Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015
twitter

MetaCyc Compound: acetaldehyde

Synonyms: acetic aldehyde, ethanal, aldehyde, ethyl aldehyde

Superclasses: an aldehyde or ketone an aldehyde an n-alkanal

Chemical Formula: C2H4O

Molecular Weight: 44.053 Daltons

Monoisotopic Molecular Weight: 44.026214750499996 Daltons

acetaldehyde compound structure

SMILES: C[CH]=O

InChI: InChI=1S/C2H4O/c1-2-3/h2H,1H3

InChIKey: InChIKey=IKHGUXGNUITLKF-UHFFFAOYSA-N

Unification Links: CAS:75-07-0 , ChEBI:15343 , ChemSpider:172 , HMDB:HMDB00990 , IAF1260:33792 , KEGG:C00084 , MetaboLights:MTBLC15343 , PubChem:177 , UMBBD-Compounds:c0160

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 7.6844816 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

acetoin biosynthesis III :
pyruvate + acetaldehyde + H+ → acetoin + CO2
2 acetaldehyde → acetoin

ethanol degradation II , ethanol degradation IV , hypotaurine degradation , oxidative ethanol degradation III :
acetaldehyde + NAD+ + H2O → acetate + NADH + 2 H+

furaneol biosynthesis :
norfuraneol + acetaldehyde → (2E)-2-ethylidene-4-hydroxy-5-methyl-3(2H)-furanone + H2O

long chain fatty acid ester synthesis for microdiesel production :
ethanol + a ubiquinone ← acetaldehyde + an ubiquinol

NAD/NADP-NADH/NADPH cytosolic interconversion (yeast) , pyruvate fermentation to acetate VIII :
acetaldehyde + NADP+ + H2O → acetate + NADPH + 2 H+

Not in pathways:
acetaldehyde + oxygen + H2O → acetate + hydrogen peroxide + H+

NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast) :
an aldehyde + NAD+ + H2O → a carboxylate + NADH + 2 H+
an aldehyde + NADP+ + H2O → a carboxylate + NADPH + 2 H+

Not in pathways:
an aldehyde + FMNH2 + oxygen → hν + a carboxylate + FMN + H2O + 2 H+
an aldehyde + oxygen + H2O → a carboxylate + hydrogen peroxide + H+

Reactions known to produce the compound:

acetaldehyde biosynthesis I , acetaldehyde biosynthesis II , acetoin biosynthesis III , chitin degradation to ethanol , long chain fatty acid ester synthesis for microdiesel production , pyruvate fermentation to acetate VIII , pyruvate fermentation to ethanol II :
pyruvate + H+acetaldehyde + CO2

acetoin degradation :
acetoin + coenzyme A + NAD+acetaldehyde + acetyl-CoA + NADH + H+

acetylene degradation :
acetylene + H2O → acetaldehyde

alkylnitronates degradation :
ethylnitronate + oxygen → acetaldehyde + nitrite + [unspecified degradation products]

androgen biosynthesis :
17-α-hydroxypregnenolone → dehydroepiandrosterone + acetaldehyde

atrazine degradation II :
atrazine + an reduced unknown electron acceptor + oxygen → deethylatrazine + acetaldehyde + an oxidized unknown electron acceptor + H2O

choline degradation III :
choline → trimethylamine + acetaldehyde

cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) :
cobalt-precorrin-5A + H2O → cobalt-precorrin-5B + acetaldehyde + H+

ethanol degradation IV :
ethanol + hydrogen peroxide → acetaldehyde + 2 H2O

ethanolamine utilization :
ethanolamine → ammonium + acetaldehyde

fluoroacetate and fluorothreonine biosynthesis :
fluoroacetaldehyde + L-threonine → acetaldehyde + 4-fluorothreonine

geraniol and nerol degradation :
geranial + H2O → sulcatone + acetaldehyde
neral + H2O → sulcatone + acetaldehyde

glycine biosynthesis IV , L-threonine degradation IV :
L-threonine → acetaldehyde + glycine

hypotaurine degradation :
2-sulfinoacetaldehyde + H2O → sulfite + acetaldehyde + H+

methylthiopropanoate degradation I (cleavage) :
3-(methylthio)acryloyl-CoA + 2 H2O → methanethiol + acetaldehyde + CO2 + coenzyme A

nitroethane degradation :
nitroethane + oxygen + H2O → acetaldehyde + nitrite + hydrogen peroxide + H+

oxidative ethanol degradation III :
ethanol + NADPH + oxygen + H+acetaldehyde + NADP+ + 2 H2O

preQ0 biosynthesis :
7,8-dihydroneopterin 3'-triphosphate + H2O → 6-carboxy-5,6,7,8-tetrahydropterin + acetaldehyde + PPPi + 2 H+

triethylamine degradation :
triethylamine N-oxide + H+ → diethylamine + acetaldehyde
diethylamine N-oxide + H+ → ethylamine + acetaldehyde
ethylamine + NADPH + H+ + oxygen → acetaldehyde + ammonium + NADP+ + H2O

Not in pathways:
1-ethyladenine + 2-oxoglutarate + oxygen → adenine + CO2 + acetaldehyde + succinate
simazine + an reduced unknown electron acceptor + oxygen → deethylsimazine + acetaldehyde + an oxidized unknown electron acceptor + H2O

