twitter

MetaCyc Compound: CO2

Synonyms: carbonic anhydride, carbonic acid gas, carbon dioxide

Chemical Formula: CO2

Molecular Weight: 44.01 Daltons

Monoisotopic Molecular Weight: 43.989829244199996 Daltons

CO<SUB>2</SUB> compound structure

SMILES: C(=O)=O

InChI: InChI=1S/CO2/c2-1-3

InChIKey: InChIKey=CURLTUGMZLYLDI-UHFFFAOYSA-N

Unification Links: CAS:124-38-9 , ChEBI:16526 , ChemSpider:274 , HMDB:HMDB01967 , IAF1260:33506 , KEGG:C00011 , MetaboLights:MTBLC16526 , PubChem:280 , UMBBD-Compounds:c0131

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -92.26 Inferred by computational analysis [Latendresse, 2013]

Reactions known to consume the compound:

4-ethylphenol degradation (anaerobic) :
4-hydroxyacetophenone + CO2 + ATP + 2 H2O → 4-hydroxybenzoyl-acetate + AMP + 2 phosphate + 3 H+

acetone degradation II (to acetoacetate) :
acetone + CO2 + ATP + 2 H2O → acetoacetate + AMP + 2 phosphate + 3 H+

anaerobic energy metabolism (invertebrates, cytosol) :
oxaloacetate + ITP ← CO2 + phosphoenolpyruvate + IDP

biotin biosynthesis from 8-amino-7-oxononanoate I , biotin biosynthesis from 8-amino-7-oxononanoate II :
CO2 + 7,8-diaminopelargonate + ATP → dethiobiotin + ADP + phosphate + 3 H+

calystegine biosynthesis , hyoscyamine and scopolamine biosynthesis , superpathway of hyoscyamine and scopolamine biosynthesis :
N-methyl-Δ1-pyrrolinium cation + CO2 → hygrine

inosine-5'-phosphate biosynthesis II :
5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + 2 H+ ← 5-amino-1-(5-phospho-β-D-ribosyl)imidazole + CO2

L-isoleucine biosynthesis V :
2-methylbutanoate + CO2 → (S)-3-methyl-2-oxopentanoate

propylene degradation :
acetoacetate + coenzyme M + NADP+ ← 2-oxopropyl-CoM + CO2 + NADPH

reductive TCA cycle II :
ATP + 2-oxoglutarate + CO2 + H2O → oxalosuccinate + ADP + phosphate + 2 H+

salinosporamide A biosynthesis :
chloroethylmalonyl-CoA + NAD+ ← 4-chloro-crotonyl-CoA + CO2 + NADH

urea cycle :
ammonium + CO2 + 2 ATP + H2O → carbamoyl-phosphate + 2 ADP + phosphate + 3 H+

urea degradation I :
ATP + urea + CO2 + H2O → ADP + urea-1-carboxylate + phosphate + 2 H+

wybutosine biosynthesis :
7-[(3S)-4-methoxy-(3-amino-3-carboxypropyl)]-wyosine37 in tRNAPhe + CO2 + S-adenosyl-L-methionine → wybutosine37 in tRNAPhe + S-adenosyl-L-homocysteine + 2 H+

Not in pathways:
vitamin K 2,3-epoxide + a [protein] 4-carboxy-L-glutamate + H+ + H2O ← phylloquinol + a [protein]-α-L-glutamate + CO2 + oxygen
7-[4-methoxy-(2-hydroxy-3-amino-3-carboxypropyl)]-wyosine37 in tRNAPhe + CO2 + S-adenosyl-L-methionine → 2-hydroxy-wybutosine37 in tRNAPhe + S-adenosyl-L-homocysteine + 2 H+

Reactions known to produce the compound:

(-)-microperfuranone biosynthesis :
2 2-oxo-3-phenylpropanoate + 2 ATP + H2O → (-)-microperfuranone + 2 AMP + CO2 + 2 diphosphate

(1'S,5'S)-averufin biosynthesis :
a hexanoyl-[acyl-carrier-protein] + 7 malonyl-CoA + 5 H+ → norsolorinate anthrone + a holo-[acyl-carrier protein] + 7 CO2 + 7 coenzyme A + 2 H2O

