Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: AMP

Synonyms: 5'-AMP, adenosine-monophosphate, adenylic acid, adenosine 5'-phosphate, adenosine 5'-monophosphate, adenylate, 5'-adenylic acid, 5'-adenosine monophosphate

Superclasses: a nucleic acid component a nucleotide a nucleoside 5'-monophosphate a ribonucleoside 5'-monophosphate a purine ribonucleoside 5'-monophosphate
a nucleic acid component a nucleotide a purine nucleotide a purine ribonucleotide a purine ribonucleoside 5'-monophosphate
a nucleic acid component a nucleotide a ribonucleotide a purine ribonucleotide a purine ribonucleoside 5'-monophosphate
a nucleic acid component a nucleotide a ribonucleotide a ribonucleoside 5'-monophosphate a purine ribonucleoside 5'-monophosphate
a nucleic acid component
an organic heterocyclic compound an organic heterobicyclic compound a purine a purine nucleotide a purine ribonucleotide a purine ribonucleoside 5'-monophosphate
an organic heterocyclic compound an organonitrogen heterocyclic compound a purine a purine nucleotide a purine ribonucleotide a purine ribonucleoside 5'-monophosphate

Chemical Formula: C10H12N5O7P

Molecular Weight: 345.21 Daltons

Monoisotopic Molecular Weight: 347.0630843401 Daltons

SMILES: C(C3(C(C(C(N2(C1(=C(C(=NC=N1)N)N=C2)))O3)O)O))OP([O-])([O-])=O

InChI: InChI=1S/C10H14N5O7P/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(22-10)1-21-23(18,19)20/h2-4,6-7,10,16-17H,1H2,(H2,11,12,13)(H2,18,19,20)/p-2/t4-,6-,7-,10-/m1/s1

InChIKey: InChIKey=UDMBCSSLTHHNCD-KQYNXXCUSA-L

Unification Links: CAS:61-19-8 , ChEBI:456215 , ChemSpider:10239183 , HMDB:HMDB00045 , IAF1260:33534 , KEGG:C00020 , MetaboLights:MTBLC456215 , NCI:20264 , PubChem:15938965

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -135.89479 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

adenosine nucleotides degradation I :
AMP + H+ + H2O → IMP + ammonium

adenosine nucleotides degradation II :
AMP[periplasmic space] + H2O[periplasmic space] → adenosine[periplasmic space] + phosphate[periplasmic space]

adenosine nucleotides degradation III :
AMP + H2O → D-ribofuranose 5-phosphate + adenine

adenosine nucleotides degradation IV :
AMP + phosphate → adenine + α-D-ribose 1,5-bisphosphate

adenosine ribonucleotides de novo biosynthesis :
ATP + AMP ↔ 2 ADP

trans-zeatin biosynthesis :
dimethylallyl diphosphate + AMPN6-(Δ2-isopentenyl)-adenosine 5'-monophosphate + diphosphate

Not in pathways:
ribonucleotiden + ribonucleotiden + ATP → ribonucleotidem+n + AMP + diphosphate
GTP + AMP → GDP + ADP


a ribonucleoside 5'-monophosphate + H2O → a ribonucleoside + phosphate


a nucleoside 5'-monophosphate[periplasmic space] + H2O[periplasmic space] → a nucleoside[periplasmic space] + phosphate[periplasmic space]
a nucleoside 5'-monophosphate + ATP → a nucleoside diphosphate + ADP


a nucleotide + H2O → a nucleoside + phosphate

Reactions known to produce the compound:

(+)-camphor degradation , (-)-camphor degradation :
[(1R)-4,5,5-trimethyl-2-oxocyclopent-3-enyl]acetate + ATP + coenzyme A → [(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA + AMP + diphosphate

(-)-microperfuranone biosynthesis :
2 2-oxo-3-phenylpropanoate + 2 ATP + H2O → (-)-microperfuranone + 2 AMP + CO2 + 2 diphosphate

(5R)-carbapenem carboxylate biosynthesis :
(2S,5S)-5-carboxymethyl proline + ATP → (3S,5S)-carbapenam-3-carboxylate + AMP + diphosphate + H+

(Z)-9-tricosene biosynthesis :
(15Z)-tetracosenoate + ATP + coenzyme A → (Z)-15-tetracosenoyl-CoA + AMP + diphosphate

1,4-dihydroxy-2-naphthoate biosynthesis I :
2-succinylbenzoate + ATP + coenzyme A → 4-(2'-carboxyphenyl)-4-oxobutyryl-CoA + AMP + diphosphate

2-amino-3-hydroxycyclopent-2-enone biosynthesis :
5-aminolevulinate + ATP + coenzyme A → 5-aminolevulinyl-CoA + AMP + diphosphate

2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis , 4-hydroxy-2(1H)-quinolone biosynthesis , anthranilate degradation II (aerobic) , anthranilate degradation III (anaerobic) , aurachin A, B, C and D biosynthesis , aurachin RE biosynthesis :
anthranilate + ATP + coenzyme A ↔ anthraniloyl-CoA + AMP + diphosphate

2-methylcitrate cycle I , 2-methylcitrate cycle II , β-alanine biosynthesis II , isoleucine biosynthesis IV :
propanoate + ATP + coenzyme A → propanoyl-CoA + AMP + diphosphate

3-amino-3-phenylpropanoyl-CoA biosynthesis :
L-β-phenylalanine + ATP + coenzyme A → (3R)-3-amino-3-phenylpropanoyl-CoA + AMP + diphosphate

3-amino-4,7-dihydroxy-coumarin biosynthesis :
a NovH peptidyl-carrier protein + L-tyrosine + ATP → L-tyrosine-S-[NovH protein] + AMP + diphosphate

