Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Compound: fructose 1,6-bisphosphate

Systematic Name: D-Fructose 1,6-bis(dihydrogenphosphate)

Synonyms: fructose 1,6-biphosphate, fructose 1,6-diphosphate, β-D-fructose 1,6-diphosphate, D-fructose 1,6-diphosphate, D-fructos 1,6-bisphosphate, fructose 1,6-bisphosphate, FBP

Superclasses: all carbohydrates a carbohydrate a glycan a carbohydrate derivative a sugar phosphate a hexose phosphate a hexose 6-phosphate
all carbohydrates a carbohydrate a glycan a carbohydrate derivative a sugar phosphate a sugar 6-phosphate a hexose 6-phosphate
all carbohydrates a carbohydrate a glycan a carbohydrate derivative a sugar phosphate a sugar bisphosphate

Summary:
Fructose 1,6-phosphate is fructose sugar phosphorylated on carbons 1 and 6. The β-D-form of this compound is a very common metabolite.

Chemical Formula: C6H10O12P2

Molecular Weight: 336.08 Daltons

Monoisotopic Molecular Weight: 339.9960489346 Daltons

SMILES: C(C1(C(C(C(O1)(COP([O-])([O-])=O)O)O)O))OP([O-])([O-])=O

InChI: InChI=1S/C6H14O12P2/c7-4-3(1-16-19(10,11)12)18-6(9,5(4)8)2-17-20(13,14)15/h3-5,7-9H,1-2H2,(H2,10,11,12)(H2,13,14,15)/p-4/t3-,4-,5+,6-/m1/s1

InChIKey: InChIKey=RNBGYGVWRKECFJ-ARQDHWQXSA-J

Unification Links: CAS:488-69-7 , ChEBI:32966 , ChemSpider:4574223 , HMDB:HMDB01058 , IAF1260:34717 , KEGG:C00354 , PubChem:5460765 , Wikipedia:Fructose_1,6-bisphosphate

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -541.3618 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

3-dehydroquinate biosynthesis II (archaea) :
fructose 1,6-bisphosphate + methylglyoxal → 6-deoxy-5-ketofructose 1-phosphate + D-glyceraldehyde 3-phosphate

Calvin-Benson-Bassham cycle , formaldehyde assimilation III (dihydroxyacetone cycle) , gluconeogenesis I , gluconeogenesis III , glycolysis I (from glucose 6-phosphate) , glycolysis II (from fructose 6-phosphate) , sucrose biosynthesis I (from photosynthesis) :
fructose 1,6-bisphosphate + H2O → β-D-fructofuranose 6-phosphate + phosphate

furaneol biosynthesis :
fructose 1,6-bisphosphate → norfuraneol

Not in pathways:
a sugar phosphate + H2O → a sugar + phosphate

Reactions known to produce the compound:

1,3-propanediol biosynthesis (engineered) , formaldehyde assimilation II (RuMP Cycle) , glycolysis I (from glucose 6-phosphate) , glycolysis II (from fructose 6-phosphate) , glycolysis III (from glucose) , glycolysis IV (plant cytosol) , glycolysis VI (metazoan) :
ATP + β-D-fructofuranose 6-phosphate → ADP + fructose 1,6-bisphosphate + H+

fructose degradation :
ATP + β-D-fructofuranose 1-phosphate → ADP + fructose 1,6-bisphosphate + H+

Not in pathways:
an N-acetyl-β-D-galactosalaminyl-[glycan] + H2O → a glycan + N-acetyl-β-D-galactosamine

Reactions known to both consume and produce the compound:

1,3-propanediol biosynthesis (engineered) , Calvin-Benson-Bassham cycle , formaldehyde assimilation II (RuMP Cycle) , formaldehyde assimilation III (dihydroxyacetone cycle) , gluconeogenesis I , gluconeogenesis III , glycolysis I (from glucose 6-phosphate) , glycolysis II (from fructose 6-phosphate) , glycolysis III (from glucose) , glycolysis VI (metazoan) , sucrose biosynthesis I (from photosynthesis) :
fructose 1,6-bisphosphate ↔ dihydroxyacetone phosphate + D-glyceraldehyde 3-phosphate

gluconeogenesis II (Methanobacterium thermoautotrophicum) :
β-D-fructofuranose 6-phosphate + ADP ↔ fructose 1,6-bisphosphate + AMP + H+
fructose 1,6-bisphosphate ↔ dihydroxyacetone phosphate + D-glyceraldehyde 3-phosphate

