twitter

MetaCyc Compound Class: an eicosadienoate

Synonyms: an eicosadienoic acid

Superclasses: an acid all carboxy acids a carboxylate a fatty acid a long-chain fatty acid
an acid all carboxy acids a carboxylate a fatty acid an unsaturated fatty acid a polyunsaturated fatty acid

Summary:
This compound class stands for any 20-carbon, straight-chain, polyunsaturated fatty acid having two double bonds at any positions. The structure shown here is not generic (it is the structure of (11Z,14Z)-icosadienoate), and is only provided as a general guidance.

an eicosadienoate compound structure

Chemical Formula: C20H35O2

Child Classes: an 11,13-eicosadienoate (4)

Instances:
(8Z,11Z)-icosadienoate ,
(11Z,14Z)-icosadienoate

Molecular Weight: 307.5 Daltons

Monoisotopic Molecular Weight: 308.2715303998 Daltons

SMILES: CCCCCC=CCC=CCCCCCCCCCC(=O)[O-]

InChI: InChI=1S/C20H36O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h6-7,9-10H,2-5,8,11-19H2,1H3,(H,21,22)/p-1/b7-6-,10-9-

InChIKey: InChIKey=XSXIVVZCUAHUJO-HZJYTTRNSA-M

Unification Links: ChEBI:78073

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 346.30722 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

alkane biosynthesis I :
a long-chain fatty acid + a holo-[acyl-carrier protein] + ATP → a long-chain acyl-[acp] + AMP + diphosphate

alkane biosynthesis II , long chain fatty acid ester synthesis for microdiesel production , long-chain fatty acid activation , phosphatidylcholine acyl editing , wax esters biosynthesis II :
a long-chain fatty acid + ATP + coenzyme A → a long-chain acyl-CoA + AMP + diphosphate

sophorolipid biosynthesis :
a long-chain fatty acid + NADPH + oxygen + H+ → an (ω-1)-hydroxy long-chain fatty acid + NADP+ + H2O
a long-chain fatty acid + NADPH + oxygen + H+ → an ω-hydroxy long-chain fatty acid + NADP+ + H2O

terminal olefins biosynthesis I :
a long-chain fatty acid + hydrogen peroxide + H+ → a terminal olefin + CO2 + 2 H2O

alkane oxidation :
a fatty acid + NADPH + oxygen + H+ → an ω-hydroxy fatty acid + NADP+ + H2O

rhizobactin 1021 biosynthesis :
rhizobactin 1021 core + a fatty acid → rhizobactin 1021

saframycin A biosynthesis :
a fatty acid + a holo-[SfmA peptidyl-carrier-protein] + H+ → an acyl-[SfmA peptidyl-carrier-protein] + H2O

Not in pathways:
a fatty acid + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + a fatty acid-methyl ester
a fatty acid + a holo-[acyl-carrier protein] + ATP → a 2,3,4-saturated fatty acyl-[acp] + AMP + diphosphate

methyl ketone biosynthesis :
a carboxylate + ATP + coenzyme A → an acyl-CoA + AMP + diphosphate

Not in pathways:
an acyl-protein synthetase + a carboxylate + ATP → an acyl-protein thioester + AMP + diphosphate
a carboxylate + GTP + coenzyme A → an acyl-CoA + GDP + phosphate

Reactions known to produce the compound:

phosphatidylcholine acyl editing :
a phosphatidylcholine + H2O → a 1-acyl 2-lyso-phosphatidylcholine + a long-chain fatty acid + H+
a phosphatidylcholine + H2O → a 2-acyl 1-lyso-phosphatidylcholine + a long-chain fatty acid + H+

phospholipases :
a phosphatidylcholine + H2O → a 1-acyl 2-lyso-phosphatidylcholine + a long-chain fatty acid + H+
a phosphatidylcholine + H2O → a 2-acyl 1-lyso-phosphatidylcholine + a long-chain fatty acid + H+

retinol biosynthesis :
an all-trans-retinyl ester + H2O → all-trans-retinol + a long-chain fatty acid + H+
a dietary all-trans-retinyl ester + H2O → all-trans-retinol + a long-chain fatty acid + H+