3-hydroxypropanoate cycle , glyoxylate assimilation :
3-hydroxypropanoate + ATP + coenzyme A → 3-hydroxypropanoyl-CoA + AMP + diphosphate

3-hydroxypropanoate/4-hydroxybutanate cycle :
3-hydroxypropanoate + ATP + coenzyme A → 3-hydroxypropanoyl-CoA + AMP + diphosphate
4-hydroxybutanoate + ATP + coenzyme A → 4-hydroxybutanoyl-CoA + AMP + diphosphate

3-phenylpropionate degradation :
3-phenylpropanoate + ATP + coenzyme A → 3-phenylpropanoyl-CoA + AMP + diphosphate

4-chlorobenzoate degradation :
ATP + 4-chlorobenzoate + coenzyme A → AMP + 4-chlorobenzoyl-coA + diphosphate

4-coumarate degradation (anaerobic) :
4-hydroxybenzoate + ATP + coenzyme A → 4-hydroxybenzoyl-CoA + AMP + diphosphate
4-coumarate + ATP + coenzyme A → 4-coumaryl-CoA + AMP + diphosphate

4-ethylphenol degradation (anaerobic) :
4-hydroxyacetophenone + CO2 + ATP + 2 H2O → 4-hydroxybenzoyl-acetate + AMP + 2 phosphate + 3 H+
4-hydroxybenzoyl-acetate + ATP + coenzyme A → 4-hydroxybenzoyl-acetyl-CoA + AMP + diphosphate

4-hydroxybenzoate biosynthesis I (eukaryotes) , 4-hydroxybenzoate biosynthesis V , flavonoid biosynthesis , naringenin biosynthesis (engineered) , phaselate biosynthesis , phenylpropanoid biosynthesis , umbelliferone biosynthesis , xanthohumol biosynthesis :
4-coumarate + ATP + coenzyme A → 4-coumaryl-CoA + AMP + diphosphate

5-hydroxymethylfurfural degradation , furfural degradation :
2-furoate + ATP + coenzyme A → 2-furoyl-CoA + AMP + diphosphate

5-N-acetylardeemin biosynthesis :
anthranilate + L-alanine + L-tryptophan + 3 ATP → ardeemin FQ + 3 AMP + 3 diphosphate + H2O + 2 H+

6-gingerol analog biosynthesis :
octanoate + ATP + coenzyme A → octanoyl-CoA + AMP + diphosphate
4-coumarate + ATP + coenzyme A → 4-coumaryl-CoA + AMP + diphosphate

6-hydroxymethyl-dihydropterin diphosphate biosynthesis I , 6-hydroxymethyl-dihydropterin diphosphate biosynthesis II (archaea) , 6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia) :
6-hydroxymethyl-7,8-dihydropterin + ATP → (2-amino-4-hydroxy-7,8-dihydropteridin-6-yl)methyl diphosphate + AMP + H+

8-amino-7-oxononanoate biosynthesis III :
pimelate + ATP + coenzyme A → pimeloyl-CoA + AMP + diphosphate

acetate conversion to acetyl-CoA , chitin degradation to ethanol , cis-genanyl-CoA degradation , ethanol degradation II , ethanol degradation IV , oxidative ethanol degradation III :
acetate + ATP + coenzyme A → acetyl-CoA + AMP + diphosphate

acetone degradation II (to acetoacetate) :
acetone + CO2 + ATP + 2 H2O → acetoacetate + AMP + 2 phosphate + 3 H+

achromobactin biosynthesis :
citrate + ATP + L-serine → O-citryl-L-serine + AMP + diphosphate
citrate + ATP + ethanolamine → O-citryl-ethanolamine + AMP + diphosphate
O-citryl-ethanolamine + ATP + L-2,4-diaminobutanoate → diaminobutyryl-citryl-ethanolamine + AMP + diphosphate + H+
diaminobutyryl-citryl-ethanolamine + ATP + 2-oxoglutarate → α-ketoglutaryl-diaminobutyryl-citryl-ethanolamine + AMP + diphosphate + H+
diaminobutyryl-citryl-ethanolamine + ATP + 2-oxoglutarate → diaminobutyryl-citryl-ethanolamino-α-ketoglutarate + AMP + diphosphate + H+
α-ketoglutaryl-diaminobutyryl-citryl-ethanolamine + ATP + 2-oxoglutarate → achromobactin + AMP + diphosphate + H+
diaminobutyryl-citryl-ethanolamino-α-ketoglutarate + ATP + 2-oxoglutarate → achromobactin + AMP + diphosphate + H+

acridone alkaloid biosynthesis :
N-methylanthranilate + ATP + coenzyme A → N-methylanthraniloyl-CoA + AMP + diphosphate

adenine and adenosine salvage I , adenine and adenosine salvage II , adenine and adenosine salvage IV :
AMP + diphosphate ← adenine + 5-phospho-α-D-ribose 1-diphosphate

adenine and adenosine salvage II :
adenosine + ATP → AMP + ADP + H+

alcaligin biosynthesis :
2 3-[4-amino-3-hydroxybutyl]-hydroxy-carbamoyl-propanoate + ATP → pre-alcaligin + AMP + diphosphate + H+
pre-alcaligin + ATP → alcaligin + AMP + diphosphate + H+

alkane biosynthesis I :
a long-chain fatty acid + a holo-[acyl-carrier protein] + ATP → a long-chain acyl-[acp] + AMP + diphosphate

alkane biosynthesis II , fatty acid activation , long chain fatty acid ester synthesis for microdiesel production , phosphatidylcholine acyl editing , wax esters biosynthesis II :
a long-chain fatty acid + ATP + coenzyme A → a long-chain acyl-CoA + AMP + diphosphate

