Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: S-adenosyl-L-homocysteine

Abbrev Name: SAH

Synonyms: S-adenosylhomocysteine, 2-S-adenosyl-L-homocysteine, AdoHcy, 2-S-adenosyl-L-homocysteine, S-adenosyl-homocysteine, S-adenosylhomocysteine, adenosyl-homo-cys, adenosylhomocysteine, adenosylhomo-cys, SAH

Superclasses: an amino acid or its derivative an amino acid an alpha amino acid a non-standard alpha amino acid

Chemical Formula: C14H20N6O5S

Molecular Weight: 384.41 Daltons

Monoisotopic Molecular Weight: 384.1215884737 Daltons

SMILES: C(SCC3(C(O)C(O)C(N2(C1(N=CN=C(N)C=1N=C2)))O3))CC(C([O-])=O)[N+]

InChI: InChI=1S/C14H20N6O5S/c15-6(14(23)24)1-2-26-3-7-9(21)10(22)13(25-7)20-5-19-8-11(16)17-4-18-12(8)20/h4-7,9-10,13,21-22H,1-3,15H2,(H,23,24)(H2,16,17,18)/t6-,7+,9+,10+,13+/m0/s1

InChIKey: InChIKey=ZJUKTBDSGOFHSH-WFMPWKQPSA-N

Unification Links: CAS:979-92-0 , ChEBI:57856 , HMDB:HMDB00939 , IAF1260:33543 , KEGG:C00021 , MetaboLights:MTBLC57856 , PubChem:50986259

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 84.0534 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

autoinducer AI-2 biosynthesis I , autoinducer AI-2 biosynthesis II (Vibrio) , S-adenosyl-L-methionine cycle I :
S-adenosyl-L-homocysteine + H2O ← S-ribosyl-L-homocysteine + adenine

Reactions known to produce the compound:

(S)-reticuline biosynthesis I :
(S)-norcoclaurine + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + (S)-coclaurine + H+
3'-hydroxy-N-methyl-(S)-coclaurine + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + (S)-reticuline + H+
(S)-coclaurine + S-adenosyl-L-methionine → (S)-N-methylcoclaurine + S-adenosyl-L-homocysteine + H+

(S)-reticuline biosynthesis II :
S-norlaudanosoline + 3 S-adenosyl-L-methionine → (S)-reticuline + 3 S-adenosyl-L-homocysteine + 3 H+

1,3,5-trimethoxybenzene biosynthesis :
phloroglucinol + S-adenosyl-L-methionine → 3,5-dihydroxyanisole + S-adenosyl-L-homocysteine + H+
3,5-dihydroxyanisole + S-adenosyl-L-methionine → 3,5-dimethoxyphenol + S-adenosyl-L-homocysteine + H+
3,5-dimethoxyphenol + S-adenosyl-L-methionine → 1,3,5-trimethoxybenzene + S-adenosyl-L-homocysteine + H+

2-methylisoborneol biosynthesis :
S-adenosyl-L-methionine + geranyl diphosphate → S-adenosyl-L-homocysteine + (E)-2-methylgeranyl diphosphate + H+

26,27-dehydrozymosterol metabolism :
26,27-dehydrozymosterol + S-adenosyl-L-methionine → 24-alkyl sterol 1 + S-adenosyl-L-homocysteine
26,27-dehydrozymosterol + methanol + S-adenosyl-L-methionine + H+ → 24-alkyl sterol 2 + S-adenosyl-L-homocysteine + methyl-group
26,27-dehydrozymosterol + methanol + S-adenosyl-L-methionine + H+ → 24-alkyl sterol 3 + S-adenosyl-L-homocysteine + methyl-group

3,5-dimethoxytoluene biosynthesis :
3-methoxy-5-hydroxytoluene + S-adenosyl-L-methionine → 3,5-dimethoxytoluene + S-adenosyl-L-homocysteine + H+
orcinol + S-adenosyl-L-methionine → 3-methoxy-5-hydroxytoluene + S-adenosyl-L-homocysteine + H+

3-methylarginine biosynthesis :
2-ketoarginine + S-adenosyl-L-methionine → 5-guanidino-3-methyl-2-oxo-pentanoate + S-adenosyl-L-homocysteine + H+

5-(carboxymethoxy)uridine biosynthesis :
a 5-hydroxyuridine34 in tRNA + carboxy-S-adenosyl-L-methionine → a 5-(carboxymethoxy)uridine34 in tRNA + S-adenosyl-L-homocysteine + H+

6-gingerol biosynthesis :
1-(3,4-dihydroxyphenyl)-5-hydroxy-3-decanone + S-adenosyl-L-methionine → 6-gingerol + S-adenosyl-L-homocysteine + H+

