twitter

MetaCyc Compound: 2-oxoglutarate

Synonyms: 2-oxoglutarate, ketoglutarate, α-ketoglutarate, 2-oxoglutaric acid, α-ketoglutaric acid, α-oxoglutarate, 2-ketoglutaric acid, 2-ketoglutarate, 2-oxopentanedionic acid, 2-oxopentanedionate, a-ketoglutaric acid

Superclasses: an acid all carboxy acids a carboxylate a 2-oxo acid a 2-oxo carboxylate
an acid all carboxy acids a carboxylate a 2-oxo carboxylate

Chemical Formula: C5H4O5

Molecular Weight: 144.08 Daltons

Monoisotopic Molecular Weight: 146.0215233031 Daltons

2-oxoglutarate compound structure

SMILES: C(CC([O-])=O)C(=O)C([O-])=O

InChI: InChI=1S/C5H6O5/c6-3(5(9)10)1-2-4(7)8/h1-2H2,(H,7,8)(H,9,10)/p-2

InChIKey: InChIKey=KPGXRSRHYNQIFN-UHFFFAOYSA-L

Unification Links: CAS:328-50-7 , ChEBI:16810 , ChemSpider:144236 , HMDB:HMDB00208 , IAF1260:33565 , KEGG:C00026 , KNApSAcK:C00000769 , MetaboLights:MTBLC16810 , PubChem:164533

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -149.76376 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(5R)-carbapenem carboxylate biosynthesis :
(3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + oxygen → (5R)-carbapen-2-em-3-carboxylate + succinate + CO2 + H2O

1,4-dihydroxy-2-naphthoate biosynthesis I , 1,4-dihydroxy-2-naphthoate biosynthesis II (plants) :
isochorismate + 2-oxoglutarate + H+ → 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2

2,4-dichlorophenoxyacetate degradation :
2,4-dichlorophenoxyacetate + 2-oxoglutarate + oxygen → 2,4-dichlorophenol + glyoxylate + succinate + CO2

2-aminoethylphosphonate degradation III :
(2-aminoethyl)phosphonate + 2-oxoglutarate + oxygen → (2-amino-1-hydroxyethyl)phosphonate + succinate + CO2

2-oxoglutarate decarboxylation to succinyl-CoA , TCA cycle III (animals) :
2-oxoglutarate + a [2-oxoglutarate dehydrogenase E2 protein] N6-lipoyl-L-lysine + H+ → a [2-oxoglutarate dehydrogenase E2 protein] N6-S-succinyldihydrolipoyl-L-lysine + CO2

3-hydroxy-L-homotyrosine biosynthesis :
L-homotyrosine + 2-oxoglutarate + oxygen → 3-hydroxy-L-homotyrosine + succinate + CO2

4-chloro-2-methylphenoxyacetate degradation :
4-chloro-2-methylphenoxyacetate + 2-oxoglutarate + oxygen → 2-methyl-4-chlorophenol + glyoxylate + succinate + CO2

4-methyl-proline biosynthesis :
5-hydroxy-leucine + 2-oxoglutarate + oxygen → 5,5-dihydroxy-leucine + succinate + CO2
L-leucine + 2-oxoglutarate + oxygen → 5-hydroxy-leucine + succinate + CO2

achromobactin biosynthesis :
diaminobutyryl-citryl-ethanolamino-α-ketoglutarate + ATP + 2-oxoglutarate → achromobactin + AMP + diphosphate + H+
α-ketoglutaryl-diaminobutyryl-citryl-ethanolamine + ATP + 2-oxoglutarate → achromobactin + AMP + diphosphate + H+
diaminobutyryl-citryl-ethanolamine + ATP + 2-oxoglutarate → diaminobutyryl-citryl-ethanolamino-α-ketoglutarate + AMP + diphosphate + H+
diaminobutyryl-citryl-ethanolamine + ATP + 2-oxoglutarate → α-ketoglutaryl-diaminobutyryl-citryl-ethanolamine + AMP + diphosphate + H+

ammonia assimilation cycle I , L-glutamate biosynthesis IV :
2 L-glutamate + NAD+ ← L-glutamine + 2-oxoglutarate + NADH + H+

ammonia assimilation cycle II , L-glutamate biosynthesis V , L-glutamine biosynthesis III :
2 L-glutamate + 2 an oxidized ferredoxin ← 2-oxoglutarate + L-glutamine + 2 a reduced ferredoxin + 2 H+