α-cyclopiazonate biosynthesis :
acetoacetyl-ACP + L-tryptophan + ATP → cyclo-acetoacetyl-L-tryptophan + AMP + a holo-[acyl-carrier protein] + diphosphate + 2 H+

anaerobic aromatic compound degradation (Thauera aromatica) , benzoate biosynthesis I (CoA-dependent, β-oxidative) , benzoate degradation II (aerobic and anaerobic) , salicortin biosynthesis , tetrahydroxyxanthone biosynthesis (from benzoate) :
benzoate + ATP + coenzyme A → benzoyl-CoA + AMP + diphosphate

androstenedione degradation :
3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoate + ATP + coenzyme A → 3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA + AMP + diphosphate

arachidonate biosynthesis , γ-linolenate biosynthesis II (animals) :
linoleate + ATP + coenzyme A → linoleoyl-CoA + AMP + diphosphate

arginine biosynthesis I (via L-ornithine) , arginine biosynthesis II (acetyl cycle) , arginine biosynthesis III (via N-acetyl-L-citrulline) , arginine biosynthesis IV (archaebacteria) , citrulline-nitric oxide cycle , urea cycle :
L-aspartate + L-citrulline + ATP → L-arginino-succinate + AMP + diphosphate + H+

asparagine biosynthesis I :
L-glutamine + L-aspartate + ATP + H2O → L-glutamate + L-asparagine + AMP + diphosphate + H+

asparagine biosynthesis II :
L-aspartate + ammonium + ATP → L-asparagine + AMP + diphosphate + H+

asparagine biosynthesis III (tRNA-dependent) :
tRNAasn + L-aspartate + ATP + H+ → L-aspartyl-tRNAasn + AMP + diphosphate

asperlicin E biosynthesis :
2 anthranilate + L-tryptophan + 3 ATP → asperlicin C + 3 AMP + 3 diphosphate + H2O + H+
2 anthranilate + L-tryptophan + 3 ATP → asperlicin D + 3 AMP + 3 diphosphate + H2O + H+

atromentin biosynthesis :
2 4-hydroxyphenylpyruvate + 2 ATP → atromentin + 2 AMP + 2 diphosphate

bacillibactin biosynthesis :
3 2,3-dihydroxybenzoate + 3 glycine + 3 L-threonine + 6 ATP → bacillibactin + 6 AMP + 6 diphosphate + 3 H+ + 3 H2O

bile acid biosynthesis, neutral pathway :
ATP + (25R)-3α,7α-dihydroxy-5-β-cholestanate + coenzyme A → AMP + (25R)-3α,7α-dihydroxy-5β-cholestanoyl-CoA + diphosphate
(25R)-3α,7α,12α-trihydroxy-5β-cholestan-26-oate + ATP + coenzyme A → (25R)-3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA + AMP + diphosphate

biotin-carboxyl carrier protein assembly :
a [biotin-carboxyl-carrier protein monomer] + biotin + ATP → AMP + a biotinylated [BCCP monomer] + diphosphate

bisucaberin biosynthesis :
2 N-hydroxy-N-succinylcadaverine + ATP → pre-bisucaberin + AMP + diphosphate + 2 H+
pre-bisucaberin + ATP → bisucaberin + AMP + diphosphate

C4 photosynthetic carbon assimilation cycle, NAD-ME type , C4 photosynthetic carbon assimilation cycle, NADP-ME type , C4 photosynthetic carbon assimilation cycle, PEPCK type , glutamine biosynthesis III :
pyruvate + ATP + phosphate → phosphoenolpyruvate + AMP + diphosphate + H+

caffeoylglucarate biosynthesis :
trans-caffeate + ATP + coenzyme A → caffeoyl-CoA + AMP + diphosphate

canavanine biosynthesis :
O-ureidohomoserine + L-aspartate + ATP → canavaninosuccinate + AMP + diphosphate + H+

cannabinoid biosynthesis :
hexanoate + ATP + coenzyme A → hexanoyl-CoA + AMP + diphosphate

chitin degradation I (archaea) :
D-glucosamine + ADP → D-glucosamine 6-phosphate + AMP + H+

cholate degradation (bacteria, anaerobic) :
ATP + cholate + coenzyme A → AMP + choloyl-CoA + diphosphate

cholesterol degradation to androstenedione I (cholesterol oxidase) , cholesterol degradation to androstenedione II (cholesterol dehydrogenase) :
3-oxocholest-4-en-26-oate + ATP + coenzyme A → 3-oxocholest-4-en-26-oyl-CoA + AMP + diphosphate

citrate lyase activation :
[a holo citrate lyase acyl-carrier protein] + acetate + ATP → an acetyl-[holo citrate lyase acyl-carrier protein] + AMP + diphosphate

citronellol degradation :
citronellate + ATP + coenzyme A → citronellyll-CoA + AMP + diphosphate

clavulanate biosynthesis :
ATP + L-N2-(2-carboxyethyl)arginine → AMP + deoxyamidinoproclavaminate + diphosphate + H+

coenzyme A biosynthesis II (mammalian) :
(R)-4'-phosphopantothenate + L-cysteine + ATP → R-4'-phosphopantothenoyl-L-cysteine + AMP + diphosphate + H+

coumarins biosynthesis (engineered) :
trans-caffeate + ATP + coenzyme A → caffeoyl-CoA + AMP + diphosphate
4-coumarate + ATP + coenzyme A → 4-coumaryl-CoA + AMP + diphosphate

cyclohexane-1-carboxylate degradation (anaerobic) :
cyclohexane-1-carboxylate + ATP + coenzyme A + H2O → cyclohexane-1-carbonyl-CoA + AMP + 2 phosphate + H+

cysteine biosynthesis II (RNA-dependent) :
tRNAcys + 3-phospho-L-serine + ATP + 2 H+O-phospho-L-seryl-tRNACys + AMP + diphosphate