6-methoxymellein biosynthesis :
6-hydroxymellein + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + 6-methoxymellein + H+

7-(3-amino-3-carboxypropyl)-wyosine biosynthesis :
guanine37 in tRNAPhe + S-adenosyl-L-methionine → N1-methylguanine37 in tRNAPhe + S-adenosyl-L-homocysteine + H+
S-adenosyl-L-methionine + 7-[(3S)-3-amino-3-carboxypropyl]-4-demethylwyosine37 in tRNAPheS-adenosyl-L-homocysteine + 7-[(3S)-(3-amino-3-carboxypropyl)]-wyosine37 in tRNAPhe + H+

7-dehydroporiferasterol biosynthesis :
S-adenosyl-L-methionine + cycloartenol → S-adenosyl-L-homocysteine + 24-methylenecycloartanol + H+

8-amino-7-oxononanoate biosynthesis I :
a malonyl-[acp] + S-adenosyl-L-methionine → a malonyl-[acp] methyl ester + S-adenosyl-L-homocysteine

acacetin biosynthesis :
apigenin + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + acacetin + H+

aclacinomycin biosynthesis :
S-adenosyl-L-methionine + aklanonate → S-adenosyl-L-homocysteine + methyl aklanonate

acridone alkaloid biosynthesis , N-methylanthraniloyl-β-D-glucopyranose biosynthesis , superpathway avenacin A biosynthesis :
anthranilate + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + N-methylanthranilate + H+

aflatoxins B1 and G1 biosynthesis :
sterigmatocystin + S-adenosyl-L-methionine → 8-O-methylsterigmatocystin + S-adenosyl-L-homocysteine + H+

aflatoxins B2 and G2 biosynthesis :
dihydrodemethylsterigmatocystin + S-adenosyl-L-methionine → dihydrosterigmatocystin + S-adenosyl-L-homocysteine + H+
dihydrosterigmatocystin + S-adenosyl-L-methionine → 8-O-methyldihydrosterigmatocystin + S-adenosyl-L-homocysteine + H+

ajmaline and sarpagine biosynthesis :
norajmaline + S-adenosyl-L-methionine → ajmaline + S-adenosyl-L-homocysteine + H+
17-O-acetylnorajmaline + S-adenosyl-L-methionine → 17-O-acetylajmaline + S-adenosyl-L-homocysteine

arsenate detoxification I (glutaredoxin) :
arsenite + S-adenosyl-L-methionine → methylarsonate + S-adenosyl-L-homocysteine + H+
S-adenosyl-L-methionine + methylarsonite → S-adenosyl-L-homocysteine + cacodylate + 2 H+

autoinducer AI-2 biosynthesis I , autoinducer AI-2 biosynthesis II (Vibrio) , methionine degradation I (to homocysteine) , S-adenosyl-L-methionine cycle I , S-adenosyl-L-methionine cycle II :
S-adenosyl-L-methionine + a demethylated methyl acceptor → S-adenosyl-L-homocysteine + a methylated methyl acceptor + H+

berberine biosynthesis :
(S)-scoulerine + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + S-tetrahydrocolumbamine + H+

β-alanine betaine biosynthesis :
β-alanine + S-adenosyl-L-methionine → N-methyl-β-alanine + S-adenosyl-L-homocysteine + H+
N-methyl-β-alanine + S-adenosyl-L-methionine → N,N-dimethyl-β-alanine + S-adenosyl-L-homocysteine + H+
N,N-dimethyl-β-alanine + S-adenosyl-L-methionine → β-alanine betaine + S-adenosyl-L-homocysteine + H+

betaxanthin biosynthesis :
S-adenosyl-L-methionine + dopamine → S-adenosyl-L-homocysteine + 3-methoxytyramine + H+

bixin biosynthesis :
norbixin + S-adenosyl-L-methionine → bixin + S-adenosyl-L-homocysteine
bixin + S-adenosyl-L-methionine → bixin dimethyl ester + S-adenosyl-L-homocysteine

botryococcenes and methylated squalene biosynthesis :
C33 botryococcene + S-adenosyl-L-methionine → a C34 botryococcenes + S-adenosyl-L-homocysteine + H+
3,20-dimethyl-1,2,21,22-tetradehydro-2,3,20,21-tetrahydrobotryococcene + S-adenosyl-L-methionine → C33 botryococcene + S-adenosyl-L-homocysteine + H+
squalene + S-adenosyl-L-methionine → 3-methyl-1,2-didehydro-2,3-dihydrosqualene + S-adenosyl-L-homocysteine + H+
3-methyl-1,2-didehydro-2,3-dihydrosqualene + S-adenosyl-L-methionine → 3,22-dimethyl-1,2,23,24-tetradehydro-2,3,22,23-tetrahydrosqualene + S-adenosyl-L-homocysteine + H+
C30 botryococcene + S-adenosyl-L-methionine → showacene + S-adenosyl-L-homocysteine + H+
showacene + S-adenosyl-L-methionine → 3,20-dimethyl-1,2,21,22-tetradehydro-2,3,20,21-tetrahydrobotryococcene + S-adenosyl-L-homocysteine + H+

