Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Compound: acetaldehyde

Synonyms: acetic aldehyde, ethanal, aldehyde, ethyl aldehyde

Superclasses: an aldehyde or ketone an aldehyde an n-alkanal

Chemical Formula: C2H4O

Molecular Weight: 44.053 Daltons

Monoisotopic Molecular Weight: 44.026214750499996 Daltons

SMILES: C[CH]=O

InChI: InChI=1S/C2H4O/c1-2-3/h2H,1H3

InChIKey: InChIKey=IKHGUXGNUITLKF-UHFFFAOYSA-N

Unification Links: CAS:75-07-0 , ChEBI:15343 , ChemSpider:172 , HMDB:HMDB00990 , IAF1260:33792 , KEGG:C00084 , MetaboLights:MTBLC15343 , PubChem:177 , UMBBD-Compounds:c0160

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 7.6844816 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

acetoin biosynthesis III :
pyruvate + acetaldehyde + H+ → acetoin + CO2
2 acetaldehyde → acetoin

ethanol degradation II , ethanol degradation IV , hypotaurine degradation , oxidative ethanol degradation III :
acetaldehyde + NAD+ + H2O → acetate + NADH + 2 H+

furaneol biosynthesis :
norfuraneol + acetaldehyde → (2E)-2-ethylidene-4-hydroxy-5-methyl-3(2H)-furanone + H2O

long chain fatty acid ester synthesis for microdiesel production :
ethanol + an ubiquinone ← acetaldehyde + an ubiquinol

NAD/NADP-NADH/NADPH cytosolic interconversion (yeast) , pyruvate fermentation to acetate VIII :
acetaldehyde + NADP+ + H2O → acetate + NADPH + 2 H+

Not in pathways:
acetaldehyde + oxygen + H2O → acetate + hydrogen peroxide + H+

NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast) :
an aldehyde + NAD+ + H2O → a carboxylate + NADH + 2 H+
an aldehyde + NADP+ + H2O → a carboxylate + NADPH + 2 H+


an aldehyde + FMNH2 + oxygen → hν + a carboxylate + FMN + H2O + 2 H+
an aldehyde + oxygen + H2O → a carboxylate + hydrogen peroxide + H+

Reactions known to produce the compound:

acetaldehyde biosynthesis I , acetaldehyde biosynthesis II , acetoin biosynthesis III , chitin degradation to ethanol , long chain fatty acid ester synthesis for microdiesel production , pyruvate fermentation to acetate VIII , pyruvate fermentation to ethanol II :
pyruvate + H+acetaldehyde + CO2

acetoin degradation :
acetoin + coenzyme A + NAD+acetaldehyde + acetyl-CoA + NADH + H+

acetylene degradation :
acetylene + H2O → acetaldehyde

alkylnitronates degradation :
ethylnitronate + oxygen → acetaldehyde + nitrite + [unspecified degradation products]

androgen biosynthesis :
17-α-hydroxypregnenolone → dehydroepiandrosterone + acetaldehyde

atrazine degradation II :
atrazine + 2 H+ + oxygen → deethylatrazine + acetaldehyde + H2O

choline degradation III :
choline → trimethylamine + acetaldehyde

cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) :
cobalt-precorrin-5A + H2O → cobalt-precorrin-5B + acetaldehyde + H+

ethanol degradation IV :
ethanol[peroxisomal lumen] + hydrogen peroxide[peroxisomal lumen]acetaldehyde[peroxisomal lumen] + 2 H2O[peroxisomal lumen]

ethanolamine utilization :
ethanolamine → ammonium + acetaldehyde

fluoroacetate and fluorothreonine biosynthesis :
fluoroacetaldehyde + L-threonine → acetaldehyde + 4-fluorothreonine

geraniol and nerol degradation :
geranial + H2O → sulcatone + acetaldehyde
neral + H2O → sulcatone + acetaldehyde

glycine biosynthesis IV , threonine degradation IV :
L-threonine → acetaldehyde + glycine

hypotaurine degradation :
2-sulfinoacetaldehyde + H2O → sulfite + acetaldehyde + H+

methylthiopropionate degradation I (cleavage) :
methylthioacryloyl-CoA + 2 H2O → methanethiol + acetaldehyde + CO2 + coenzyme A

nitroethane degradation :
nitroethane + oxygen + H2O → acetaldehyde + nitrite + hydrogen peroxide + H+

oxidative ethanol degradation III :
ethanol + NADPH + oxygen + H+acetaldehyde + NADP+ + 2 H2O

preQ0 biosynthesis :
7,8-dihydroneopterin 3'-triphosphate + H2O → 6-carboxy-5,6,7,8-tetrahydropterin + acetaldehyde + PPPi + 2 H+

triethylamine degradation :
triethylamine N-oxide + H+ → diethylamine + acetaldehyde
diethylamine N-oxide + H+ → ethylamine + acetaldehyde
ethylamine + NADPH + H+ + oxygen → acetaldehyde + ammonium + NADP+ + H2O

Not in pathways:
1-ethyladenine + 2-oxoglutarate + oxygen → adenine + CO2 + acetaldehyde + succinate