desferrioxamine B biosynthesis :
2 N-hydroxy-N-succinylcadaverine + N-hydroxy-N-acetylcadaverine + ATP → desferrioxamine B + AMP + diphosphate + H+ + H2O

desferrioxamine E biosynthesis :
3 N-hydroxy-N-succinylcadaverine + ATP → desferrioxamine G1 + AMP + diphosphate + H+ + H2O
desferrioxamine G1 + ATP → desferrioxamine E + AMP + diphosphate + H+

diphthamide biosynthesis (archaea) , diphthamide biosynthesis (eukaryotes) :
a diphthine-[translation elongation factor 2] + ammonium + ATP → a diphthamide-[translation elongation factor 2] + AMP + diphosphate + H+

docosahexanoate biosynthesis I :
linoleate + ATP + coenzyme A → linoleoyl-CoA + AMP + diphosphate
(5Z,8Z,11Z,14Z,17Z)-icosapentaenoate + ATP + coenzyme A → (5Z,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA + AMP + diphosphate

docosahexanoate biosynthesis II :
(5Z,8Z,11Z,14Z,17Z)-icosapentaenoate + ATP + coenzyme A → (5Z,8Z,11Z,14Z,17Z)-icosapentaenoyl-CoA + AMP + diphosphate
ATP + α-linolenate + coenzyme A → α-linolenoyl-CoA + AMP + diphosphate

eicosapentaenoate biosynthesis II (metazoa) :
ATP + α-linolenate + coenzyme A → α-linolenoyl-CoA + AMP + diphosphate

enterobactin biosynthesis :
3 L-serine + 3 2,3-dihydroxybenzoate + 6 ATP → enterobactin + 6 AMP + 6 diphosphate + 3 H+

ethylbenzene degradation (anaerobic) :
3-oxo-3-phenylpropanoate + ATP + coenzyme A → 3-oxo-3-phenylpropanoyl-CoA + AMP + diphosphate

fatty acid α-oxidation II :
a 2-methyl branched 2,3,4-saturated fatty acid + ATP + coenzyme A → a 2-methyl branched 2,3,4-saturated fatty acyl-CoA + AMP + diphosphate
a 3-methyl-branched 2,3,4-saturated fatty acid + ATP + coenzyme A → a 3-methyl-branched 2,3,4-saturated fatty acyl-CoA + AMP + diphosphate

fatty acid α-oxidation III :
a (R)-2-hydroxy even numbered straight chain 2,3,4-saturated fatty acid + ATP + coenzyme A → a (R)-2-hydroxy even numbered straight chain 2,3,4-saturated fatty acyl CoA + AMP + diphosphate
an odd numbered straight chain 2,3,4-saturated fatty acid + ATP + coenzyme A → an odd numbered straight chain 2,3,4-saturated fatty acyl CoA + AMP + diphosphate

fatty acid β-oxidation (peroxisome, yeast) , fatty acid β-oxidation I , fatty acid β-oxidation II (peroxisome) , fatty acid β-oxidation VI (peroxisome) :
a 2,3,4-saturated fatty acid + ATP + coenzyme A → a 2,3,4-saturated fatty acyl CoA + AMP + diphosphate

fatty acid biosynthesis (plant mitochondria) :
malonate + ATP + coenzyme A → malonyl-CoA + AMP + diphosphate
malonate + a holo-[acyl-carrier protein] + ATP → a malonyl-[acp] + AMP + diphosphate

fatty acid salvage :
decanoate + ATP + coenzyme A → decanoyl-CoA + AMP + diphosphate

ferulate degradation :
ferulate + ATP + coenzyme A → feruloyl-CoA + AMP + diphosphate

fumiquinazoline D biosynthesis :
anthranilate + L-tryptophan + L-alanine + 3 ATP → fumiquinazoline F + 3 AMP + 3 diphosphate + H2O + 2 H+
fumiquinazoline F-indoline-2,3-diol + L-alanine + ATP → fumiquinazoline A + AMP + diphosphate + H2O + H+

gluconeogenesis I , glycolysis I (from glucose 6-phosphate) , glycolysis II (from fructose 6-phosphate) , reductive TCA cycle I :
pyruvate + ATP + H2O → phosphoenolpyruvate + AMP + phosphate + 2 H+

glycolysis V (Pyrococcus) :
β-D-glucose + ADP → β-D-glucose 6-phosphate + AMP + H+

gramicidin S biosynthesis :
L-phenylalanine + ATP + a gramicidin-S synthetase + H+ → D-phenylalanyl-[gramicidin-S synthetase] + AMP + diphosphate
D-phenylalanyl-[gramicidin-S synthetase] + L-proline + L-valine + L-ornithine + L-leucine + 4 ATP → D-phenylalanyl-L-prolyl-L-valyl-L-ornithyl-L-leucyl-[NRPS-pcp] + 4 AMP + 4 diphosphate + 4 H+

grixazone biosynthesis :
3-amino-4-hydroxybenzoate + ATP + NAD(P)H + H+ → 3-amino-4-hydroxybenzaldehyde + AMP + NAD(P)+ + diphosphate

Reactions known to both consume and produce the compound:

adenosine ribonucleotides de novo biosynthesis :
adenylo-succinate ↔ fumarate + AMP

gluconeogenesis II (Methanobacterium thermoautotrophicum) , glycolysis V (Pyrococcus) :
β-D-fructofuranose 6-phosphate + ADP ↔ fructose 1,6-bisphosphate + AMP + H+

PRPP biosynthesis I :
D-ribose 5-phosphate + ATP ↔ 5-phospho-α-D-ribose 1-diphosphate + AMP + H+

sulfate reduction IV (dissimilatory) , sulfate reduction V (dissimilatory) , sulfite oxidation II , sulfite oxidation III :
sulfite + AMP + an oxidized electron acceptor + 2 H+ ↔ adenosine 5'-phosphosulfate + a reduced electron acceptor