brassicicene C biosynthesis :
fusicocca-1,10(14)-diene-3,8β,16-triol + S-adenosyl-L-methionine → fusicocca-1,10(14)-diene-16-(hydroxymethyl)-3,8β-diol + S-adenosyl-L-homocysteine + H+

caffeine biosynthesis I :
xanthosine + S-adenosyl-L-methionine → 7-methylxanthosine + S-adenosyl-L-homocysteine + H+
7-methylxanthine + S-adenosyl-L-methionine → theobromine + S-adenosyl-L-homocysteine + H+
theobromine + S-adenosyl-L-methionine → caffeine + S-adenosyl-L-homocysteine + H+

caffeine biosynthesis II (via paraxanthine) :
xanthosine + S-adenosyl-L-methionine → 7-methylxanthosine + S-adenosyl-L-homocysteine + H+
7-methylxanthine + S-adenosyl-L-methionine → paraxanthine + S-adenosyl-L-homocysteine + H+
paraxanthine + S-adenosyl-L-methionine → caffeine + S-adenosyl-L-homocysteine + H+

capsaicin biosynthesis , chlorogenic acid biosynthesis I , coumarins biosynthesis (engineered) , scopoletin biosynthesis :
caffeoyl-CoA + S-adenosyl-L-methionine → feruloyl-CoA + S-adenosyl-L-homocysteine + H+

catecholamine biosynthesis :
S-adenosyl-L-methionine + (R)-noradrenaline → S-adenosyl-L-homocysteine + (R)-adrenaline + H+

cephamycin C biosynthesis :
7-α-hydroxy-O-carbamoyl-deacetylcephalosporin C + S-adenosyl-L-methionine → cephamycin C + S-adenosyl-L-homocysteine + H+

chanoclavine I aldehyde biosynthesis :
4-(3-methylbut-2-enyl)-L-tryptophan + S-adenosyl-L-methionine → 4-(3-methylbut-2-enyl)-L-abrine + S-adenosyl-L-homocysteine + H+

chlorophyllide a biosynthesis I (aerobic, light-dependent) , chlorophyllide a biosynthesis II (anaerobic) , chlorophyllide a biosynthesis III (aerobic, light independent) :
Mg-protoporphyrin + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + magnesium-protoporphyrin IX 13-monomethyl ester

choline biosynthesis I :
phosphoryl-ethanolamine + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + N-methylethanolamine phosphate + H+
N-methylethanolamine phosphate + S-adenosyl-L-methionine → N-dimethylethanolamine phosphate + S-adenosyl-L-homocysteine + H+
N-dimethylethanolamine phosphate + S-adenosyl-L-methionine → phosphocholine + S-adenosyl-L-homocysteine + H+

choline biosynthesis II :
ethanolamine + S-adenosyl-L-methionine → N-monomethylethanolamine + S-adenosyl-L-homocysteine + H+
N-monomethylethanolamine + S-adenosyl-L-methionine → N-dimethylethanolamine + S-adenosyl-L-homocysteine + H+
N-dimethylethanolamine + S-adenosyl-L-methionine → choline + S-adenosyl-L-homocysteine + H+

chrysoeriol biosynthesis :
luteolin + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + chrysoeriol + H+

cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) :
S-adenosyl-L-methionine + cobalt-sirohydrochlorin → S-adenosyl-L-homocysteine + cobalt-factor III + H+
S-adenosyl-L-methionine + precorrin-1 → S-adenosyl-L-homocysteine + precorrin-2
S-adenosyl-L-methionine + uroporphyrinogen-III → S-adenosyl-L-homocysteine + precorrin-1 + H+
cobalt-precorrin-6B + S-adenosyl-L-methionine + H+ → cobalt-precorrin-7 + S-adenosyl-L-homocysteine + CO2
cobalt-precorrin-5B + S-adenosyl-L-methionine → cobalt-precorrin-6A + S-adenosyl-L-homocysteine
cobalt-precorrin-3 + S-adenosyl-L-methionine → cobalt-precorrin-4 + S-adenosyl-L-homocysteine
cobalt-precorrin-7 + S-adenosyl-L-methionine → cobalt-precorrin-8 + S-adenosyl-L-homocysteine
S-adenosyl-L-methionine + cobalt-precorrin-4 → S-adenosyl-L-homocysteine + cobalt-precorrin-5A + H+

cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation) :
precorrin-3B + S-adenosyl-L-methionine → precorrin-4 + S-adenosyl-L-homocysteine + 2 H+
precorrin-2 + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + precorrin-3A + H+
precorrin-5 + S-adenosyl-L-methionine + H2O → precorrin-6A + S-adenosyl-L-homocysteine + acetate + 2 H+
S-adenosyl-L-methionine + precorrin-1 → S-adenosyl-L-homocysteine + precorrin-2
S-adenosyl-L-methionine + uroporphyrinogen-III → S-adenosyl-L-homocysteine + precorrin-1 + H+
precorrin-7 + S-adenosyl-L-methionine → precorrin-8x + S-adenosyl-L-homocysteine + 2 H+
precorrin-4 + S-adenosyl-L-methionine → precorrin-5 + S-adenosyl-L-homocysteine + H+
precorrin-6B + S-adenosyl-L-methionine + H+ → precorrin-7 + S-adenosyl-L-homocysteine + CO2

colchicine biosynthesis :
(S)-isoandrocymbine + S-adenosyl-L-methionine → O-methylandrocymbine + S-adenosyl-L-homocysteine + H+

creatine biosynthesis :
guanidinoacetate + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + creatine + H+

cyclopropane and cyclopropene fatty acid biosynthesis :
oleate + S-adenosyl-L-methionine → dihydrosterculate + S-adenosyl-L-homocysteine + H+

cyclopropane fatty acid (CFA) biosynthesis :
a phospholipid olefinic fatty acid + S-adenosyl-L-methionine → a phospholipid cyclopropane fatty acid + S-adenosyl-L-homocysteine + H+

daphnetin modification :
S-adenosyl-L-methionine + daphnetin → S-adenosyl-L-homocysteine + 7-hydroxy-8-methoxycoumarin + H+

daunorubicin biosynthesis :
13-deoxycarminomycin + S-adenosyl-L-methionine → 13-deoxydaunorubicin + S-adenosyl-L-homocysteine + H+
S-adenosyl-L-methionine + aklanonate → S-adenosyl-L-homocysteine + methyl aklanonate

dehydrophos biosynthesis :
desmethyl dehydrophos + S-adenosyl-L-methionine → dehydrophos + S-adenosyl-L-homocysteine

diacylglyceryl-N,N,N-trimethylhomoserine biosynthesis :
a diacylglycerolhomoserine + 3 S-adenosyl-L-methionine → a diacylglyceryl-N,N,N-trimethylhomoserine + 3 S-adenosyl-L-homocysteine + 3 H+

DIMBOA-glucoside biosynthesis :
TRIBOA-β-D-glucoside + S-adenosyl-L-methionine → DIMBOA-β-D-glucoside + S-adenosyl-L-homocysteine + H+

dimethylsulfoniopropionate biosynthesis I (Wollastonia) , dimethylsulfoniopropionate biosynthesis II (Spartina) , S-methylmethionine cycle :
L-methionine + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + S-methyl-L-methionine

diphthamide biosynthesis (archaea) :
a 2-[(3S)-3-amino-3-carboxypropyl]-L-histidine-[translation elongation factor 2] + 3 S-adenosyl-L-methionine → a diphthine-[translation elongation factor 2] + 3 S-adenosyl-L-homocysteine + 3 H+

diphthamide biosynthesis (eukaryotes) :
a 2-[(3S)-3-amino-3-carboxypropyl]-L-histidine-[translation elongation factor 2] + 4 S-adenosyl-L-methionine → a diphthine methyl ester-[translation elongation factor 2] + 4 S-adenosyl-L-homocysteine + 3 H+

dopamine degradation :
S-adenosyl-L-methionine + dopamine → S-adenosyl-L-homocysteine + 3-methoxytyramine + H+
3,4-dihydroxyphenylacetate + S-adenosyl-L-methionine → homovanillate + S-adenosyl-L-homocysteine + H+

dTDP-α-D-mycaminose biosynthesis :
2 S-adenosyl-L-methionine + dTDP-3-amino-3,6-dideoxy-α-D-glucopyranose → 2 S-adenosyl-L-homocysteine + dTDP-α-D-mycaminose + 2 H+

dTDP-β-L-4-epi-vancosamine biosynthesis :
dTDP-3-amino-4-dehydro-2,3,6-trideoxy-α-D-glucose + S-adenosyl-L-methionine → dTDP-2,3,6-trideoxy-3-C-methyl-3-amino-4-dehydro-α-D-glucose + S-adenosyl-L-homocysteine + H+

