Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: ammonia

Synonyms: NH3

Chemical Formula: H3N

Molecular Weight: 17.03 Daltons

Monoisotopic Molecular Weight: 17.0265491015 Daltons

SMILES: [NH3]

InChI: InChI=1S/H3N/h1H3

InChIKey: InChIKey=QGZKDVFQNNGYKY-UHFFFAOYSA-N

Unification Links: CAS:7664-41-7 , ChEBI:16134 , ChemSpider:217 , HMDB:HMDB00051 , KEGG:C00014 , KNApSAcK:C00007267 , MetaboLights:MTBLC16134 , PubChem:222

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 11.853362 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

ammonia oxidation I (aerobic) , ammonia oxidation III , ammonia oxidation IV (autotrophic ammonia oxidizers) :
ammonia[in] + a reduced electron acceptor[in] + oxygen[in] → hydroxylamine[in] + an oxidized electron acceptor[in] + H2O[in]

Reactions known to produce the compound:

gliotoxin biosynthesis :
3-benzyl-3,6 -bis(cysteinyl)- 6-(hydroxymethyl)-diketopiperazine + 2 H2O → 3-benzyl-3,6 -dithio-6-(hydroxymethyl)-diketopiperazine + 2 ammonia + 2 pyruvate + 2 H+

nitrate reduction IV (dissimilatory) :
ammonia + 6 an oxidized c-type cytochrome + 2 H2O ← nitrite + 6 a reduced c-type cytochrome + 7 H+

Not in pathways:
ammonia + 6 an oxidized cytochrome c552 + 2 H2O ← nitrite + 6 a reduced cytochrome c552 + 7 H+

Reactions known to both consume and produce the compound:

Not in pathways:
ammonia + H+ ↔ ammonium

In Reactions of unknown directionality:

Not in pathways:
5'-deoxyadenosine + H2O = 5'-deoxyinosine + ammonia

In Transport reactions:
ammonia[periplasmic space]ammonia[cytosol]

In Redox half-reactions:
ammonia[in] + oxygen[in] + 2 H+[in] + 2 e- → hydroxylamine[in] + H2O[in]

Enzymes inhibited by ammonia, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: asparagine synthetase [Cedar69]

Inhibitor (Mechanism unknown) of: porphobilinogen deaminase [Jones94] , asparaginase [Sodek80] , glutamate dehydrogenase [Kimura77]


References

Cedar69: Cedar H, Schwartz JH (1969). "The asparagine synthetase of Escherichia coli. II. Studies on mechanism." J Biol Chem 1969;244(15);4122-7. PMID: 4895362

Jones94: Jones RM, Jordan PM (1994). "Purification and properties of porphobilinogen deaminase from Arabidopsis thaliana." Biochem J 299 ( Pt 3);895-902. PMID: 8192681

Kimura77: Kimura K, Miyakawa A, Imai T, Sasakawa T (1977). "Glutamate dehydrogenase from Bacillus subtilis PCI 219. I. Purification and properties." J Biochem (Tokyo) 81(2);467-76. PMID: 14949

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Sodek80: Sodek, Ladaslav, Lea, Peter, Miflin, Benjamin "Distribution and properties of a potassium-dependdent asparaginase isolated from developing seeds of Pisum sativa and other plants." Plant Physiology, 1980, 65:22-26.


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sun Nov 23, 2014, biocyc14.