In Reactions of unknown directionality:

Not in pathways:
thymidine + ADP = dTMP + AMP + H+
L-phenylalanine + ATP + H2O = D-phenylalanine + AMP + diphosphate + H+
adenosine 5'-phosphosulfate + glutathione = AMP + glutathione-sulfite + H+
citramalate lyase, inactive + acetate + ATP = citramalate lyase, active + AMP + diphosphate
5',5'''-diadenosine triphosphate + H2O = AMP + ADP + 2 H+
ATP + [phospho-α-glucan] + H2O = AMP + O-phospho-[phospho-α-glucan] + phosphate
ADP-D-ribose + H2O = AMP + α-D-ribose-1-phosphate + 2 H+
ADP-α-D-glucose + H2O = AMP + α-D-glucose 1-phosphate + 2 H+
ADP + H2O = AMP + phosphate + H+
FAD = AMP + riboflavin cyclic-4',5'-phosphate
FAD + H2O = AMP + FMN + 2 H+
a maltodextrin + ATP + H2O = a 6-phosphogluco-maltodextrin + AMP + phosphate
a 6-phosphogluco-maltodextrin + n ATP + n H2O = a poly-6-phosphogluco-maltodextrin + n AMP + n phosphate
a 5'-acylphosphoadenosine + H2O = a carboxylate + AMP + 2 H+
a nucleoside 5'-monophosphate + ATP = a 5'-phosphonucleoside 3'-diphosphate + AMP + H+
App-tRNAHis + GTP = pppGp-tRNAHis + AMP
p-tRNAHis + ATP + GTP = pppGp-tRNAHis + AMP + diphosphate
adenosine 5'-phosphoramidate + H2O = AMP + ammonium
5',5'''-diadenosine hexaphosphate + H2O = adenosine pentaphosphate + AMP + H+
5',5'''-diadenosine pentaphosphate + H2O = adenosine tetraphosphate + AMP + H+
5',5'''-diadenosine tetraphosphate + H2O = ATP + AMP + 2 H+
a linear α-D-glucan + ATP + H2O = [phospho-α-glucan] + AMP + phosphate + 2 H+
a pyruvate,phosphate dikinase + ADP = a [pyruvate,phosphate dikinase]-phosphate + AMP + H+
a pyruvate,water dikinase + ADP = [a pyruvate, water dikinase]-phosphate + AMP + H+
3 2,3-dihydroxybenzoyl-AMP + 3 L-seryl-AMP = enterobactin + 6 AMP + 6 H+
a [protein]-L-threonine + FAD = a [protein]-FMN-L-threonine + AMP
tobramycin + O-carbamoyladenylate = nebramycin 5' + AMP + H+
kanamycin A + O-carbamoyladenylate = 6''-O-carbamoylkanamycin A + AMP + H+
kanamycin B + O-carbamoyladenylate = 6''-O-carbamoylkanamycin B + AMP + H+
L-threonylcarbamoyladenylate + an adenine37 in tRNA = N6-L-threonylcarbamoyladenine37 in tRNA + AMP + H+
(deoxynucleotides)(m) + ADP + (deoxynucleotides)(n) = (deoxynucleotides)(n+m) + AMP + phosphate
2-amino-3-hydroxycyclopent-2-enone + 2,4,6-octatrienoate + ATP = 2,4,6-octatrienyl-2-amino-3-hydroxycyclopent-2-enone + AMP + diphosphate
AMP + an aryl aldehyde + NADP+ + diphosphate = ATP + an aromatic carboxylate + NADPH
a nucleoside triphosphate + AMP = a nucleoside diphosphate + ADP
AMP + thymidine = dTMP + adenosine


a purine ribonucleoside + diphosphate = a purine ribonucleoside 5'-monophosphate + phosphate + H+


a dinucleotide (nucleic acid) + H2O = 2 a nucleoside 5'-monophosphate + 2 H+
a nucleoside diphosphate + H2O = a nucleoside 5'-monophosphate + phosphate + H+
a p-nitrophenyl 5'-nucleotide + H2O = a nucleoside 5'-monophosphate + 4-nitrophenol + 2 H+


a nucleotide + a 2'-deoxynucleoside = a nucleoside + a 2'-deoxyribonucleoside 5'-monophosphate

Enzymes activated by AMP, sorted by the type of activation, are:

Activator (Allosteric) of: pyruvate kinase [Kotlarz75, Somani77] , threonine dehydratase [Shizuta69] , serine deaminase [Shizuta69] , NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase [Brunner98]

Activator (Mechanism unknown) of: glutaminase B [Prusiner76] , glycogen phosphorylase [Yu88, Chen68, Chen68a] , CTP:2,3,4-saturated L-phosphatidate cytidylyltransferase [Langley78, Comment 1] , isocitrate dehydrogenase phosphatase [Nimmo84, Miller00a] , 6-aminodeoxyfutalosine deaminase [Goble13] , glycogen phosphorylase [Dombradi85] , pyruvate kinase [Singh98] , arginine deiminase [Monstadt91]

Enzymes inhibited by AMP, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: ATP phosphoribosyltransferase [Tebar76] , selenide, water dikinase [Veres94, Comment 2] , asparagine synthetase [Cedar69, Comment 3] , adenine phosphoribosyltransferase [HochstadtOzer71, Comment 4] , malate:quinone oxidoreductase [Narindrasorasak79] , amidophosphoribosyl transferase [Messenger79, Comment 5] , acetaldehyde dehydrogenase [Shone81, Comment 6] , FMN reductase [Fieschi95, Comment 7] , NADH:ubiquinone oxidoreductase (internal) [Velazquez01] , phosphoribosylformylglycinamidine cyclo-ligase [Tretiakov95] , phosphoribosylglycinamidine synthetase [Tretiakov95] , D-xylulokinase [Dills94] , NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase [Crow79] , sulfate adenylyltransferase [Comment 8] , succinate semialdehyde dehydrogenase [Busch99] , ADP-dependent phosphofructokinase [Tuininga99] , fructose-1,6-bisphosphate aldolase [Lal05]