Not in pathways:
a wax ester + H2O → a long-chain alcohol + a long-chain fatty acid + H+
a long-chain-fatty-acyl ethyl ester + H2O → a long-chain fatty acid + ethanol + H+

acyl-ACP thioesterase pathway :
an acyl-[acyl-carrier protein] + H2O → a fatty acid + a holo-[acyl-carrier protein] + H+

alkane oxidation , fatty acid α-oxidation I :
a fatty aldehyde + NAD+ + H2O → a fatty acid + NADH + 2 H+

ceramide degradation :
a ceramide + H2O → a sphingoid base + a fatty acid

sphingolipid biosynthesis (mammals) , sphingomyelin metabolism :
an N-acyl-sphingosylphosphorylcholine + H2O → a fatty acid + sphingosylphosphorylcholine

sphingosine and sphingosine-1-phosphate metabolism :
a (4E)-sphing-4-enine ceramide + H2O → sphingosine + a fatty acid

the visual cycle I (vertebrates) :
an all-trans-retinyl ester + H2O → 11-cis-retinol + a fatty acid + H+

triacylglycerol degradation :
a 1,2-diglyceride + H2O → a 2-monoglyceride + a fatty acid + H+
a 1-monoglyceride + H2O → a fatty acid + glycerol + H+
a triglyceride + H2O → a 1,2-diglyceride + a fatty acid + H+

Not in pathways:
a 3-(acyloxy)acyl group of bacterial toxin + H2O → a 3-hydroxyacyl group of bacterial toxin + a fatty acid + H+
a steryl-ester + H2O → a fatty acid + a sterol + H+
an L-1-phosphatidylethanolamine[periplasmic space] + H2O[periplasmic space] → a 2-acyl-1-lyso-phosphatidylethanolamine[periplasmic space] + a fatty acid[periplasmic space] + H+[periplasmic space]
a 2-monoglyceride + H2O → glycerol + a fatty acid + H+
an L-1-phosphatidylethanolamine[periplasmic space] + H2O[periplasmic space]a fatty acid[periplasmic space] + a 1-acyl 2-lyso-phosphatidylethanolamine[periplasmic space] + H+[periplasmic space]
a 1,3-diglyceride + H2O → a monoglyceride + a fatty acid
an all-trans-retinyl ester + H2O → 13-cis-retinol + a fatty acid
an 11-cis-retinyl ester + H2O → 11-cis-retinol + a fatty acid

Reactions known to both consume and produce the compound:

sphingolipid recycling and degradation (yeast) :
a dihydroceramide + H2O ↔ sphinganine + a carboxylate

In Reactions of unknown directionality:

Not in pathways:
a long-chain acyl-CoA + H2O = a long-chain fatty acid + coenzyme A + H+
an acylglycerone phosphate + a long-chain alcohol = a 1-alkyl-glycerone 3-phosphate + a long-chain fatty acid + H+
a long-chain alcohol + 2 NAD+ + H2O = a long-chain fatty acid + 2 NADH + 3 H+
a long-chain aldehyde + NAD+ + H2O = a long-chain fatty acid + NADH + 2 H+
an N-long-chain-fatty-acyl-L-glutamate + H2O = L-glutamate + a long-chain fatty acid
an N-(long-chain-acyl)ethanolamine + H2O = a long-chain fatty acid + ethanolamine
acetyl-CoA + n malonyl-CoA + 2n NADPH + 2n H+ = a long-chain fatty acid + n CO2 + (n+1) coenzyme A + 2n NADP+

Not in pathways:
a fatty acid + hydrogen peroxide = a 3- or 2-hydroxy fatty acid + H2O
a fatty acid + L-alanine + glycine + a holo-[SfmB peptidyl-carrier-protein] + H+ = an acyl-L-alanyl-glycyl-[SfmB peptidyl-carrier-protein] + 3 H2O
a D-glucosyl-N-acylsphingosine + H2O = a fatty acid + O-glucosyl-sphingosine
a 1,2-diacyl-sn-glycerol + H2O = a 1-monoglyceride + a fatty acid + H+
a glycosphingolipid + H2O = a lyso-glycosphingolipid + a fatty acid

Not in pathways:
eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a 2-acyl 1-lyso-phosphatidylcholine[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an aldehyde + an electron-transfer quinone + H2O = a carboxylate + an electron-transfer quinol + H+
a triacyl-sn-glycerol + H2O = a 1,2-diacyl-sn-glycerol + a carboxylate + H+
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an oxidized unknown electron acceptor + H2O = a carboxylate + an reduced unknown electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an N-acylated aliphatic-L-amino acid + H2O = a carboxylate + an aliphatic L-amino acid

In Transport reactions:
a long-chain fatty acid[periplasmic space]a long-chain fatty acid[cytosol] ,
a long-chain fatty acid[extracellular space]a long-chain fatty acid[periplasmic space]

Enzymes activated by an eicosadienoate, sorted by the type of activation, are:

Activator (Allosteric) of: pyruvate oxidase [Kiuchi84]

Credits:
Created 27-Oct-2011 by Weerasinghe D , SRI International
Revised 10-Oct-2014 by Caspi R , SRI International


References

Kiuchi84: Kiuchi K, Hager LP (1984). "Reconstitution of the lipid-depleted pyruvate oxidase system of Escherichia coli: the palmitic acid effect." Arch Biochem Biophys 233(2);776-84. PMID: 6385860

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Fri Jul 31, 2015, biocyc11.