twitter

MetaCyc Compound: L-threitol

Superclasses: all carbohydrates a carbohydrate a glycan a sugar a sugar alcohol a tetritol a threitol
an alcohol a sugar alcohol a tetritol a threitol

Chemical Formula: C4H10O4

Molecular Weight: 122.12 Daltons

Monoisotopic Molecular Weight: 122.0579088094 Daltons

L-threitol compound structure

SMILES: C(C(C(CO)O)O)O

InChI: InChI=1S/C4H10O4/c5-1-3(7)4(8)2-6/h3-8H,1-2H2/t3-,4-/m0/s1

InChIKey: InChIKey=UNXHWFMMPAWVPI-IMJSIDKUSA-N

Unification Links: CAS:2319-57-5 , ChEBI:42090 , ChemSpider:393447 , PubChem:445969

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -49.888813 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

Not in pathways:
a sugar alcohol + oxygen → an aldose + hydrogen peroxide

Reactions known to produce the compound:

Not in pathways:
a thioglucoside + H2O → a sugar + a thiol
a sugar phosphate + H2O → a sugar + phosphate
glycosyl-N-acylsphingosine + H2O → a ceramide + a sugar

Not in pathways:
an N-acetyl-β-D-galactosalaminyl-[glycan] + H2O → a glycan + N-acetyl-β-D-galactosamine

β-D-glucuronide and D-glucuronate degradation :
a β-D-glucuronoside + H2O → D-glucopyranuronate + an alcohol

glycerophosphodiester degradation :
a glycerophosphodiester + H2O → an alcohol + sn-glycerol 3-phosphate + H+

phosphate acquisition , phosphate utilization in cell wall regeneration :
a phosphate monoester + H2O → an alcohol + phosphate

Not in pathways:
an organic hydroperoxide + NADH + H+an alcohol + NAD+ + H2O
an α-D-glucuronoside + H2O → D-glucopyranuronate + an alcohol
an α amino acid ester + H2O → an alcohol + an α amino acid + H+
a phosphate monoester + H2O → an alcohol + phosphate
RH + a reduced [NADPH-hemoprotein reductase] + oxygen → ROH + an oxidized [NADPH-hemoprotein reductase] + H2O
an oligosaccharide with β-L-arabinopyranose at the non-reducing end + H2O → β-L-arabinopyranose + an alcohol
an N-acetyl-β-D-hexosaminide + H2O → an N-acetyl-β-D-hexosamine + an alcohol
a carboxylic ester + H2O → an alcohol + a carboxylate + H+
an acetic ester + H2O → an alcohol + acetate + H+
a reduced thioredoxin + an organic hydroperoxide → an oxidized thioredoxin + an alcohol + H2O
a 6-O-(β-D-xylopyranosyl)-β-D-glucopyranoside + H2O → β-primeverose + an alcohol
an organic molecule + H2O + 2 oxygen → an alcohol + 2 superoxide + 2 H+
an N5-acyl-L-ornithine-ester + H2O → an N5-acyl-L-ornithine + an alcohol
α-L-fucoside + H2O → L-fucopyranose + an alcohol
a 2-deoxy-α-D-glucoside + H2O → 2-deoxy-D-glucose + an alcohol
a 6-phospho-β-D-galactoside + H2O → α-D-galactose 6-phosphate + an alcohol

In Reactions of unknown directionality:

Not in pathways:
a sugar alcohol + NAD(P)+ = an aldose + NAD(P)H + H+

Not in pathways:
an alcohol + 3'-phosphoadenylyl-sulfate = adenosine 3',5'-bisphosphate + an organosulfate + H+
an alcohol + NAD(P)+ = an aldehyde + NAD(P)H + H+
an alcohol + NADP+ = an aldehyde + NADPH + H+
trans-cinnamoyl-β-D-glucoside + an alcohol = β-D-glucose + alkyl cinnamate
an alcohol + acetyl-CoA = an acetic ester + coenzyme A
2 protein cysteines + an organic hydroperoxide = a protein disulfide + an alcohol + H2O
an organic molecule + an organic hydroperoxide = 2 an alcohol
an organic molecule + hydrogen peroxide = an alcohol + H2O

In Transport reactions:
a [PTS enzyme I]-Nπ-phospho-L-histidine + a sugar[out] → a [PTS enzyme I]-L-histidine + a sugar phosphate[in]

Enzymes activated by L-threitol, sorted by the type of activation, are:

Activator (Mechanism unknown) of: phosphoenolpyruvate carboxylase [Izui83]

This compound has been characterized as an alternative substrate of the following enzymes: D-sorbitol dehydrogenase , L-sorbitol dehydrogenase


References

Izui83: Izui K, Matsuda Y, Kameshita I, Katsuki H, Woods AE (1983). "Phosphoenolpyruvate carboxylase of Escherichia coli. Inhibition by various analogs and homologs of phosphoenolpyruvate." J Biochem (Tokyo) 1983;94(6);1789-95. PMID: 6368527

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Wed May 27, 2015, BIOCYC13A.