(5R)-carbapenem carboxylate biosynthesis :
(3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + oxygen → (5R)-carbapen-2-em-3-carboxylate + succinate + CO2 + H2O
(S)-1-pyrroline-5-carboxylate + malonyl-CoA + H+ + H2O → (2S,5S)-5-carboxymethyl proline + CO2 + coenzyme A

(R)-acetoin biosynthesis I , (S)-acetoin biosynthesis :
(S)-2-acetolactate + an unknown oxidized electron acceptor + H+ → diacetyl + CO2 + an unknown reduced electron acceptor

(R)-acetoin biosynthesis II :
(S)-2-acetolactate + H+ → (R)-acetoin + CO2

(S)-reticuline biosynthesis I :
L-tyrosine + H+CO2 + tyramine
4-hydroxyphenylpyruvate + H+CO2 + (4-hydroxyphenyl)acetaldehyde
L-dopa + H+ → dopamine + CO2

(S)-reticuline biosynthesis II :
L-tyrosine + H+CO2 + tyramine
3,4-dihydroxyphenylpyruvate + H+ → 3,4-dihydroxyphenylacetaldehyde + CO2

(Z)-9-tricosene biosynthesis :
(15Z)-tetracos-15-enal + NADPH + oxygen + H+ → (Z)-9-tricosene + CO2 + NADP+ + H2O

1,4-dihydroxy-2-naphthoate biosynthesis I , 1,4-dihydroxy-2-naphthoate biosynthesis II (plants) :
isochorismate + 2-oxoglutarate + H+ → 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2

2,2'-dihydroxybiphenyl degradation :
2,3-dihydroxybenzoate + NADH + oxygen + 2 H+ → pyrogallol + CO2 + NAD+ + H2O

2,3-dihydroxybenzoate degradation :
(3E)-2-oxohex-3-enedioate + H+ → 2-oxopent-4-enoate + CO2
3-carboxy-2-hydroxymuconate semialdehyde + H+ → (2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate + CO2

2,4-dichlorophenoxyacetate degradation :
2,4-dichlorophenoxyacetate + 2-oxoglutarate + oxygen → 2,4-dichlorophenol + glyoxylate + succinate + CO2

2-amino-3-carboxymuconate semialdehyde degradation to 2-oxopentenoate :
(3E)-2-oxohex-3-enedioate + H+ → 2-oxopent-4-enoate + CO2
aminocarboxymuconate semialdehyde + H+ → 2-aminomuconate 6-semialdehyde + CO2

2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA :
2-oxoadipate + coenzyme A + NAD+CO2 + glutaryl-CoA + NADH
aminocarboxymuconate semialdehyde + H+ → 2-aminomuconate 6-semialdehyde + CO2

2-amino-3-hydroxycyclopent-2-enone biosynthesis , tetrapyrrole biosynthesis II (from glycine) :
glycine + succinyl-CoA + H+CO2 + 5-aminolevulinate + coenzyme A

2-aminoethylphosphonate biosynthesis , fosfomycin biosynthesis :
3-phosphonopyruvate + H+ → phosphonoacetaldehyde + CO2

2-aminoethylphosphonate degradation III :
(2-aminoethyl)phosphonate + 2-oxoglutarate + oxygen → (2-amino-1-hydroxyethyl)phosphonate + succinate + CO2

2-aminophenol degradation , 3-chlorocatechol degradation III (meta pathway) , catechol degradation to 2-oxopent-4-enoate II , orthanilate degradation :
(3E)-2-oxohex-3-enedioate + H+ → 2-oxopent-4-enoate + CO2

Reactions known to both consume and produce the compound:

(R)-acetoin biosynthesis I , (R)-acetoin biosynthesis II , (S)-acetoin biosynthesis , L-valine biosynthesis , pyruvate fermentation to isobutanol (engineered) :
2 pyruvate + H+ ↔ (S)-2-acetolactate + CO2

1-butanol autotrophic biosynthesis , anaerobic energy metabolism (invertebrates, mitochondrial) , photosynthetic 3-hydroxybutyrate biosynthesis (engineered) , pyruvate fermentation to acetate II , pyruvate fermentation to acetate V , superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass :
pyruvate + coenzyme A + NAD+ ↔ acetyl-CoA + CO2 + NADH