dTDP-β-L-evernitrose biosynthesis :
dTDP-β-L-4-epi-vancosamine + S-adenosyl-L-methionine → dTDP-β-L-evernosamine + S-adenosyl-L-homocysteine + H+

dTDP-β-L-noviose biosynthesis :
dTDP-4-dehydro-β-L-rhamnose + S-adenosyl-L-methionine → dTDP-4-dehydro-β-L-noviose + S-adenosyl-L-homocysteine + H+

dTDP-D-desosamine biosynthesis :
2 S-adenosyl-L-methionine + dTDP-3-amino-3,4,6-trideoxy-α-D-glucopyranose → 2 S-adenosyl-L-homocysteine + dTDP-D-desosamine + 2 H+

dTDP-D-forosamine biosynthesis :
dTDP-N-monodesmethyl-D-forosamine + S-adenosyl-L-methionine → dTDP-D-forosamine + S-adenosyl-L-homocysteine + H+
dTDP-4-amino-2,3,4,6-tetradeoxy-D-glucose + S-adenosyl-L-methionine → dTDP-N-monodesmethyl-D-forosamine + S-adenosyl-L-homocysteine + H+

Reactions known to both consume and produce the compound:

methionine degradation I (to homocysteine) , S-adenosyl-L-methionine cycle II :
S-adenosyl-L-homocysteine + H2O ↔ L-homocysteine + adenosine

In Reactions of unknown directionality:

Not in pathways:
a CpG site + S-adenosyl-L-methionine = a 5-methyl-CpG site + S-adenosyl-L-homocysteine + H+
S-adenosyl-L-methionine + a guanine1575 in 18S tRNA = S-adenosyl-L-homocysteine + N7-methylguanine1575 in 18S rRNA
S-adenosyl-L-methionine + cytosine2870 in 25S rRNA = S-adenosyl-L-homocysteine + 5-methylcytosine2870 in 25S rRNA + H+
S-adenosyl-L-methionine + cytosine2278 in 25S rRNA = S-adenosyl-L-homocysteine + 5-methylcytosine2278 in 25S rRNA + H+
S-adenosyl-L-methionine + a uracil2843 in 25S rRNA = S-adenosyl-L-homocysteine + N3-methyluracil2843 in 25S rRNA + H+
S-adenosyl-L-methionine + a uracil2634 in 25S rRNA = S-adenosyl-L-homocysteine + N3-methyluracil2634 in 25S rRNA + H+
mercaptohistidine + S-adenosyl-L-methionine = ovothiol + S-adenosyl-L-homocysteine + H+
S-adenosyl-L-homocysteine + H2O = ammonium + S-Inosyl-L-homocysteine


a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

Enzymes inhibited by S-adenosyl-L-homocysteine, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: S-adenosylmethionine:tRNA ribosyltransferase-isomerase [Van03a] , cyclopropane fatty acyl phospholipid synthase [Grogan97, Taylor79, Guerard04] , DNA-cytosine methyltransferase [Crooks84] , chemotaxis protein methyltransferase [Neidhardt96] , tRNA m1G37 methyltransferase [Hjalmarsson83, Lahoud11] , o-dihydric phenol O-methyltransferase (para-methylation) [Tsang79] , esculetin 6-O-methyltransferase (meta-methylation) [Tsang79] , 23S rRNA (adenine1067-2'-O)-methyltransferase [Bechthold94] , 5'-fluoro-5'-deoxyadenosine synthase [Schaffrath03] , sterigmatocystin O-methyltransferase [Liu99] , SAM: anol-O-methyltransferase [Kemmerer96] , isoliquiritigenin-2'-O-methyltransferase [Maxwell92] , isoflavone-7-O-methyltransferase [Edwards91] , DNA (cytosine-5) methyltransferase [Simon78] , nicotinate N-methyltransferase [Upmeier88] , lysine 2,3-aminomutase [Chirpich70] , catechol O-methyltransferase [Rivett82] , putrescine N-methyltransferase [Hibi92]

Inhibitor (Uncompetitive) of: 3,7,3'-methylquercetagetin 6-O-methyltransferase [De85] , 3,7-dimethylquercetin 4'-O-methyltransferase [De85] , quercetin 3-O-methyltransferase [De85]

Inhibitor (Noncompetitive) of: 8-hydroxykaempferol 8-O-methyltransferase [Jay85] , 3-O-methylquercetin 7-O-methyltransferase [Khouri88] , desmethyl dehydrophos O-methyltransferase [Lee10] , isoflavone-4'-O-methyltransferase [Wengenmayer74] , putrescine N-methyltransferase [Hibi92]

Inhibitor (Allosteric) of: uroporphyrin-III (C7)-methyltransferase [Warren02]

