Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: acetaldehyde

Synonyms: acetic aldehyde, ethanal, aldehyde, ethyl aldehyde

Superclasses: an aldehyde or ketone an aldehyde an n-alkanal

Chemical Formula: C2H4O

Molecular Weight: 44.053 Daltons

Monoisotopic Molecular Weight: 44.026214750499996 Daltons

SMILES: C[CH]=O

InChI: InChI=1S/C2H4O/c1-2-3/h2H,1H3

InChIKey: InChIKey=IKHGUXGNUITLKF-UHFFFAOYSA-N

Unification Links: CAS:75-07-0 , ChEBI:15343 , ChemSpider:172 , HMDB:HMDB00990 , IAF1260:33792 , KEGG:C00084 , MetaboLights:MTBLC15343 , PubChem:177 , UMBBD-Compounds:c0160

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 7.6844816 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

acetoin biosynthesis III :
pyruvate + acetaldehyde + H+ → acetoin + CO2
2 acetaldehyde → acetoin

ethanol degradation II , ethanol degradation IV , hypotaurine degradation , oxidative ethanol degradation III :
acetaldehyde + NAD+ + H2O → acetate + NADH + 2 H+

furaneol biosynthesis :
norfuraneol + acetaldehyde → (2E)-2-ethylidene-4-hydroxy-5-methyl-3(2H)-furanone + H2O

long chain fatty acid ester synthesis for microdiesel production :
ethanol + an ubiquinone ← acetaldehyde + an ubiquinol

NAD/NADP-NADH/NADPH cytosolic interconversion (yeast) , pyruvate fermentation to acetate VIII :
acetaldehyde + NADP+ + H2O → acetate + NADPH + 2 H+

Not in pathways:
acetaldehyde + oxygen + H2O → acetate + hydrogen peroxide + H+

NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast) :
an aldehyde + NAD+ + H2O → a carboxylate + NADH + 2 H+
an aldehyde + NADP+ + H2O → a carboxylate + NADPH + 2 H+


an aldehyde + FMNH2 + oxygen → hν + a carboxylate + FMN + H2O + 2 H+
an aldehyde + oxygen + H2O → a carboxylate + hydrogen peroxide + H+

Reactions known to produce the compound:

acetaldehyde biosynthesis I , acetaldehyde biosynthesis II , acetoin biosynthesis III , chitin degradation to ethanol , long chain fatty acid ester synthesis for microdiesel production , pyruvate fermentation to acetate VIII , pyruvate fermentation to ethanol II :
pyruvate + H+acetaldehyde + CO2

acetoin degradation :
acetoin + coenzyme A + NAD+acetaldehyde + acetyl-CoA + NADH + H+

acetylene degradation :
acetylene + H2O → acetaldehyde

alkylnitronates degradation :
ethylnitronate + oxygen → acetaldehyde + nitrite + [unspecified degradation products]

androgen biosynthesis :
17-α-hydroxypregnenolone → dehydroepiandrosterone + acetaldehyde

atrazine degradation II :
atrazine + 2 H+ + oxygen → deethylatrazine + acetaldehyde + H2O

choline degradation III :
choline → trimethylamine + acetaldehyde

cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) :
cobalt-precorrin-5A + H2O → cobalt-precorrin-5B + acetaldehyde + H+

ethanol degradation IV :
ethanol[peroxisomal lumen] + hydrogen peroxide[peroxisomal lumen]acetaldehyde[peroxisomal lumen] + 2 H2O[peroxisomal lumen]

ethanolamine utilization :
ethanolamine → ammonium + acetaldehyde

fluoroacetate and fluorothreonine biosynthesis :
fluoroacetaldehyde + L-threonine → acetaldehyde + 4-fluorothreonine

geraniol and nerol degradation :
geranial + H2O → sulcatone + acetaldehyde
neral + H2O → sulcatone + acetaldehyde

glycine biosynthesis IV , threonine degradation IV :
L-threonine → acetaldehyde + glycine

hypotaurine degradation :
2-sulfinoacetaldehyde + H2O → sulfite + acetaldehyde + H+

methylthiopropionate degradation I (cleavage) :
methylthioacryloyl-CoA + 2 H2O → methanethiol + acetaldehyde + CO2 + coenzyme A

nitroethane degradation :
nitroethane + oxygen + H2O → acetaldehyde + nitrite + hydrogen peroxide + H+

oxidative ethanol degradation III :
ethanol + NADPH + oxygen + H+acetaldehyde + NADP+ + 2 H2O

preQ0 biosynthesis :
7,8-dihydroneopterin 3'-triphosphate + H2O → 6-carboxy-5,6,7,8-tetrahydropterin + acetaldehyde + PPPi + 2 H+

triethylamine degradation :
triethylamine N-oxide + H+ → diethylamine + acetaldehyde
diethylamine N-oxide + H+ → ethylamine + acetaldehyde
ethylamine + NADPH + H+ + oxygen → acetaldehyde + ammonium + NADP+ + H2O

Not in pathways:
1-ethyladenine + 2-oxoglutarate + oxygen → adenine + CO2 + acetaldehyde + succinate