Inhibitor (Uncompetitive) of: ribose-phosphate diphosphokinase [Bower89, Willemoes97] , carbapenam synthetase [Gerratana03]

Inhibitor (Noncompetitive) of: thiamin monophosphate kinase , arginyl-tRNA synthetase [Charlier79] , fructose-1,6-bisphosphatase [Babul83] , FMN reductase [Fieschi95, Comment 9] , streptomycin 6-kinase [Sugiyama83]

Inhibitor (Allosteric) of: glucose-1-phosphate adenylyltransferase [Hill91, Gardiol90] , phosphoribosylpyrophosphate amidotransferase [Satyanarayana71] , phosphoribosylpyrophosphate amidotransferase [Satyanarayana71]

Inhibitor (Mechanism unknown) of: NAD+ synthetase, NH3-dependent [Spencer67, Comment 10] , glutamine synthetase [Woolfolk67, Bender77, Comment 11] , acetyl-CoA synthetase (AMP-forming) [Barak04a] , ribose-5-phosphate isomerase A [Essenberg75a] , phosphoenolpyruvate synthetase [Cooper69, Chulavatnatol73] , guanylate kinase [Oeschger66] , acetaldehyde dehydrogenase [Shone81, Comment 12] , ADP-sugar pyrophosphatase [MorenoBruna01] , isocitrate dehydrogenase kinase [Nimmo84, Miller00a] , sucrose phosphate phosphatase [But13] , sucrose phosphate synthase [But13] , D-galacturonate dehydrogenase [Wagner76] , APS reductase [Setya96] , ornithine carbamoyltransferase, catabolic [Ruepp95] , adenylosuccinate synthetase [Comment 13] , NAD pyrophosphatase [Kahn86] , phosphotransbutyrylase [Comment 14] , sedoheptulose bisphosphatase [Tamoi98] , fructose 1,6-bisphosphatase [Tamoi98] , APS reductase [Setya96] , D-xylulose kinase [vanKuyk01] , glutamine:fructose-6-phosphate amidotransferase [Broschat02] , APS reductase [Setya96]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: glycogen phosphorylase


References

Babul83: Babul J, Guixe V (1983). "Fructose bisphosphatase from Escherichia coli. Purification and characterization." Arch Biochem Biophys 1983;225(2);944-9. PMID: 6312898

Barak04a: Barak R, Prasad K, Shainskaya A, Wolfe AJ, Eisenbach M (2004). "Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli." J Mol Biol 342(2);383-401. PMID: 15327942

Bender77: Bender RA, Janssen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977). "Biochemical parameters of glutamine synthetase from Klebsiella aerogenes." J Bacteriol 129(2);1001-9. PMID: 14104

Bower89: Bower SG, Harlow KW, Switzer RL, Hove-Jensen B (1989). "Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site." J Biol Chem 1989;264(17);10287-91. PMID: 2542328

Broschat02: Broschat KO, Gorka C, Page JD, Martin-Berger CL, Davies MS, Huang Hc HC, Gulve EA, Salsgiver WJ, Kasten TP (2002). "Kinetic characterization of human glutamine-fructose-6-phosphate amidotransferase I: potent feedback inhibition by glucosamine 6-phosphate." J Biol Chem 277(17);14764-70. PMID: 11842094

Brunner98: Brunner NA, Brinkmann H, Siebers B, Hensel R (1998). "NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties." J Biol Chem 273(11);6149-56. PMID: 9497334

Busch99: Busch KB, Fromm H (1999). "Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides." Plant Physiol 121(2);589-97. PMID: 10517851

But13: But SY, Khmelenina VN, Reshetnikov AS, Trotsenko YA (2013). "Bifunctional sucrose phosphate synthase/phosphatase is involved in the sucrose biosynthesis by Methylobacillus flagellatus KT." FEMS Microbiol Lett. PMID: 23865613

Cedar69: Cedar H, Schwartz JH (1969). "The asparagine synthetase of Escherichia coli. II. Studies on mechanism." J Biol Chem 1969;244(15);4122-7. PMID: 4895362

Charlier79: Charlier J, Gerlo E (1979). "Arginyl-tRNA synthetase from Escherichia coli K12. Purification, properties, and sequence of substrate addition." Biochemistry 18(14);3171-8. PMID: 37899

Chen68: Chen GS, Segel IH (1968). "Escherichia coli polyglucose phosphorylases." Arch Biochem Biophys 1968;127(1);164-74. PMID: 4878694

Chen68a: Chen GS, Segel IH (1968). "Purification and properties of glycogen phosphorylase from Escherichia coli." Arch Biochem Biophys 1968;127(1);175-86. PMID: 4878695

Chulavatnatol73: Chulavatnatol M, Atkinson DE (1973). "Phosphoenolpyruvate synthetase from Escherichia coli. Effects of adenylate energy charge and modifier concentrations." J Biol Chem 248(8);2712-5. PMID: 4572511

Cooper69: Cooper RA, Kornberg HL "Phosphoenolpyruvate Synthetase." Methods Enzymol. 1969;13:309-314.