glycolysis IV (plant cytosol) :
β-D-fructofuranose 6-phosphate + diphosphate ↔ fructose 1,6-bisphosphate + phosphate + H+
fructose 1,6-bisphosphate ↔ dihydroxyacetone phosphate + D-glyceraldehyde 3-phosphate

glycolysis V (Pyrococcus) :
β-D-fructofuranose 6-phosphate + ADP ↔ fructose 1,6-bisphosphate + AMP + H+
fructose 1,6-bisphosphate ↔ dihydroxyacetone phosphate + D-glyceraldehyde 3-phosphate

mannitol cycle :
β-D-fructofuranose 6-phosphate + diphosphate ↔ fructose 1,6-bisphosphate + phosphate + H+

In Transport reactions:
a [PTS enzyme I]-Nπ-phospho-L-histidine + a sugar[out] → a [PTS enzyme I]-L-histidine + a sugar phosphate[in]

Enzymes activated by fructose 1,6-bisphosphate, sorted by the type of activation, are:

Activator (Allosteric) of: glucose-1-phosphate adenylyltransferase [Leung86, Gardiol90] , pyruvate kinase , phosphoenolpyruvate carboxylase [Izui81] , L-lactate dehydrogenase [Hensel83] , pyruvate kinase [Thompson87] , L-lactate dehydrogenase [Iwata94] , pyruvate kinase [Abbe83] , methylglyoxal oxidase [Rhee87] , L-lactate dehydrogenase [Sommer85]

Activator (Mechanism unknown) of: pyruvate kinase [Holwerda73] , sucrose phosphate phosphatase [But13] , sucrose phosphate synthase [But13] , L-lactate dehydrogenase [Wrba90]

Enzymes inhibited by fructose 1,6-bisphosphate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: quinolinate phosphoribosyltransferase (decarboxylating) [Bhatia96] , 6-phosphofructokinase [Campos84, Babul78] , glycerol 3-phosphate dehydrogenase [Albertyn92] , NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase [Crow79] , 6-phosphogluconate dehydrogenase [Ohara04]

Inhibitor (Noncompetitive) of: glycerol kinase [Thorner73]

Inhibitor (Mechanism unknown) of: 1-phosphofructokinase [Buschmeier85] , 6-phosphogluconate dehydrogenase [Comment 1] , glutamine synthetase adenylyltransferase [Ebner70, Comment 2] , triose phosphate isomerase [Tomlinson79] , phosphoglucose isomerase [Verhees01]

Inhibitor (Other types) of: pyruvate kinase [Turner00]


References

Abbe83: Abbe K, Takahashi S, Yamada T (1983). "Purification and properties of pyruvate kinase from Streptococcus sanguis and activator specificity of pyruvate kinase from oral streptococci." Infect Immun 39(3);1007-14. PMID: 6840832

Albertyn92: Albertyn J, van Tonder A, Prior BA (1992). "Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae." FEBS Lett 308(2);130-2. PMID: 1499720

Babul78: Babul J (1978). "Phosphofructokinases from Escherichia coli. Purification and characterization of the nonallosteric isozyme." J Biol Chem 1978;253(12);4350-5. PMID: 149128

Bhatia96: Bhatia R, Calvo KC (1996). "The sequencing expression, purification, and steady-state kinetic analysis of quinolinate phosphoribosyl transferase from Escherichia coli." Arch Biochem Biophys 325(2);270-8. PMID: 8561507

Buschmeier85: Buschmeier B, Hengstenberg W, Deutscher J (1985). "Purification and properties of 1-phosphofructokinase from Escherichia coli." FEMS Microbiol Lett 1985;29(3):231-235.