8-amino-7-oxononanoate biosynthesis II :
a long-chain acyl-[acp] + 2 a reduced flavodoxin + 3 oxygen → a pimeloyl-[acp] + an n-alkanal + 2 an oxidized flavodoxin + 3 H2O + H+

ceramide degradation :
a sphingoid 1-phosphate → phosphoryl-ethanolamine + an aldehyde

two-component alkanesulfonate monooxygenase :
an alkanesulfonate + FMNH2 + oxygen → an aldehyde + sulfite + FMN + H2O + 2 H+


a primary amine[periplasmic space] + H2O[periplasmic space] + oxygen[periplasmic space]an aldehyde[periplasmic space] + ammonium[periplasmic space] + hydrogen peroxide[periplasmic space]
an aliphatic amine + H2O + oxygen → an aldehyde + ammonium + hydrogen peroxide
a monoamine + H2O + oxygen → an aldehyde + a primary amine + hydrogen peroxide
a primary alcohol + oxygen → hydrogen peroxide + an aldehyde


a nitroalkane + oxygen + H2O → an aldehyde or ketone + nitrite + hydrogen peroxide + H+

Reactions known to both consume and produce the compound:

2'-deoxy-α-D-ribose 1-phosphate degradation :
2-deoxy-D-ribose 5-phosphate ↔ acetaldehyde + D-glyceraldehyde 3-phosphate
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

2-aminoethylphosphonate degradation I :
phosphonoacetaldehyde + H2O ↔ acetaldehyde + phosphate + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

2-oxopentenoate degradation :
4-hydroxy-2-oxopentanoate ↔ acetaldehyde + pyruvate
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

acetaldehyde biosynthesis I , acetoin degradation , chitin degradation to ethanol , ethanol degradation II , pyruvate fermentation to ethanol II :
ethanol + NAD+acetaldehyde + NADH + H+

acetylene degradation :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

ethanol degradation I :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

heterolactic fermentation :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

mixed acid fermentation :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

pyruvate fermentation to ethanol I :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

pyruvate fermentation to ethanol III :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

superpathway of fermentation (Chlamydomonas reinhardtii) :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

threonine degradation IV , triethylamine degradation :
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

Not in pathways:
L-allo-threonine ↔ glycine + acetaldehyde
DL-allothreonine ↔ acetaldehyde + glycine


a primary alcohol + NAD+an aldehyde + NADH + H+

In Reactions of unknown directionality:

Not in pathways:
(24R,241R)-fucosterol epoxide = desmosterol + acetaldehyde
(S)-lactate = acetaldehyde + formate
17-α-hydroxyprogesterone = androst-4-ene-3,17-dione + acetaldehyde
D-ribose 5-phosphate + acetoin = 1-deoxy-D-altro-heptulose 7-phosphate + acetaldehyde
D-threonine = glycine + acetaldehyde
D-allothreonine = glycine + acetaldehyde
ethanol + NADP+ = acetaldehyde + NADPH + H+
ethanol + an oxidized electron acceptor = acetaldehyde + a reduced electron acceptor
phosphoryl-ethanolamine + H2O = ammonium + acetaldehyde + phosphate
simazine + a reduced electron acceptor + oxygen = deethylsimazine + acetaldehyde + an oxidized electron acceptor + H2O
ethanol + 2 an oxidized c-type cytochrome = acetaldehyde + 2 a reduced c-type cytochrome + 2 H+


an n-alkanal + NAD(P)+ = an alk-2-enal + NAD(P)H + H+
an n-alkanal + NADP+ = an alk-2-enal + NADPH + H+
a 7,8-dihydroxy-long-chain acyl-[acp] + a reduced flavodoxin + oxygen = 7-oxoheptanoyl-[acyl-carrier-protein] + an n-alkanal + an oxidized flavodoxin + 2 H2O


an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + an oxidized electron acceptor + H2O = a carboxylate + a reduced electron acceptor + H+
an aldehyde + pyrroloquinoline quinone + H2O = a carboxylate + pyrroloquinoline quinol + H+
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
an aliphatic amine + an oxidized cytochrome c550 + H2O = an aldehyde + ammonium + a reduced cytochrome c550
an alkylamine + 2 an oxidized cytochrome c550 + H2O = an aldehyde + ammonium + 2 a reduced cytochrome c550
a 2-oxo carboxylate + H+ = an aldehyde + CO2
an alcohol + NADP+ = an aldehyde + NADPH + H+
a primary alcohol + an oxidized electron acceptor = an aldehyde + a reduced electron acceptor
a primary alcohol + 2 an oxidized cytochrome cL = an aldehyde + 2 a reduced cytochrome cL
an alcohol + NAD(P)+ = an aldehyde + NAD(P)H + H+
a primary alcohol + an oxidized azurin = an aldehyde + a reduced azurin
a 1-O-(alk-1-enyl)glycero-3-phosphocholine + H2O = sn-glycero-3-phosphocholine + an aldehyde
a 1-alkenylglycerophosphoethanolamine + H2O = sn-glycero-3-phosphoethanolamine + an aldehyde
a primary alcohol + 2 an oxidized cytochrome c550 = an aldehyde + 2 a reduced cytochrome c550

Enzymes inhibited by acetaldehyde, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: betaine aldehyde dehydrogenase [Falkenberg90] , 2-keto-4-hydroxyglutarate aldolase

Inhibitor (Mechanism unknown) of: ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase [Van93]


References

Falkenberg90: Falkenberg P, Strom AR (1990). "Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli." Biochim Biophys Acta 1990;1034(3);253-9. PMID: 2194570

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Van93: Van Ophem PW, Van Beeumen J, Duine JA (1993). "Nicotinoprotein [NAD(P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica." Eur J Biochem 212(3);819-26. PMID: 8385013


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Thu Nov 27, 2014, biocyc13.