twitter

MetaCyc Compound: D-isoleucine

Superclasses: an amino acid or its derivative an amino acid a D-amino acid

Chemical Formula: C6H13NO2

Molecular Weight: 131.17 Daltons

Monoisotopic Molecular Weight: 131.0946286667 Daltons

D-isoleucine compound structure

SMILES: CCC(C)C([N+])C([O-])=O

InChI: InChI=1S/C6H13NO2/c1-3-4(2)5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t4-,5+/m0/s1

InChIKey: InChIKey=AGPKZVBTJJNPAG-CRCLSJGQSA-N

Unification Links: ChEBI:27730 , MetaboLights:MTBLC27730 , PubChem:6950183

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 48.65456 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

Not in pathways:
a D-amino acid[in] + an electron-transfer quinone[membrane] + H2O[in] → a 2-oxo carboxylate[in] + ammonium[in] + an electron-transfer quinol[membrane]
a D-amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

Reactions known to produce the compound:

Not in pathways:
a peptide with an N-terminal D-amino acid + H2O → a peptide + a D-amino acid + H+
a D-aminoacyl-[tRNA] + H2O → a D-amino acid + an uncharged tRNA + 2 H+

In Reactions of unknown directionality:

Not in pathways:
acetyl-CoA + a D-amino acid = an N-acetyl-D-amino acid + coenzyme A + H+
an N-carbamoyl D-amino acid + H+ + H2O = a D-amino acid + ammonium + CO2
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an L-amino acid = a D-amino acid

Not in pathways:
a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

In Redox half-reactions:
a 2-oxo carboxylate[in] + ammonium[in] + 2 H+[in] + 2 e-[membrane]a D-amino acid[in] + H2O[in]

This compound has been characterized as an alternative substrate of the following enzymes: D-proline dehydrogenase

Credits:
Created 22-Jan-2010 by Caspi R , SRI International


References

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Fri May 22, 2015, BIOCYC14A.