 2014, biocyc11.