But13: But SY, Khmelenina VN, Reshetnikov AS, Trotsenko YA (2013). "Bifunctional sucrose phosphate synthase/phosphatase is involved in the sucrose biosynthesis by Methylobacillus flagellatus KT." FEMS Microbiol Lett. PMID: 23865613

Campos84: Campos G, Guixe V, Babul J (1984). "Kinetic mechanism of phosphofructokinase-2 from Escherichia coli. A mutant enzyme with a different mechanism." J Biol Chem 259(10);6147-52. PMID: 6233271

Crow79: Crow VL, Wittenberger CL (1979). "Separation and properties of NAD+- and NADP+-dependent glyceraldehyde-3-phosphate dehydrogenases from Streptococcus mutans." J Biol Chem 254(4);1134-42. PMID: 33184

Ebner70: Ebner E, Wolf D, Gancedo C, Elsasser S, Holzer H (1970). "ATP: glutamine synthetase adenylyltransferase from Escherichia coli B. Purification and properties." Eur J Biochem 1970;14(3);535-44. PMID: 4920894

Gardiol90: Gardiol A, Preiss J (1990). "Escherichia coli E-39 ADPglucose synthetase has different activation kinetics from the wild-type allosteric enzyme." Arch Biochem Biophys 280(1);175-80. PMID: 2162151

Hensel83: Hensel R, Mayr U, Yang CY (1983). "The complete primary structure of the allosteric L-lactate dehydrogenase from Lactobacillus casei." Eur J Biochem 134(3);503-11. PMID: 6411465

Holwerda73: Holwerda DA, de Zwaan A (1973). "Kinetic and molecular characteristics of allosteric pyruvate kinase from muscle tissue of the sea mussel Mytilus edulis L." Biochim Biophys Acta 309(2);296-306. PMID: 4354457

Iwata94: Iwata S, Kamata K, Yoshida S, Minowa T, Ohta T (1994). "T and R states in the crystals of bacterial L-lactate dehydrogenase reveal the mechanism for allosteric control." Nat Struct Biol 1(3);176-85. PMID: 7656036

Izui81: Izui K, Taguchi M, Morikawa M, Katsuki H (1981). "Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. II. Kinetic studies with a reaction system containing physiological concentrations of ligands." J Biochem 90(5);1321-31. PMID: 7040354

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Leung86: Leung P, Lee YM, Greenberg E, Esch K, Boylan S, Preiss J (1986). "Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties." J Bacteriol 167(1);82-8. PMID: 3013841

Ohara04: Ohara H, Russell RA, Uchida K, Kondo H (2004). "Purification and characterization of NAD-specific 6-phosphogluconate dehydrogenase from Leuconostoc lactis SHO-54." J Biosci Bioeng 98(2);126-8. PMID: 16233677

Rhee87: Rhee, H.I., Watanabe, K., Murata, K., Kimura, A. (1987). "Metabolism of 2-oxoaldehyde in bacteria: oxidative conversion of methylglyoxal to pyruvate by an enzyme from Pseudomonas putida." Agric. Biol. Chem. 51: 1059-1066.

Sommer85: Sommer P, Klein JP, Scholler M, Frank RM (1985). "Lactate dehydrogenase from Streptococcus mutans: purification, characterization, and crossed antigenicity with lactate dehydrogenases from Lactobacillus casei, Actinomyces viscosus, and Streptococcus sanguis." Infect Immun 47(2);489-95. PMID: 3917978

Thompson87: Thompson, J. (1987). "Regulation of sugar transport and metabolism in lactic acid bacteria." FEMS Microbiology Reviews 46: 221-231.

Thorner73: Thorner JW, Paulus H (1973). "Catalytic and allosteric properties of glycerol kinase from Escherichia coli." J Biol Chem 1973;248(11);3922-32. PMID: 4575199

Tomlinson79: Tomlinson J.D., Turner J.F. "Pea seed triose phosphate isomerase." Phytochemistry (1979) 18:1959-1962.

Turner00: Turner WL, Plaxton WC (2000). "Purification and characterization of cytosolic pyruvate kinase from banana fruit." Biochem J 352 Pt 3;875-82. PMID: 11104698

Verhees01: Verhees CH, Huynen MA, Ward DE, Schiltz E, de Vos WM, van der Oost J (2001). "The phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus is a unique glycolytic enzyme that belongs to the cupin superfamily." J Biol Chem 276(44);40926-32. PMID: 11533028

Westwood74: Westwood AW, Doelle HW "Glucose-6-phosphate and 6-phosphogluconate dehydrogenases and their control mechanisms in Escherichia coli K-12." Microbios 1974;9:143-165.

Wrba90: Wrba A, Jaenicke R, Huber R, Stetter KO (1990). "Lactate dehydrogenase from the extreme thermophile Thermotoga maritima." Eur J Biochem 1990;188(1);195-201. PMID: 2318202


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Mon Dec 22, 2014, biocyc12.