Crow79: Crow VL, Wittenberger CL (1979). "Separation and properties of NAD+- and NADP+-dependent glyceraldehyde-3-phosphate dehydrogenases from Streptococcus mutans." J Biol Chem 254(4);1134-42. PMID: 33184

Dills94: Dills WL, Parsons PD, Westgate CL, Komplin NJ (1994). "Assay, purification, and properties of bovine liver D-xylulokinase." Protein Expr Purif 5(3);259-65. PMID: 7950369

Dombradi85: Dombradi V, Hajdu J, Friedrich P, Bot G (1985). "Purification and characterization of glycogen phosphorylase from Drosophila melanogaster." Insect Biochem. Vol. 15, No. 3, pp. 403-410.

Essenberg75a: Essenberg MK, Cooper RA (1975). "Two ribose-5-phosphate isomerases from Escherichia coli K12: partial characterisation of the enzymes and consideration of their possible physiological roles." Eur J Biochem 55(2);323-32. PMID: 1104357

Fieschi95: Fieschi F, Niviere V, Frier C, Decout JL, Fontecave M (1995). "The mechanism and substrate specificity of the NADPH:flavin oxidoreductase from Escherichia coli." J Biol Chem 1995;270(51);30392-400. PMID: 8530465

Gardiol90: Gardiol A, Preiss J (1990). "Escherichia coli E-39 ADPglucose synthetase has different activation kinetics from the wild-type allosteric enzyme." Arch Biochem Biophys 280(1);175-80. PMID: 2162151

Gerratana03: Gerratana B, Stapon A, Townsend CA (2003). "Inhibition and alternate substrate studies on the mechanism of carbapenam synthetase from Erwinia carotovora." Biochemistry 42(25);7836-47. PMID: 12820893

Goble13: Goble AM, Toro R, Li X, Ornelas A, Fan H, Eswaramoorthy S, Patskovsky Y, Hillerich B, Seidel R, Sali A, Shoichet BK, Almo SC, Swaminathan S, Tanner ME, Raushel FM (2013). "Deamination of 6-aminodeoxyfutalosine in menaquinone biosynthesis by distantly related enzymes." Biochemistry 52(37);6525-36. PMID: 23972005

Hawes73: Hawes CS, Nicholas DJ (1973). "Adenosine 5'-triphosphate sulphurylase from Saccharomyces cerevisiae." Biochem J 1973;133(3);541-50. PMID: 4582048

Hill91: Hill MA, Kaufmann K, Otero J, Preiss J (1991). "Biosynthesis of bacterial glycogen. Mutagenesis of a catalytic site residue of ADP-glucose pyrophosphorylase from Escherichia coli." J Biol Chem 266(19);12455-60. PMID: 1648099

HochstadtOzer71: Hochstadt-Ozer J, Stadtman ER (1971). "The regulation of purine utilization in bacteria. I. Purification of adenine phosphoribosyltransferase from Escherichia coli K12 and control of activity by nucleotides." J Biol Chem 246(17);5294-303. PMID: 4328693

Kahn86: Kahn DW, Anderson BM (1986). "Characterization of Haemophilus influenzae nucleotide pyrophosphatase. An enzyme of critical importance for growth of the organism." J Biol Chem 261(13);6016-25. PMID: 3009442

Kotlarz75: Kotlarz D, Garreau H, Buc H (1975). "Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in Escherichia coli." Biochim Biophys Acta 381(2);257-68. PMID: 122902

Lal05: Lal A, Plaxton WC, Kayastha AM (2005). "Purification and characterization of an allosteric fructose-1,6-bisphosphate aldolase from germinating mung beans (Vigna radiata)." Phytochemistry 66(9);968-74. PMID: 15896364

Langley78: Langley KE, Kennedy EP (1978). "Partial purification and properties of CTP:phosphatidic acid cytidylyltransferase from membranes of Escherichia coli." J Bacteriol 1978;136(1);85-95. PMID: 30751

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Lipps99: Lipps G, Krauss G (1999). "Adenylosuccinate synthase from Saccharomyces cerevisiae: homologous overexpression, purification and characterization of the recombinant protein." Biochem J 1999;341 ( Pt 3);537-43. PMID: 10417315

Messenger79: Messenger LJ, Zalkin H (1979). "Glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Purification and properties." J Biol Chem 1979;254(9);3382-92. PMID: 372191

Miller00a: Miller SP, Chen R, Karschnia EJ, Romfo C, Dean A, LaPorte DC (2000). "Locations of the regulatory sites for isocitrate dehydrogenase kinase/phosphatase." J Biol Chem 275(2);833-9. PMID: 10625615

Monstadt91: Monstadt GM, Holldorf AW (1991). "Arginine deiminase from Halobacterium salinarium. Purification and properties." Biochem J 1991;273 ( Pt 3);739-45. PMID: 1847623

MorenoBruna01: Moreno-Bruna B, Baroja-Fernandez E, Munoz FJ, Bastarrica-Berasategui A, Zandueta-Criado A, Rodriguez-Lopez M, Lasa I, Akazawa T, Pozueta-Romero J (2001). "Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli." Proc Natl Acad Sci U S A 98(14);8128-32. PMID: 11416161

Narindrasorasak79: Narindrasorasak S, Goldie AH, Sanwal BD (1979). "Characteristics and regulation of a phospholipid-activated malate oxidase from Escherichia coli." J Biol Chem 1979;254(5);1540-5. PMID: 368072

Nimmo84: Nimmo GA, Nimmo HG (1984). "The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase." Eur J Biochem 1984;141(2);409-14. PMID: 6329757

Oeschger66: Oeschger MP, Bessman MJ (1966). "Purification and properties of guanylate kinase from Escherichia coli." J Biol Chem 1966;241(22);5452-60. PMID: 5333666

Prusiner76: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations." J Biol Chem 1976;251(11);3463-9. PMID: 776970

Ruepp95: Ruepp A, Muller HN, Lottspeich F, Soppa J (1995). "Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination, and evolution." J Bacteriol 1995;177(5);1129-36. PMID: 7868583