2-oxobutanoate degradation II , L-isoleucine biosynthesis IV :
2-oxobutanoate + 2 an oxidized ferredoxin + coenzyme A ↔ propanoyl-CoA + 2 a reduced ferredoxin + CO2 + H+

2-oxoisovalerate decarboxylation to isobutanoyl-CoA :
3-methyl-2-oxobutanoate + an [apo BCAA dehydrogenase E2 protein] N6-lipoyl-L-lysine + H+ ↔ an [apo BCAA dehydrogenase E2 protein] N6-S-[2-methylpropanoyl]dihydrolipoyl-L-lysine + CO2

acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase) :
pyruvate + coenzyme A + NADP+ ↔ acetyl-CoA + CO2 + NADPH

adenosine nucleotides degradation IV , Calvin-Benson-Bassham cycle , Rubisco shunt :
2 3-phospho-D-glycerate + 2 H+ ↔ D-ribulose-1,5-bisphosphate + CO2 + H2O

allantoin degradation IV (anaerobic) , L-citrulline degradation :
ammonium + CO2 + ATP ↔ carbamoyl-phosphate + ADP + 2 H+

anaerobic energy metabolism (invertebrates, cytosol) , gluconeogenesis III :
oxaloacetate + GTP ← CO2 + phosphoenolpyruvate + GDP

arginine dependent acid resistance , L-arginine degradation III (arginine decarboxylase/agmatinase pathway) , L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway) , putrescine biosynthesis I , putrescine biosynthesis II , putrescine biosynthesis IV , spermidine biosynthesis III :
L-arginine + H+CO2 + agmatine

C4 photosynthetic carbon assimilation cycle, NAD-ME type , C4 photosynthetic carbon assimilation cycle, NADP-ME type , C4 photosynthetic carbon assimilation cycle, PEPCK type , CO2 fixation into oxaloacetate (anaplerotic) , cyanate degradation :
hydrogen carbonate + H+CO2 + H2O

carbon tetrachloride degradation II :
formate + NADP+CO2 + NADPH

crotonate fermentation (to acetate and cyclohexane carboxylate) , glutaryl-CoA degradation , L-glutamate degradation V (via hydroxyglutarate) :
(E)-glutaconyl-CoA + H+CO2 + crotonyl-CoA

Entner-Doudoroff pathway II (non-phosphorylative) , glycerol degradation to butanol , isopropanol biosynthesis , L-glutamate degradation VII (to butanoate) , pyruvate fermentation to acetate I , pyruvate fermentation to acetate III , pyruvate fermentation to acetate VI , pyruvate fermentation to acetate VII , pyruvate fermentation to acetone , pyruvate fermentation to butanoate , pyruvate fermentation to butanol I , pyruvate fermentation to ethanol III , pyruvate fermentation to hexanol , reductive monocarboxylic acid cycle :
pyruvate + 2 an oxidized ferredoxin + coenzyme A ↔ acetyl-CoA + CO2 + 2 a reduced ferredoxin + H+

ethylene biosynthesis V (engineered) , L-glutamine biosynthesis III , methylaspartate cycle , mixed acid fermentation , NAD/NADP-NADH/NADPH cytosolic interconversion (yeast) , TCA cycle I (prokaryotic) , TCA cycle IV (2-oxoglutarate decarboxylase) , TCA cycle VI (obligate autotrophs) , TCA cycle VII (acetate-producers) :
D-threo-isocitrate + NADP+ ↔ 2-oxoglutarate + CO2 + NADPH

ethylmalonyl pathway :
(S)-ethylmalonyl-CoA + NADP+ ↔ crotonyl-CoA + CO2 + NADPH

folate transformations I , folate transformations II , N10-formyl-tetrahydrofolate biosynthesis , photorespiration :
glycine + a tetrahydrofolate + NAD+ ↔ a 5,10-methylene-tetrahydrofolate + ammonium + CO2 + NADH

formate oxidation to CO2 , oxalate degradation III , purine nucleobases degradation I (anaerobic) :
formate + NAD+CO2 + NADH