anditomin biosynthesis :
andilesin C + 2-oxoglutarate + oxygen → anditomin + succinate + CO2 + H2O
preandiloid C + 2-oxoglutarate + an reduced unknown electron acceptor + oxygen → andiconin + succinate + CO2 + an oxidized unknown electron acceptor + H2O

anthocyanin biosynthesis (cyanidin 3-O-glucoside) :
leucocyanidin + 2-oxoglutarate + oxygen → cyanidin + succinate + CO2 + H+ + 2 H2O
leucocyanidin + 2-oxoglutarate + oxygen → a dihydroquercetin + succinate + CO2 + H2O

anthocyanin biosynthesis (delphinidin 3-O-glucoside) :
leucodelphinidin + 2-oxoglutarate + oxygen → delphinidin + CO2 + succinate + H+ + 2 H2O

anthocyanin biosynthesis (pelargonidin 3-O-glucoside) :
leucopelargonidin + 2-oxoglutarate + oxygen → pelargonidin + succinate + CO2 + H+ + 2 H2O

apigeninidin 5-O-glucoside biosynthesis :
apiforol + 2-oxoglutarate + oxygen → apigeninidin + succinate + CO2 + 2 H2O

brassicicene C biosynthesis :
fusicocca-2,10(14)-diene-8β,16-diol + 2-oxoglutarate + oxygen → fusicocca-1,10(14)-diene-3,8β,16-triol + succinate + CO2

chrysin biosynthesis :
(2S)-pinocembrin + 2-oxoglutarate + oxygen → chrysin + succinate + CO2 + H2O

clavulanate biosynthesis :
proclavaminate + 2-oxoglutarate + oxygen → dihydroclavaminate + CO2 + succinate + H2O

Reactions known to produce the compound:

5-hydroxymethylfurfural degradation , furfural degradation :
2-oxoglutaryl-CoA + H2O → 2-oxoglutarate + coenzyme A + H+

bactoprenyl-diphospho-acetamido-4-amino-6-deoxygalactopyranose biosynthesis :
UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex4-ulose + L-glutamate → UDP-acetamido-4-amino-6-deoxygalactopyranose + 2-oxoglutarate

D-arabinose degradation III , D-galactarate degradation II , D-galacturonate degradation II , D-glucarate degradation II , D-glucuronate degradation II , trans-4-hydroxy-L-proline degradation II , xylose degradation III :
2,5-dioxopentanoate + NADP+ + H2O → 2-oxoglutarate + NADPH + 2 H+

GDP-L-colitose biosynthesis :
GDP-4-dehydro-6-deoxy-α-D-mannose + L-glutamate → GDP-(2S,3S,6R)-3-hydroxy-5-amino-6-methyl-3,6-dihydro-2H-pyran + 2-oxoglutarate + H2O + H+

gentamicin biosynthesis :
gentamicin X2 + L-glutamate + oxygen → JI-20A + hydrogen peroxide + 2-oxoglutarate
G-418 + L-glutamate + oxygen → JI-20B + hydrogen peroxide + 2-oxoglutarate
gentamicin A2 + S-adenosyl-L-methionine + L-glutamate + oxygen → gentamicin A + S-adenosyl-L-homocysteine + hydrogen peroxide + 2-oxoglutarate + H+

hopanoid biosynthesis (bacteria) :
formyl hopane + L-glutamate → aminobacteriohopanetriol + 2-oxoglutarate

L-arabinose degradation III , L-lyxonate degradation :
2,5-dioxopentanoate + NAD(P)+ + H2O → 2-oxoglutarate + NAD(P)H + 2 H+

L-glutamine biosynthesis III , TCA cycle II (plants and fungi) , TCA cycle III (animals) :
D-threo-isocitrate + NAD+2-oxoglutarate + CO2 + NADH

L-histidine biosynthesis :
imidazole acetol-phosphate + L-glutamate → L-histidinol-phosphate + 2-oxoglutarate

L-histidine degradation VI :
4-oxoglutaramate + H2O → 2-oxoglutarate + ammonium

L-lysine biosynthesis II :
L-2-acetamido-6-oxoheptanedioate + L-glutamate → N-acetyl-L,L-2,6-diaminopimelate + 2-oxoglutarate

L-lysine biosynthesis IV :
L-saccharopine + NAD+ + H2O → 2-oxoglutarate + L-lysine + NADH + H+

mannojirimycin biosynthesis :
D-fructose 6-phosphate + L-glutamate → 2-amino-2-deoxy-mannitol-6-phosphate + 2-oxoglutarate

nicotine degradation I (pyridine pathway) , S-methyl-5-thio-α-D-ribose 1-phosphate degradation :
2-oxoglutaramate + H2O → 2-oxoglutarate + ammonium

nopaline degradation :
D-nopaline + an oxidized unknown electron acceptor + H2O → 2-oxoglutarate + L-arginine + an reduced unknown electron acceptor