Inhibitor (Mechanism unknown) of: biotin synthase [Farrar10] , trans-aconitate 2-methyltransferase [Cai99] , 5'-methylthioadenosine nucleosidase [Cornell98] , ribonucleoside-triphosphate reductase [Eliasson92] , phosphatidylethanolamine N-methyltransferase [Gaynor90] , phosphatidyl-N-methylethanolamine N-methyltransferase [Gaynor90] , phosphatidylethanolamine N-methyltransferase [Ridgway88] , phosphatidyl-N-methylethanolamine N-methyltransferase [Ridgway88] , phosphatidyl-N-dimethylethanolamine N-methyltransferase [Ridgway88] , 16-hydroxytabersonine-O-methyltransferase [Levac08] , histamine N-methyltransferase [Girard94] , loganic acid O-methyltransferase [Murata08] , S-adenosyl-L-methionine:N-methyl-β-alanine N-methyltransferase [Rathinasabapath01] , glycine-sarcosine methyltransferase [Nyyssola01] , sarcosine-dimethylglycine methyltransferase [Nyyssola01] , DIMBOA-glucoside 4-O-methyltransferase [Oikawa02] , MTR kinase [Guranowski83] , pectin methyltransferase [Ishikawa00] , homoserine O-acetyltransferase [Yamagata87] , glycine-sarcosine methyltransferase [Waditee03] , sarcosine-dimethylglycine methyltransferase [Waditee03] , dimethylglycine-betaine methyltransferase [Waditee03] , S-adenosyl-L-methionine: (S)-scoulerine 9-O-methyltransferase [Muemmler85] , S-adenosyl-L-methionine:β-alanine N-methyltransferase [Rathinasabapath01] , S-adenosyl-L-methionine:N,N-dimethyl-β-alanine N-methyltransferase [Rathinasabapath01] , apigenin 4'-O-methyltransferase [Kuroki81] , tetrahydroprotoberberine-cis-N-methyltransferase [Reuffer90] , columbamine O-methyltransferase [Rueffer86]

Inhibitor (Other types) of: S-adenosyl-L-methionine:norcoclaurine 6-O-methyltransferase [Sato94]


References

Bechthold94: Bechthold A, Floss HG (1994). "Overexpression of the thiostrepton-resistance gene from Streptomyces azureus in Escherichia coli and characterization of recognition sites of the 23S rRNA A1067 2'-methyltransferase in the guanosine triphosphatase center of 23S ribosomal RNA." Eur J Biochem 224(2);431-7. PMID: 7925357

Cai99: Cai H, Clarke S (1999). "A novel methyltransferase catalyzes the methyl esterification of trans-aconitate in Escherichia coli." J Biol Chem 274(19);13470-9. PMID: 10224113

Chirpich70: Chirpich TP, Zappia V, Costilow RN, Barker HA (1970). "Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme." J Biol Chem 245(7);1778-89. PMID: 5438361

Cornell98: Cornell KA, Riscoe MK (1998). "Cloning and expression of Escherichia coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase: identification of the pfs gene product." Biochim Biophys Acta 1396(1);8-14. PMID: 9524204

Crooks84: Crooks PA, Tribe MJ, Pinney RJ (1984). "Inhibition of bacterial DNA cytosine-5-methyltransferase by S-adenosyl-L-homocysteine and some related compounds." J Pharm Pharmacol 36(2);85-9. PMID: 6143811

De85: De Luca V, Ibrahim RK (1985). "Enzymatic synthesis of polymethylated flavonols in Chrysosplenium americanum. II. Substrate interaction and product inhibition studies of flavonol 3-, 6-, and 4'-O-methyltransferases." Arch Biochem Biophys 238(2);606-18. PMID: 3994394

Edwards91: Edwards R, Dixon RA, (1991) "Isoflavone O-methyltransferase activities in elicitor-treated cell suspension cultures of Medicago sativa." Phytochemistry (1991), 30 (8), 2597-2606.

Eliasson92: Eliasson R, Pontis E, Fontecave M, Gerez C, Harder J, Jornvall H, Krook M, Reichard P (1992). "Characterization of components of the anaerobic ribonucleotide reductase system from Escherichia coli." J Biol Chem 267(35);25541-7. PMID: 1460049

Farrar10: Farrar CE, Siu KK, Howell PL, Jarrett JT (2010). "Biotin synthase exhibits burst kinetics and multiple turnovers in the absence of inhibition by products and product-related biomolecules." Biochemistry 49(46);9985-96. PMID: 20961145

Gaynor90: Gaynor PM, Carman GM (1990). "Phosphatidylethanolamine methyltransferase and phospholipid methyltransferase activities from Saccharomyces cerevisiae. Enzymological and kinetic properties." Biochim Biophys Acta 1045(2);156-63. PMID: 2198947