gallate degradation III (anaerobic) :
gallate + H+CO2 + pyrogallol

gluconeogenesis II (Methanobacterium thermoautotrophicum) :
hydrogen carbonate + H+CO2 + H2O
pyruvate + 2 an oxidized ferredoxin + coenzyme A ↔ acetyl-CoA + CO2 + 2 a reduced ferredoxin + H+

glycine biosynthesis II , glycine cleavage :
glycine + a [glycine-cleavage complex H protein] N6-lipoyl-L-lysine + H+ ↔ a [glycine-cleavage complex H protein] N6-aminomethyldihydrolipoyl-L-lysine + CO2

incomplete reductive TCA cycle :
2-oxoglutarate + 2 an oxidized ferredoxin + coenzyme A ↔ succinyl-CoA + CO2 + 2 a reduced ferredoxin + H+
pyruvate + 2 an oxidized ferredoxin + coenzyme A ↔ acetyl-CoA + CO2 + 2 a reduced ferredoxin + H+

L-isoleucine biosynthesis V , L-isoleucine degradation I :
(S)-3-methyl-2-oxopentanoate + coenzyme A + NAD+ ↔ 2-methylbutanoyl-CoA + CO2 + NADH

L-phenylalanine biosynthesis I , L-phenylalanine biosynthesis III (cytosolic, plants) :
prephenate + H+ ↔ 2-oxo-3-phenylpropanoate + CO2 + H2O

In Reactions of unknown directionality:

fatty acids biosynthesis (yeast) :
acetyl-CoA + n malonyl-CoA + 2n NADPH + 4n H+ = a long-chain acyl-CoA + n CO2 + n coenzyme A + 2n NADP+

glycolate degradation II :
6 glycolate + H+ = acetate + 2 succinate + 2 CO2 + 4 H2O

oxalate degradation V :
oxalate + H+ = formate + CO2

plumbagin biosynthesis :
acetyl-CoA + 5 malonyl-CoA + 2 NADPH + 6 H+ + oxygen = hexaketide pyrone + 5 CO2 + 6 coenzyme A + 2 NADP+ + 3 H2O

salicylate degradation III :
salicylate + H+ = phenol + CO2

Not in pathways:
stipitatonate = stipitatate + CO2
L-tartrate + H+ = D-glycerate + CO2
2,3-dihydroxybenzoate + H+ = CO2 + catechol
N-[(R)-pantothenoyl]-L-cysteine + H+ = pantetheine + CO2
orsellinate + H+ = orcinol + CO2
protocatechuate + H+ = CO2 + catechol
dihydroxyfumarate + H+ = CO2 + tartronate semialdehyde
L-carnitine + H+ = CO2 + 2-methylcholine
L-aspartate + H+ = CO2 + L-alanine
a 2,2-dialkylglycine + pyruvate + H+ = a dialkyl ketone + L-alanine + CO2
oxaloacetate + diphosphate = CO2 + phosphoenolpyruvate + phosphate
4-hydroxybenzoate + H+ = CO2 + phenol
4,5-dihydroxyphthalate + H+ = CO2 + protocatechuate
hydroxypyruvate + H+ = CO2 + glycolaldehyde
3-hydroxy-L-glutamate + H+ = 4-amino-3-hydroxybutanoate + CO2
gentisate + H+ = CO2 + benzene-1,4-diol
uracil 5-carboxylate + H+ = CO2 + uracil
N-Benzyloxycarbonylglycine + H+ + H2O = glycine + CO2 + benzyl alcohol
(R)-3,3-dimethylmalate + NAD+ = CO2 + 3-methyl-2-oxobutanoate + NADH
carbon monoxide + 2 an oxidized cytochrome b561 + H2O = CO2 + 2 a reduced cytochrome b561 + 2 H+

In Transport reactions:
CO2[periplasmic space]CO2[cytosol]

In Redox half-reactions:
acetate[in] + CO2[in] + 2 H+[in] + 2 e- → pyruvate[in] + H2O[in] ,
CO2[out] + H+[out] + 2 e- → formate[out]


References

Latendresse, 2013: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Thu Mar 26, 2015, BIOCYC13B.