Not in pathways:
(S)-2-hydroxyglutarate + oxygen → 2-oxoglutarate + hydrogen peroxide
oxalosuccinate + H+2-oxoglutarate + CO2
D-glutamate + oxygen + H2O → ammonium + hydrogen peroxide + 2-oxoglutarate
L-glutamate + oxygen + H2O → ammonium + hydrogen peroxide + 2-oxoglutarate

rhizocticin A and B biosynthesis :
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acid → L-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate

Not in pathways:
an (S)-2-hydroxyacid + oxygen → hydrogen peroxide + a 2-oxo carboxylate
a D-amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

Reactions known to both consume and produce the compound:

(R)-cysteate degradation , coenzyme M biosynthesis II , sulfolactate degradation III :
L-cysteate + 2-oxoglutarate ↔ 3-sulfopyruvate + L-glutamate

(S)-reticuline biosynthesis I , 4-hydroxybenzoate biosynthesis I (eukaryotes) , 4-hydroxyphenylpyruvate biosynthesis , atromentin biosynthesis , L-tyrosine biosynthesis I , L-tyrosine degradation I , L-tyrosine degradation II , L-tyrosine degradation III , L-tyrosine degradation IV (to 4-methylphenol) , rosmarinic acid biosynthesis I :
L-tyrosine + 2-oxoglutarate ↔ 4-hydroxyphenylpyruvate + L-glutamate

(S)-reticuline biosynthesis II , rosmarinic acid biosynthesis II :
L-dopa + 2-oxoglutarate ↔ 3,4-dihydroxyphenylpyruvate + L-glutamate

2'-deoxymugineic acid phytosiderophore biosynthesis :
L-nicotianamine + 2-oxoglutarate ↔ L-glutamate + 3''-deamino-3''-oxonicotianamine

3-methylarginine biosynthesis , L-arginine degradation XI :
L-arginine + 2-oxoglutarate ↔ L-glutamate + 5-guanidino-2-oxo-pentanoate

4-aminobutanoate degradation I , 4-aminobutanoate degradation II , 4-aminobutanoate degradation III , L-glutamate degradation IV , nicotine degradation I (pyridine pathway) :
4-aminobutanoate + 2-oxoglutarate ↔ succinate semialdehyde + L-glutamate

4-aminobutanoate degradation V :
L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+
4-aminobutanoate + 2-oxoglutarate ↔ succinate semialdehyde + L-glutamate

anaerobic energy metabolism (invertebrates, cytosol) :
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

β-alanine degradation I :
β-alanine + 2-oxoglutarate ↔ 3-oxopropanoate + L-glutamate

C4 photosynthetic carbon assimilation cycle, NAD-ME type :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

C4 photosynthetic carbon assimilation cycle, PEPCK type :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

CMP-8-amino-3,8-dideoxy-D-manno-octulosonate biosynthesis :
(4R,5R,6S,7S)-4,5,6,7-tetrahydroxy-2,8-dioxooctanoate + L-glutamate ↔ 8-amino-3,8-dideoxy-D-manno-octulosonate + 2-oxoglutarate

CMP-legionaminate biosynthesis I :
GDP-2-acetamido-2,6-dideoxy-α-D-xylo-hexos-4-ulose + L-glutamate ↔ GDP-4-amino-4,6-dideoxy-α-D-N-acetylglucosamine + 2-oxoglutarate

CMP-pseudaminate biosynthesis :
UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine + 2-oxoglutarate ↔ UDP-2-acetamido-2,6-dideoxy-β-L-arabino-hexul-4-ose + L-glutamate

coenzyme B biosynthesis :
2-oxoglutarate + acetyl-CoA + H2O ↔ (2R)-homocitrate + coenzyme A + H+

dehydrophos biosynthesis :
1-amino-2-phosphorylethylphosphonate + 2-oxoglutarate ↔ 1-oxo-2-phosphorylethylphosphonate + L-glutamate

dTDP-3-acetamido-3,6-dideoxy-α-D-galactose biosynthesis :
dTDP-3-amino-3,6-dideoxy-α-D-galactopyranose + 2-oxoglutarate ↔ dTDP-3-dehydro-6-deoxy-α-D-galactopyranose + L-glutamate

In Reactions of unknown directionality:

Not in pathways:
trans-homoaconitate + coenzyme A + H+ = 2-oxoglutarate + acetyl-CoA
N-methyl-2-oxoglutaramate + H2O = methylamine + 2-oxoglutarate
D-threo-isocitrate + NAD+ = 2-oxoglutarate + CO2 + NADH
(S)-2-hydroxyglutarate + an oxidized unknown electron acceptor = 2-oxoglutarate + an reduced unknown electron acceptor
2-hydroxyglutarate + FAD + H+ = 2-oxoglutarate + FADH2
L-glutamate + 2 an oxidized ferredoxin + H2O = ammonium + 2-oxoglutarate + 2 a reduced ferredoxin + 2 H+
(R)-2-hydroxyglutarate + an oxidized unknown electron acceptor = 2-oxoglutarate + an reduced unknown electron acceptor
(S)-2-hydroxyglutarate + NAD+ = 2-oxoglutarate + NADH + H+
2-hydroxyglutarate + NAD+ = 2-oxoglutarate + NADH + H+
(S)-3-hydroxybutanoate + 2-oxoglutarate = (R)-2-hydroxyglutarate + acetoacetate
2-oxoglutarate + coenzyme A + NADP+ = succinyl-CoA + CO2 + NADPH
2-oxoglutarate + glyoxylate + H+ = 2-hydroxy-3-oxoadipate + CO2
lauroyl-CoA + 2-oxoglutarate + H2O = 3-hydroxytetradecane-1,3,4-tricarboxylate + coenzyme A + H+
L-serine + 2-oxoglutarate = L-glutamate + hydroxypyruvate

Not in pathways:
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid
a 2-oxo carboxylate + H+ = an aldehyde + CO2
a 2-oxo carboxylate + 2 an oxidized ferredoxin + coenzyme A = an acyl-CoA + CO2 + 2 a reduced ferredoxin + H+
a (2S)-2-hydroxycarboxylate + NAD(P)+ = a 2-oxo carboxylate + NAD(P)H + H+
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an (R)-2-hydroxycarboxylate + NAD+ = a 2-oxo carboxylate + NADH + H+
a (2R)-hydroxy-carboxylate + an oxidized unknown electron acceptor = a 2-oxo carboxylate + an reduced unknown electron acceptor
a (2S)-2-hydroxycarboxylate + NAD+ = a 2-oxo carboxylate + NADH + H+
an (R)-2-hydroxycarboxylate + NADP+ = a 2-oxo carboxylate + NADPH + H+
2-oxoaldehyde + NAD+ + H2O = a 2-oxo carboxylate + NADH + 2 H+
2-oxoaldehyde + NADP+ + H2O = a 2-oxo carboxylate + NADPH + 2 H+

In Transport reactions:
2-oxoglutarate[periplasmic space] + H+[periplasmic space]2-oxoglutarate[cytosol] + H+[cytosol]

In Redox half-reactions:
a 2-oxo carboxylate[in] + ammonium[in] + 2 H+[in] + 2 e-[membrane] → a D-amino acid[in] + H2O[in]

Enzymes activated by 2-oxoglutarate, sorted by the type of activation, are:

Activator (Mechanism unknown) of: fructose bisphosphate aldolase [Baldwin78] , glutamine synthetase deadenylase [Shapiro69, Shapiro68] , isocitrate dehydrogenase phosphatase [Nimmo84]

Enzymes inhibited by 2-oxoglutarate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: citrate synthase , (R)-2-hydroxyglutarate reductase [Zhao96, Comment 1] , (S)-2-hydroxyglutarate reductase [Zhao96, Comment 1] , NADP-dependent isocitrate dehydrogenase [ContrerasShanno05] , indolepyruvate decarboxylase [Koga92]

Inhibitor (Mechanism unknown) of: N-succinyldiaminopimelate aminotransferase [Peterkofsky61] , phosphoenolpyruvate synthetase [Chulavatnatol73] , isocitrate lyase , glutamine synthetase adenylyltransferase [Ebner70, Ebner70a, Helmward89, Comment 2] , isocitrate dehydrogenase kinase [Nimmo84] , arginine kinase [Yao09] , methylglutamate dehydrogenase [Bamforth77] , pyruvate carboxylase [Mukhopadhyay98] , 3,4-dihydroxyphenylalanine oxidative deaminase [Ranjith08] , pyruvate kinase [Plaxton02] , glutamate dehydrogenase (NAD-dependent) [Bonete96]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: anditomin synthase , preandiloid B dehydrogenase , deacetoxycephalosporin C hydroxylase , deacetoxycephalosporin C synthase , deacetoxycephalosporin C hydroxylase , deacetoxycephalosporin C synthase