Girard94: Girard B, Otterness DM, Wood TC, Honchel R, Wieben ED, Weinshilboum RM (1994). "Human histamine N-methyltransferase pharmacogenetics: cloning and expression of kidney cDNA." Mol Pharmacol 45(3);461-8. PMID: 8145732

Grogan97: Grogan DW, Cronan JE (1997). "Cyclopropane ring formation in membrane lipids of bacteria." Microbiol Mol Biol Rev 1997;61(4);429-41. PMID: 9409147

Guerard04: Guerard C, Breard M, Courtois F, Drujon T, Ploux O (2004). "Synthesis and evaluation of analogues of S-adenosyl-L-methionine, as inhibitors of the E. coli cyclopropane fatty acid synthase." Bioorg Med Chem Lett 14(7);1661-4. PMID: 15026045

Guranowski83: Guranowski A. "Plant 5-methylthioribose kinase." Plant Physiol. (1983) 71 : 932-935.

Hibi92: Hibi N, Fujita T, Hatano M, Hashimoto T, Yamada Y (1992). "Putrescine N-Methyltransferase in Cultured Roots of Hyoscyamus albus: n-Butylamine as a Potent Inhibitor of the Transferase both in Vitro and in Vivo." Plant Physiol 100(2);826-835. PMID: 16653064

Hjalmarsson83: Hjalmarsson KJ, Bystrom AS, Bjork GR (1983). "Purification and characterization of transfer RNA (guanine-1)methyltransferase from Escherichia coli." J Biol Chem 258(2);1343-51. PMID: 6337136

Ishikawa00: Ishikawa M, Kuroyama H, Takeuchi Y, Tsumuraya Y (2000). "Characterization of pectin methyltransferase from soybean hypocotyls." Planta 210(5);782-91. PMID: 10805450

Jay85: Jay M, De Luca V, Ibrahim RK (1985). "Purification, properties and kinetic mechanism of flavonol 8-O-methyltransferase from Lotus corniculatus L." Eur J Biochem 153(2);321-5. PMID: 4076180

Kemmerer96: Kemmerer, B, Reichling, J (1996). "S-adenosyl-L-methionine: Anol-o-methyltransferase activtity in organ cultures of Pimpinella anisum." Phytochemistry, 42, 397-403.

Khouri88: Khouri HE, De Luca V, Ibrahim RK (1988). "Enzymatic synthesis of polymethylated flavonols in Chrysosplenium americanum. III. Purification and kinetic analysis of S-adenosyl-L-methionine:3-methylquercetin 7-O-methyltransferase." Arch Biochem Biophys 265(1);1-7. PMID: 3415239

Kuroki81: Kuroki G, Poulton JE (1981). "The para-O-methylation of apigenin to acacetin by cell-free extracts of Robinia pseudoacacia L." Z. Naturforsch. 36c, 916-920.

Lahoud11: Lahoud G, Goto-Ito S, Yoshida K, Ito T, Yokoyama S, Hou YM (2011). "Differentiating analogous tRNA methyltransferases by fragments of the methyl donor." RNA 17(7);1236-46. PMID: 21602303

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Lee10: Lee JH, Bae B, Kuemin M, Circello BT, Metcalf WW, Nair SK, van der Donk WA (2010). "Characterization and structure of DhpI, a phosphonate O-methyltransferase involved in dehydrophos biosynthesis." Proc Natl Acad Sci U S A 107(41);17557-62. PMID: 20876132

Levac08: Levac D, Murata J, Kim WS, De Luca V (2008). "Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O-methyltransferase." Plant J 53(2);225-36. PMID: 18053006

Liu99: Liu BH, Bhatnagar D, Chu FS (1999). "Purification and characterization of 40-kDa sterigmatocystin O-methyltransferase involved in aflatoxin biosynthesis." Nat Toxins 7(2);63-9. PMID: 10495468

Maxwell92: Maxwell CA, Edwards R, Dixon RA (1992). "Identification, purification, and characterization of S-adenosyl-L-methionine: isoliquiritigenin 2'-O-methyltransferase from alfalfa (Medicago sativa L.)." Arch Biochem Biophys 293(1);158-66. PMID: 1731632

Muemmler85: Muemmler S, Rueffer M, Nagakura N, Zenk MH "S-adenosyl-L-methionine: (S)-scoulerine 9-O-methyltransferase, a highly stereo- and regio-specific enzyme in tetrahydroprotoberberine biosynthesis." Plant Cel lReport, 1985, 4:36-39.

Murata08: Murata J, Roepke J, Gordon H, De Luca V (2008). "The Leaf Epidermome of Catharanthus roseus Reveals Its Biochemical Specialization." Plant Cell NIL. PMID: 18326827

Neidhardt96: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low Jr KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE "Escherichia coli and Salmonella, Cellular and Molecular Biology, Second Edition." American Society for Microbiology, Washington, D.C., 1996.

