twitter

MetaCyc Compound: D-isoleucine

Superclasses: an acid all carboxy acids a carboxylate an amino acid a D-amino acid
an amino acid or its derivative an amino acid a D-amino acid

Chemical Formula: C6H13NO2

Molecular Weight: 131.17 Daltons

Monoisotopic Molecular Weight: 131.0946286667 Daltons

D-isoleucine compound structure

SMILES: CCC(C)C([N+])C(=O)[O-]

InChI: InChI=1S/C6H13NO2/c1-3-4(2)5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t4-,5-/m1/s1

InChIKey: InChIKey=AGPKZVBTJJNPAG-RFZPGFLSSA-N

Unification Links: ChEBI:85306 , MetaboLights:MTBLC27730 , PubChem:6950184

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 48.65456 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

Not in pathways:
a D-amino acid[in] + an electron-transfer quinone[membrane] + H2O[in] → a 2-oxo carboxylate[in] + ammonium[in] + an electron-transfer quinol[membrane]
a D-amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

3-hydroxy-L-homotyrosine biosynthesis :
4-(4-hydroxyphenyl)-2-oxobutanoate + an amino acidL-homotyrosine + a 2-oxo acid

methyl ketone biosynthesis :
a carboxylate + ATP + coenzyme A → an acyl-CoA + AMP + diphosphate

Not in pathways:
an acyl-protein synthetase + a carboxylate + ATP → an acyl-protein thioester + AMP + diphosphate
a carboxylate + GTP + coenzyme A → an acyl-CoA + GDP + phosphate

Reactions known to produce the compound:

Not in pathways:
a peptide with an N-terminal D-amino acid + H2O → a peptide + a D-amino acid + H+
a D-aminoacyl-[tRNA] + H2O → a D-amino acid + an uncharged tRNA + 2 H+

3,3'-thiodipropanoate degradation :
3-sulfinopropionate + an acyl-CoA → 3-sulfinopropanoyl-CoA + a carboxylate

dimethylsulfoniopropanoate degradation II (cleavage) :
dimethylsulfoniopropanoate + an acyl-CoA → dimethylsulfoniopropioyl-CoA + a carboxylate

NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast) :
an aldehyde + NADP+ + H2O → a carboxylate + NADPH + 2 H+
an aldehyde + NAD+ + H2O → a carboxylate + NADH + 2 H+

phosphatidylcholine resynthesis via glycerophosphocholine :
a phosphatidylcholine + 2 H2O → sn-glycero-3-phosphocholine + 2 a carboxylate + 2 H+

Not in pathways:
a 1-acyl 2-lyso-phosphatidylcholine[periplasmic space] + H2O[periplasmic space]a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an acyl-CoA + H2O → a carboxylate + coenzyme A + H+
an L-1-phosphatidyl-inositol + H2O → a 1-acyl-sn-glycero-3-phospho-D-myo-inositol + a carboxylate + H+
a carboxylic ester + H2O → an alcohol + a carboxylate + H+
an aldehyde + oxygen + H2O → a carboxylate + hydrogen peroxide + H+
an aldehyde + FMNH2 + oxygen → hν + a carboxylate + FMN + H2O + 2 H+
an acylcholine + H2O → choline + a carboxylate + H+
a β-monogalactosyldiacylglycerol + 2 H2O → 2 a carboxylate + 3-β-D-galactosyl-sn-glycerol + 2 H+
an acyl phosphate + H2O → a carboxylate + phosphate + H+
an S-acylglutathione + H2O → a carboxylate + glutathione
an N-acyl-L-aspartate + H2O → L-aspartate + a carboxylate

Reactions known to both consume and produce the compound:

sphingolipid recycling and degradation (yeast) :
a dihydroceramide + H2O ↔ sphinganine + a carboxylate

In Reactions of unknown directionality:

Not in pathways:
acetyl-CoA + a D-amino acid = an N-acetyl-D-amino acid + coenzyme A + H+
an N-carbamoyl D-amino acid + H2O + 2 H+ = a D-amino acid + ammonium + CO2
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an L-amino acid = a D-amino acid

Not in pathways:
a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

Not in pathways:
eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a 2-acyl 1-lyso-phosphatidylcholine[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an aldehyde + an electron-transfer quinone + H2O = a carboxylate + an electron-transfer quinol + H+
a triacyl-sn-glycerol + H2O = a 1,2-diacyl-sn-glycerol + a carboxylate + H+
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an oxidized unknown electron acceptor + H2O = a carboxylate + an reduced unknown electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an N-acylated aliphatic-L-amino acid + H2O = a carboxylate + an aliphatic L-amino acid
a D-hexose + an acyl phosphate = a D-hexose-phosphate + a carboxylate
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an N-acyl-D-glutamate + H2O = a carboxylate + D-glutamate
an anilide + H2O = aniline + a carboxylate + H+
a 5'-acylphosphoadenosine + H2O = a carboxylate + AMP + 2 H+
a 3-acylpyruvate + H2O = a carboxylate + pyruvate + H+

In Redox half-reactions:
a 2-oxo carboxylate[in] + ammonium[in] + 2 H+[in] + 2 e-[membrane]a D-amino acid[in] + H2O[in]

This compound has been characterized as an alternative substrate of the following enzymes: D-proline dehydrogenase

Credits:
Created 22-Jan-2010 by Caspi R , SRI International


References

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Thu Jul 30, 2015, biocyc12.