Satyanarayana71: Satyanarayana T, Kaplan JG (1971). "Regulation of the purine pathway in bakers yeast: activity and feedback inhibition of phosphoribosyl-pyrophosphate amidotransferase." Arch Biochem Biophys 1971;142(1);40-7. PMID: 4322810

Setya96: Setya A, Murillo M, Leustek T (1996). "Sulfate reduction in higher plants: molecular evidence for a novel 5'-adenylylsulfate reductase." Proc Natl Acad Sci U S A 1996;93(23);13383-8. PMID: 8917600

Shizuta69: Shizuta Y, Nakazawa A, Tokushige M, Hayaishi O (1969). "Studies on the interaction between regulatory enzymes and effectors. 3. Crystallization and characterization of adenosine 5'-monophosphate-dependent threonine deaminase from Escherichia coli." J Biol Chem 244(7);1883-9. PMID: 4889010

Shone81: Shone CC, Fromm HJ (1981). "Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli." Biochemistry 1981;20(26);7494-501. PMID: 7034777

Singh98: Singh DK, Malhotra SP, Singh R (1998). "Purification and characterizaton of plastidic pyruvate kinase from developing seeds of Brassica campestris L." Indian J Biochem Biophys 35(6);346-52. PMID: 10412228

Somani77: Somani BL, Valentini G, Malcovati M (1977). "Purification and molecular properties of the AMP-activated pyruvate kinase from Escherichia coli." Biochim Biophys Acta 482(1);52-63. PMID: 193572

Spencer67: Spencer RL, Preiss J (1967). "Biosynthesis of diphosphopyridine nucleotide. The purification and the properties of diphospyridine nucleotide synthetase from Escherichia coli b." J Biol Chem 1967;242(3);385-92. PMID: 4290215

Sugiyama83: Sugiyama M, Sakamoto M, Mochizuki H, Nimi O, Nomi R (1983). "Purification and characterization of streptomycin 6-kinase, an enzyme implicated in self-protection of a streptomycin-producing micro-organism." J Gen Microbiol 129(6);1683-7. PMID: 6313852

Tamoi98: Tamoi M, Murakami A, Takeda T, Shigeoka S (1998). "Acquisition of a new type of fructose-1,6-bisphosphatase with resistance to hydrogen peroxide in cyanobacteria: molecular characterization of the enzyme from Synechocystis PCC 6803." Biochim Biophys Acta 1998;1383(2);232-44. PMID: 9602137

Tebar76: Tebar AR, Ballesteros AO (1976). "Kinetic properties of ATP phosphoribosyltransferase of Escherichia coli." Mol Cell Biochem 11(3);131-6. PMID: 781521

Tretiakov95: Tret'iakov OIu, Ryzhova TA, Velichutina IV, Kostikova TR, Miasnikov AN, Smirnov MN, Domkin VD (1995). "[Glycine amide ribonucleotide synthetase (EC 6.3.4.13)--is aminoimidazole ribonucleotide synthetase (EC 6.3.3.1) from Saccharomyces cerevisiae]." Biokhimiia 1995;60(12);2011-21. PMID: 8600995

Tuininga99: Tuininga JE, Verhees CH, van der Oost J, Kengen SW, Stams AJ, de Vos WM (1999). "Molecular and biochemical characterization of the ADP-dependent phosphofructokinase from the hyperthermophilic archaeon Pyrococcus furiosus." J Biol Chem 274(30);21023-8. PMID: 10409652

vanKuyk01: vanKuyk PA, de Groot MJ, Ruijter GJ, de Vries RP, Visser J (2001). "The Aspergillus niger D-xylulose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on D-xylose and L-arabinose." Eur J Biochem 268(20);5414-23. PMID: 11606204

Velazquez01: Velazquez I, Pardo JP (2001). "Kinetic characterization of the rotenone-insensitive internal NADH: ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae." Arch Biochem Biophys 389(1);7-14. PMID: 11370674

Veres94: Veres Z, Kim IY, Scholz TD, Stadtman TC (1994). "Selenophosphate synthetase. Enzyme properties and catalytic reaction." J Biol Chem 269(14);10597-603. PMID: 8144648

Veres94a: Veres, Z, Kim, IY, Scholz, TD, Stadtman, TC "Selenophosphate synthetase Enzyme properties and catalytic reaction." The Journal of Biological Chemistry 269:10597-10603 (1994).

Wagner76: Wagner G, Hollmann S (1976). "Uronic acid dehydrogenase from Pseudomonas syringae. Purification and properties." Eur J Biochem 61(2);589-96. PMID: 2471

Walker98: Walker H, Ferretti JA, Stadtman TC (1998). "Isotope exchange studies on the Escherichia coli selenophosphate synthetase mechanism." Proc Natl Acad Sci U S A 1998;95(5);2180-5. PMID: 9482859

Wiesenborn89a: Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989). "Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis." Appl Environ Microbiol 1989;55(2);317-22. PMID: 2719475

Willemoes97: Willemoes M, Hove-Jensen B (1997). "Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase." Biochemistry 36(16);5078-83. PMID: 9125530

Woolfolk67: Woolfolk CA, Stadtman ER (1967). "Regulation of glutamine synthetase. 3. Cumulative feedback inhibition of glutamine synthetase from Escherichia coli." Arch Biochem Biophys 118(3);736-55. PMID: 4860415

Yu88: Yu F, Jen Y, Takeuchi E, Inouye M, Nakayama H, Tagaya M, Fukui T (1988). "Alpha-glucan phosphorylase from Escherichia coli. Cloning of the gene, and purification and characterization of the protein." J Biol Chem 1988;263(27);13706-11. PMID: 3047129


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Fri Dec 19, 2014, BIOCYC13B.