Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
Pathway Tools
Intro Tutorial
discounted registration ends Sept 5, 2015 (Sat)
twitter

MetaCyc Compound: D-asparagine

Superclasses: an acid all carboxy acids a carboxylate an amino acid a D-amino acid
an acid all carboxy acids a carboxylate an amino acid a polar amino acid an uncharged polar amino acid
an amino acid or its derivative an amino acid a D-amino acid
an amino acid or its derivative an amino acid a polar amino acid an uncharged polar amino acid

Chemical Formula: C4H8N2O3

Molecular Weight: 132.12 Daltons

Monoisotopic Molecular Weight: 132.0534921335 Daltons

D-asparagine compound structure

SMILES: C(CC(C(=O)[O-])[N+])(N)=O

InChI: InChI=1S/C4H8N2O3/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H2,6,7)(H,8,9)/t2-/m1/s1

InChIKey: InChIKey=DCXYFEDJOCDNAF-UWTATZPHSA-N

Unification Links: ChEBI:74337 , HMDB:HMDB33780 , KEGG:C01905 , MetaboLights:MTBLC74337 , PubChem:6991971

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -41.14103 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

Not in pathways:
a D-amino acid[in] + an electron-transfer quinone[membrane] + H2O[in] → a 2-oxo carboxylate[in] + ammonium[in] + an electron-transfer quinol[membrane]
a D-amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

3-hydroxy-L-homotyrosine biosynthesis :
4-(4-hydroxyphenyl)-2-oxobutanoate + an amino acidL-homotyrosine + a 2-oxo acid

methyl ketone biosynthesis :
a carboxylate + ATP + coenzyme A → an acyl-CoA + AMP + diphosphate

Not in pathways:
an acyl-protein synthetase + a carboxylate + ATP → an acyl-protein thioester + AMP + diphosphate
a carboxylate + GTP + coenzyme A → an acyl-CoA + GDP + phosphate

Reactions known to produce the compound:

Not in pathways:
a peptide with an N-terminal D-amino acid + H2O → a peptide + a D-amino acid + H+
a D-aminoacyl-[tRNA] + H2O → a D-amino acid + an uncharged tRNA + 2 H+

3,3'-thiodipropanoate degradation :
3-sulfinopropionate + an acyl-CoA → 3-sulfinopropanoyl-CoA + a carboxylate

dimethylsulfoniopropanoate degradation II (cleavage) :
dimethylsulfoniopropanoate + an acyl-CoA → dimethylsulfoniopropioyl-CoA + a carboxylate

NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast) :
an aldehyde + NADP+ + H2O → a carboxylate + NADPH + 2 H+
an aldehyde + NAD+ + H2O → a carboxylate + NADH + 2 H+

phosphatidylcholine resynthesis via glycerophosphocholine :
a phosphatidylcholine + 2 H2O → sn-glycero-3-phosphocholine + 2 a carboxylate + 2 H+

Not in pathways:
a 1-acyl 2-lyso-phosphatidylcholine[periplasmic space] + H2O[periplasmic space]a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an acyl-CoA + H2O → a carboxylate + coenzyme A + H+
an L-1-phosphatidyl-inositol + H2O → a 1-acyl-sn-glycero-3-phospho-D-myo-inositol + a carboxylate + H+
a carboxylic ester + H2O → an alcohol + a carboxylate + H+
an aldehyde + oxygen + H2O → a carboxylate + hydrogen peroxide + H+
an aldehyde + FMNH2 + oxygen → hν + a carboxylate + FMN + H2O + 2 H+
an acylcholine + H2O → choline + a carboxylate + H+
a β-monogalactosyldiacylglycerol + 2 H2O → 2 a carboxylate + 3-β-D-galactosyl-sn-glycerol + 2 H+
an acyl phosphate + H2O → a carboxylate + phosphate + H+
an S-acylglutathione + H2O → a carboxylate + glutathione
an N-acyl-L-aspartate + H2O → L-aspartate + a carboxylate

Reactions known to both consume and produce the compound:

sphingolipid recycling and degradation (yeast) :
a dihydroceramide + H2O ↔ sphinganine + a carboxylate

In Reactions of unknown directionality:

Not in pathways:
acetyl-CoA + a D-amino acid = an N-acetyl-D-amino acid + coenzyme A + H+
an N-carbamoyl D-amino acid + H2O + 2 H+ = a D-amino acid + ammonium + CO2
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an L-amino acid = a D-amino acid

Not in pathways:
a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

Not in pathways:
eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a 2-acyl 1-lyso-phosphatidylcholine[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an aldehyde + an electron-transfer quinone + H2O = a carboxylate + an electron-transfer quinol + H+
a triacyl-sn-glycerol + H2O = a 1,2-diacyl-sn-glycerol + a carboxylate + H+
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an oxidized unknown electron acceptor + H2O = a carboxylate + an reduced unknown electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an N-acylated aliphatic-L-amino acid + H2O = a carboxylate + an aliphatic L-amino acid
a D-hexose + an acyl phosphate = a D-hexose-phosphate + a carboxylate
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an N-acyl-D-glutamate + H2O = a carboxylate + D-glutamate
an anilide + H2O = aniline + a carboxylate + H+
a 5'-acylphosphoadenosine + H2O = a carboxylate + AMP + 2 H+
a 3-acylpyruvate + H2O = a carboxylate + pyruvate + H+

In Transport reactions:
a polar amino acid[extracellular space] + ATP + H2O ↔ a polar amino acid[cytosol] + ADP + phosphate

In Redox half-reactions:
a 2-oxo carboxylate[in] + ammonium[in] + 2 H+[in] + 2 e-[membrane]a D-amino acid[in] + H2O[in]

Enzymes inhibited by D-asparagine, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: L-asparaginase [Pritsa01]

Inhibitor (Mechanism unknown) of: L-asparaginase [Raha90]

This compound has been characterized as an alternative substrate of the following enzymes: D-alanine--D-serine ligase , D-amino-acid:quinone oxidoreductase (deaminating) , L-asparaginase


References

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Pritsa01: Pritsa AA, Kyriakidis DA (2001). "L-asparaginase of Thermus thermophilus: purification, properties and identification of essential amino acids for its catalytic activity." Mol Cell Biochem 216(1-2);93-101. PMID: 11216870

Raha90: Raha SK, Roy SK, Dey SK, Chakrabarty SL (1990). "Purification and properties of an L-asparaginase from Cylindrocarpon obtusisporum MB-10." Biochem Int 21(6);987-1000. PMID: 2080924


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Thu Sep 3, 2015, BIOCYC14A.