Nyyssola01: Nyyssola A, Reinikainen T, Leisola M (2001). "Characterization of glycine sarcosine N-methyltransferase and sarcosine dimethylglycine N-methyltransferase." Appl Environ Microbiol 67(5);2044-50. PMID: 11319079

Oikawa02: Oikawa A, Ishihara A, Iwamura H (2002). "Induction of HDMBOA-Glc accumulation and DIMBOA-Glc 4-O-methyltransferase by jasmonic acid in poaceous plants." Phytochemistry 61(3);331-7. PMID: 12359519

Rathinasabapath01: Rathinasabapathi B, Fouad WM, Sigua CA (2001). "beta-Alanine betaine synthesis in the Plumbaginaceae. Purification and characterization of a trifunctional, S-adenosyl-L-methionine-dependent N-methyltransferase from Limonium latifolium leaves." Plant Physiol 126(3);1241-9. PMID: 11457974

Reuffer90: Reuffer, Martina, Zumstein, Gitta, Zenk, Meinhart (1990). "Partial purification and properties of S-adenosyl-L-methionine: (S)-tetrahydroprotoberberine-cis-N-methyltransferase from suspension-cultured cells of Eschscholtzia and Corydalis." Phytochemistry, 29(12):3727-3733.

Ridgway88: Ridgway ND, Vance DE (1988). "Kinetic mechanism of phosphatidylethanolamine N-methyltransferase." J Biol Chem 263(32);16864-71. PMID: 3182819

Rivett82: Rivett AJ, Roth JA (1982). "Kinetic studies on the O-methylation of dopamine by human brain membrane-bound catechol O-methyltransferase." Biochemistry 21(8);1740-2. PMID: 7082642

Rueffer86: Rueffer, M, Amann, M, Zenk, MH (1986). "S-adenosyl-methionine: columbamine-O-methyltransferase, a compartmentalized enzyme in protoberberine biosynthesis." Plant Cell Reports 3:182-185.

Sato94: Sato F, Tsujita T, Katagiri Y, Yoshida S, Yamada Y (1994). "Purification and characterization of S-adenosyl-L-methionine: norcoclaurine 6-O-methyltransferase from cultured Coptis japonica cells." Eur J Biochem 225(1);125-31. PMID: 7925429

Schaffrath03: Schaffrath C, Deng H, O'Hagan D (2003). "Isolation and characterisation of 5'-fluorodeoxyadenosine synthase, a fluorination enzyme from Streptomyces cattleya." FEBS Lett 547(1-3);111-4. PMID: 12860396

Simon78: Simon D, Grunert F, von Acken U, Doring HP, Kroger H (1978). "DNA-methylase from regenerating rat liver: purification and characterisation." Nucleic Acids Res 5(6);2153-67. PMID: 673848

Taylor79: Taylor FR, Cronan JE (1979). "Cyclopropane fatty acid synthase of Escherichia coli. Stabilization, purification, and interaction with phospholipid vesicles." Biochemistry 1979;18(15);3292-300. PMID: 380648

Tsang79: Tsang Y-F, Ibrahim RK (1979). "Two forms of O-methyltransferase in tobacco cell suspension culture." Phytochemistry 18: 1131-1136.

Upmeier88: Upmeier B, Gross W, Koster S, Barz W (1988). "Purification and properties of S-adenosyl-L-methionine:nicotinic acid-N-methyltransferase from cell suspension cultures of Glycine max L." Arch Biochem Biophys 262(2);445-54. PMID: 3364975

Van03a: Van Lanen SG, Iwata-Reuyl D (2003). "Kinetic mechanism of the tRNA-modifying enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA)." Biochemistry 42(18);5312-20. PMID: 12731872

Waditee03: Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Takano J, Takabe T, Takabe T (2003). "Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica." J Biol Chem 278(7);4932-42. PMID: 12466265

Warren02: Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC (2002). "The biosynthesis of adenosylcobalamin (vitamin B12)." Nat Prod Rep 19(4);390-412. PMID: 12195810

Wengenmayer74: Wengenmayer H, Ebel J, Grisebach H (1974). "Purification and properties of a S-adenosylmethionine: isoflavone 4'-O-methyltransferase from cell suspension cultures of Cicer arietinum L." Eur J Biochem 50(1);135-43. PMID: 4452353

Yamagata87: Yamagata S (1987). "Partial purification and some properties of homoserine O-acetyltransferase of a methionine auxotroph of Saccharomyces cerevisiae." J Bacteriol 1987;169(8);3458-63. PMID: 3301801


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Wed Dec 17, 2014, biocyc12.