8-amino-7-oxononanoate biosynthesis II :
a long-chain acyl-[acp] + 2 a reduced flavodoxin + 3 oxygen → a pimeloyl-[acp] + an n-alkanal + 2 an oxidized flavodoxin + 3 H2O + H+

ceramide degradation :
a sphingoid 1-phosphate → phosphoryl-ethanolamine + an aldehyde

two-component alkanesulfonate monooxygenase :
an alkanesulfonate + FMNH2 + oxygen → an aldehyde + sulfite + FMN + H2O + 2 H+


a primary amine[periplasmic space] + H2O[periplasmic space] + oxygen[periplasmic space]an aldehyde[periplasmic space] + ammonium[periplasmic space] + hydrogen peroxide[periplasmic space]
an aliphatic amine + H2O + oxygen → an aldehyde + ammonium + hydrogen peroxide
a monoamine + H2O + oxygen → an aldehyde + a primary amine + hydrogen peroxide
a primary alcohol + oxygen → hydrogen peroxide + an aldehyde


a nitroalkane + oxygen + H2O → an aldehyde or ketone + nitrite + hydrogen peroxide + H+

Reactions known to both consume and produce the compound:

2'-deoxy-α-D-ribose 1-phosphate degradation :
2-deoxy-D-ribose 5-phosphate ↔ acetaldehyde + D-glyceraldehyde 3-phosphate
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

2-aminoethylphosphonate degradation I :
phosphonoacetaldehyde + H2O ↔ acetaldehyde + phosphate + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

2-oxopentenoate degradation :
4-hydroxy-2-oxopentanoate ↔ acetaldehyde + pyruvate
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

acetaldehyde biosynthesis I , acetoin degradation , chitin degradation to ethanol , ethanol degradation II , pyruvate fermentation to ethanol II :
ethanol + NAD+acetaldehyde + NADH + H+

acetylene degradation :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

ethanol degradation I :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

heterolactic fermentation :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

mixed acid fermentation :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

pyruvate fermentation to ethanol I :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

pyruvate fermentation to ethanol III :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

superpathway of fermentation (Chlamydomonas reinhardtii) :
ethanol + NAD+acetaldehyde + NADH + H+
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

threonine degradation IV , triethylamine degradation :
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

Not in pathways:
L-allo-threonine ↔ glycine + acetaldehyde
DL-allothreonine ↔ acetaldehyde + glycine


a primary alcohol + NAD+an aldehyde + NADH + H+

In Reactions of unknown directionality:

Not in pathways:
(24R,241R)-fucosterol epoxide = desmosterol + acetaldehyde
(S)-lactate = acetaldehyde + formate
17-α-hydroxyprogesterone = androst-4-ene-3,17-dione + acetaldehyde
D-ribose 5-phosphate + acetoin = 1-deoxy-D-altro-heptulose 7-phosphate + acetaldehyde
D-threonine = glycine + acetaldehyde
D-allothreonine = glycine + acetaldehyde
ethanol + NADP+ = acetaldehyde + NADPH + H+
ethanol + an oxidized electron acceptor = acetaldehyde + a reduced electron acceptor
phosphoryl-ethanolamine + H2O = ammonium + acetaldehyde + phosphate
simazine + a reduced electron acceptor + oxygen = deethylsimazine + acetaldehyde + an oxidized electron acceptor + H2O
ethanol + 2 an oxidized c-type cytochrome = acetaldehyde + 2 a reduced c-type cytochrome + 2 H+


an n-alkanal + NAD(P)+ = an alk-2-enal + NAD(P)H + H+
an n-alkanal + NADP+ = an alk-2-enal + NADPH + H+
a 7,8-dihydroxy-long-chain acyl-[acp] + a reduced flavodoxin + oxygen = 7-oxoheptanoyl-[acyl-carrier-protein] + an n-alkanal + an oxidized flavodoxin + 2 H2O


an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + an oxidized electron acceptor + H2O = a carboxylate + a reduced electron acceptor + H+
an aldehyde + pyrroloquinoline quinone + H2O = a carboxylate + pyrroloquinoline quinol + H+
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
an aliphatic amine + an oxidized cytochrome c550 + H2O = an aldehyde + ammonium + a reduced cytochrome c550
an alkylamine + 2 an oxidized cytochrome c550 + H2O = an aldehyde + ammonium + 2 a reduced cytochrome c550
a 2-oxo carboxylate + H+ = an aldehyde + CO2
an alcohol + NADP+ = an aldehyde + NADPH + H+
a primary alcohol + an oxidized electron acceptor = an aldehyde + a reduced electron acceptor
a primary alcohol + 2 an oxidized cytochrome cL = an aldehyde + 2 a reduced cytochrome cL
an alcohol + NAD(P)+ = an aldehyde + NAD(P)H + H+
a primary alcohol + an oxidized azurin = an aldehyde + a reduced azurin
a 1-O-(alk-1-enyl)glycero-3-phosphocholine + H2O = sn-glycero-3-phosphocholine + an aldehyde
a 1-alkenylglycerophosphoethanolamine + H2O = sn-glycero-3-phosphoethanolamine + an aldehyde
a primary alcohol + 2 an oxidized cytochrome c550 = an aldehyde + 2 a reduced cytochrome c550

Enzymes inhibited by acetaldehyde, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: betaine aldehyde dehydrogenase [Falkenberg90] , 2-keto-4-hydroxyglutarate aldolase

Inhibitor (Mechanism unknown) of: ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase [Van93]


References

Falkenberg90: Falkenberg P, Strom AR (1990). "Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli." Biochim Biophys Acta 1990;1034(3);253-9. PMID: 2194570

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Van93: Van Ophem PW, Van Beeumen J, Duine JA (1993). "Nicotinoprotein [NAD(P)-containing] alcohol/aldehyde oxidoreductases. Purification and characterization of a novel type from Amycolatopsis methanolica." Eur J Biochem 212(3);819-26. PMID: 8385013


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sat Dec 20, 2014, BIOCYC14B.