This compound has been characterized as an alternative substrate of the following enzymes: L-2-hydroxycarboxylate dehydrogenase (NAD+) , pyruvate:ferredoxin oxidoreductase , (2R)-3-sulfolactate dehydrogenase , pyruvate:ferredoxin oxidoreductase


References

Baldwin78: Baldwin SA, Perham RN (1978). "Novel kinetic and structural properties of the class-I D-fructose 1,6-bisphosphate aldolase from Escherichia coli (Crookes' strain)." Biochem J 1978;169(3);643-52. PMID: 348198

Bamforth77: Bamforth CW, Large PJ (1977). "Solubilization, partial purification and properties of N-methylglutamate dehydrogenase from Pseudomonas aminovorans." Biochem J 161(2);357-70. PMID: 15545

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Chulavatnatol73: Chulavatnatol M, Atkinson DE (1973). "Phosphoenolpyruvate synthetase from Escherichia coli. Effects of adenylate energy charge and modifier concentrations." J Biol Chem 248(8);2712-5. PMID: 4572511

ContrerasShanno05: Contreras-Shannon V, Lin AP, McCammon MT, McAlister-Henn L (2005). "Kinetic properties and metabolic contributions of yeast mitochondrial and cytosolic NADP+-specific isocitrate dehydrogenases." J Biol Chem 280(6);4469-75. PMID: 15574419

Ebner70: Ebner E, Wolf D, Gancedo C, Elsasser S, Holzer H (1970). "ATP: glutamine synthetase adenylyltransferase from Escherichia coli B. Purification and properties." Eur J Biochem 1970;14(3);535-44. PMID: 4920894

Ebner70a: Ebner E, Gancedo C, Holzer H "ATP:Glutamine synthetase adenylyltransferase (Escherichia coli B)." Methods in Enzymology 1970; 17A:922-927.

Helmward89: Helmward Z "Handbook of Enzyme Inhibitors. 2nd, revised and enlarged edition." Weinheim, Federal Republic of Germany ; New York, NY, USA , 1989.

Koga92: Koga J, Adachi T, Hidaka H (1992). "Purification and characterization of indolepyruvate decarboxylase. A novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae." J Biol Chem 267(22);15823-8. PMID: 1639814

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Mukhopadhyay98: Mukhopadhyay B, Stoddard SF, Wolfe RS (1998). "Purification, regulation, and molecular and biochemical characterization of pyruvate carboxylase from Methanobacterium thermoautotrophicum strain deltaH." J Biol Chem 273(9);5155-66. PMID: 9478969

Nimmo84: Nimmo GA, Nimmo HG (1984). "The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase." Eur J Biochem 1984;141(2);409-14. PMID: 6329757

Peterkofsky61: Peterkofsky B, Gilvarg C (1961). "N-Succinyl-L-diaminopimelic-glutamic transaminase." J Biol Chem 236;1432-8. PMID: 13734750

Plaxton02: Plaxton WC, Smith CR, Knowles VL (2002). "Molecular and regulatory properties of leucoplast pyruvate kinase from Brassica napus (rapeseed) suspension cells." Arch Biochem Biophys 400(1);54-62. PMID: 11913971

Ranjith08: Ranjith, N. K., Ramana, C. V., Sasikala, C. (2008). "Purification and characterization of 3,4-dihydroxyphenylalanine oxidative deaminase from Rhodobacter sphaeroides OU5." Can. J. of Microbiol. 54: 829-834.

Shapiro68: Shapiro BM, Stadtman ER (1968). "Glutamine synthetase deadenylylating enzyme." Biochem Biophys Res Commun 1968;30(1);32-7. PMID: 4866293

Shapiro69: Shapiro BM (1969). "The glutamine synthetase deadenylylating enzyme system from Escherichia coli. Resolution into two components, specific nucleotide stimulation, and cofactor requirements." Biochemistry 8(2);659-70. PMID: 4893578

Yao09: Yao CL, Ji PF, Kong P, Wang ZY, Xiang JH (2009). "Arginine kinase from Litopenaeus vannamei: cloning, expression and catalytic properties." Fish Shellfish Immunol 26(3);553-8. PMID: 19239924

Zhao96: Zhao G, Winkler ME (1996). "A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria." J Bacteriol 1996;178(1);232-9. PMID: 8550422


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Wed Jul 1, 2015, biocyc12.