8-amino-7-oxononanoate biosynthesis II :
a long-chain acyl-[acp] + 2 a reduced flavodoxin + 3 oxygen → a pimeloyl-[acp] + an n-alkanal + 2 an oxidized flavodoxin + 3 H2O + H+

Reactions known to both consume and produce the compound:

2'-deoxy-α-D-ribose 1-phosphate degradation :
2-deoxy-D-ribose 5-phosphate ↔ acetaldehyde + D-glyceraldehyde 3-phosphate
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

2-aminoethylphosphonate degradation I :
phosphonoacetaldehyde + H2O ↔ acetaldehyde + phosphate + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

2-oxopentenoate degradation :
4-hydroxy-2-oxopentanoate ↔ acetaldehyde + pyruvate
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

acetaldehyde biosynthesis I , chitin degradation to ethanol , ethanol degradation II , pyruvate fermentation to ethanol II :
ethanol + NAD+acetaldehyde + NADH + H+

acetylene degradation :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

ethanol degradation I :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

heterolactic fermentation :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

L-threonine degradation IV , triethylamine degradation :
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

mixed acid fermentation :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

pyruvate fermentation to ethanol I :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

pyruvate fermentation to ethanol III :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

superpathway of fermentation (Chlamydomonas reinhardtii) :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

Not in pathways:
L-allo-threonine ↔ glycine + acetaldehyde
DL-allothreonine ↔ acetaldehyde + glycine

Not in pathways:
a primary alcohol + NAD+an aldehyde + NADH + H+

In Reactions of unknown directionality:

Not in pathways:
(24R,241R)-fucosterol epoxide = desmosterol + acetaldehyde
(S)-lactate = acetaldehyde + formate
17-α-hydroxyprogesterone = androst-4-ene-3,17-dione + acetaldehyde
D-ribose 5-phosphate + acetoin = 1-deoxy-D-altro-heptulose 7-phosphate + acetaldehyde
D-threonine = glycine + acetaldehyde
D-allothreonine = glycine + acetaldehyde
ethanol + NADP+ = acetaldehyde + NADPH + H+
ethanol + an oxidized unknown electron acceptor = acetaldehyde + an reduced unknown electron acceptor
O-phosphoethanolamine + H2O = ammonium + acetaldehyde + phosphate
ethanol + 2 an oxidized c-type cytochrome = acetaldehyde + 2 a reduced c-type cytochrome + 2 H+
3-oxopropanoate + H+ = acetaldehyde + CO2

Not in pathways:
an n-alkanal + NAD(P)+ = an alk-2-enal + NAD(P)H + H+
an n-alkanal + NADP+ = an alk-2-enal + NADPH + H+

Not in pathways:
an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + an oxidized unknown electron acceptor + H2O = a carboxylate + an reduced unknown electron acceptor + H+
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
an aldehyde + an electron-transfer quinone + H2O = a carboxylate + an electron-transfer quinol + H+
a primary alcohol + 2 an oxidized cytochrome cL = an aldehyde + 2 a reduced cytochrome cL + 2 H+
an aliphatic amine + an oxidized cytochrome c550 + H2O = an aldehyde + ammonium + a reduced cytochrome c550
an alkylamine + 2 an oxidized cytochrome c550 + H2O = an aldehyde + ammonium + 2 a reduced cytochrome c550
a 2-oxo carboxylate + H+ = an aldehyde + CO2
an alcohol + NADP+ = an aldehyde + NADPH + H+
a primary alcohol + an oxidized unknown electron acceptor = an aldehyde + an reduced unknown electron acceptor
an alcohol + NAD(P)+ = an aldehyde + NAD(P)H + H+

Enzymes inhibited by acetaldehyde, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: betaine aldehyde dehydrogenase [Falkenberg90] , 2-keto-4-hydroxyglutarate aldolase

Inhibitor (Mechanism unknown) of: ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase [Van93]

This compound has been characterized as an alternative substrate of the following enzymes: 2-aminomuconate-semialdehyde dehydrogenase , methylglyoxal reductase (NADPH-dependent) , L-glutamate γ-semialdehyde dehydrogenase , aldehyde reductase , α-ketoglutaric semialdehyde dehydrogenase , fuculose-1-phosphate aldolase , methylglyoxal oxidase , 2-aminomuconic 6-semialdehyde dehydrogenase , lactaldehyde dehydrogenase , perillyl aldehyde monooxygenase , γ-trimethylaminobutyraldehyde dehydrogenase , D-glyceraldehyde dehydrogenase , NAD+ L-lactaldehyde dehydrogenase , 2-hydroxymuconate 6-semialdehyde dehydrogenase , rhamnulose-1-phosphate aldolase , aldehyde reductase


References

Falkenberg90: Falkenberg P, Strom AR (1990). "Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli." Biochim Biophys Acta 1990;1034(3);253-9. PMID: 2194570

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Van93: Van Ophem PW, Van Beeumen J, Duine JA (1993). "Nicotinoprotein [NAD(P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica." Eur J Biochem 212(3);819-26. PMID: 8385013


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Mon Aug 31, 2015, biocyc13.