twitter

MetaCyc Compound: L-glutamate

Abbrev Name: glt

Synonyms: 1-amino-propane-1,3-dicarboxylic acid, glutacid, glutaminic acid, L-glutamic acid, α-aminoglutaric acid, E, glt, glu, glut, L-glu, 2-aminopentanedioic acid

Superclasses: an amino acid or its derivative an amino acid a glutamate
an amino acid or its derivative an amino acid a polar amino acid a negatively-charged polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an L-amino acid

Chemical Formula: C5H8NO4

Molecular Weight: 146.12 Daltons

Monoisotopic Molecular Weight: 147.0531577825 Daltons

L-glutamate compound structure

pKa 1: 2.19

pKa 2: 4.25

pKa 3: 9.67

SMILES: C(CCC(C(=O)[O-])[N+])([O-])=O

InChI: InChI=1S/C5H9NO4/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H,7,8)(H,9,10)/p-1/t3-/m0/s1

InChIKey: InChIKey=WHUUTDBJXJRKMK-VKHMYHEASA-M

Unification Links: CAS:56-86-0 , ChEBI:29985 , ChemSpider:4573882 , HMDB:HMDB00148 , IAF1260:33561 , KEGG:C00025 , KNApSAcK:C00001358 , MetaboLights:MTBLC29985 , PubChem:5460299

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -82.27311 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

ammonia assimilation cycle I , ammonia assimilation cycle II , L-glutamine biosynthesis I , L-glutamine biosynthesis III , nitrate reduction II (assimilatory) , nitrate reduction V (assimilatory) , nitrate reduction VI (assimilatory) :
ammonium + L-glutamate + ATP → L-glutamine + ADP + phosphate + H+

aniline degradation :
ATP + L-glutamate + aniline → ADP + N5-phenyl-L-glutamine + phosphate

bactoprenyl-diphospho-acetamido-4-amino-6-deoxygalactopyranose biosynthesis :
UDP-2-acetamido-2,6-dideoxy-α-D-xylo-hex4-ulose + L-glutamate → UDP-acetamido-4-amino-6-deoxygalactopyranose + 2-oxoglutarate

butirosin biosynthesis :
a 4-amino butanoyl-[BtrI acyl-carrier protein] + L-glutamate + ATP → a 4-(γ-L-glutamylamino)butanoyl-[BtrI acyl-carrier protein] + ADP + phosphate + H+
a BtrI acyl-carrier protein + L-glutamate + ATP → an L-glutamyl-[BtrI acyl-carrier protein] + ADP + phosphate

ergothioneine biosynthesis I (bacteria) , glutathione biosynthesis , homoglutathione biosynthesis :
L-glutamate + L-cysteine + ATP → γ-L-glutamyl-L-cysteine + ADP + phosphate + H+

factor 420 polyglutamylation :
oxidized coenzyme F420-0 + L-glutamate + GTP → oxidized coenzyme F420-1 + GDP + phosphate + H+
oxidized coenzyme F420-1 + L-glutamate + GTP → oxidized coenzyme F420-2 + GDP + phosphate + H+

folate polyglutamylation :
tetrahydropteroyl-[γ-Glu](n) + L-glutamate + ATP → tetrahydropteroyl-[γ-Glu](n+1) + ADP + phosphate
10-formyl-tetrahydropteroyl-[γ-Glu](n) + L-glutamate + ATP → 10-formyl-tetrahydropteroyl-[γ-Glu](n+1) + ADP + phosphate
methylene-tetrahydropteroyl-[γ-Glu](n) + L-glutamate + ATP → methylene-tetrahydropteroyl-[γ-Glu](n+1) + ADP + phosphate

GABA shunt , glutamate dependent acid resistance , L-glutamate degradation IV , L-glutamate degradation IX (via 4-aminobutyrate) :
L-glutamate + H+ → CO2 + 4-aminobutanoate

GDP-L-colitose biosynthesis :
GDP-4-dehydro-6-deoxy-α-D-mannose + L-glutamate → GDP-(2S,3S,6R)-3-hydroxy-5-amino-6-methyl-3,6-dihydro-2H-pyran + 2-oxoglutarate + H2O + H+

gentamicin biosynthesis :
gentamicin A2 + S-adenosyl-L-methionine + L-glutamate + oxygen → gentamicin A + S-adenosyl-L-homocysteine + hydrogen peroxide + 2-oxoglutarate + H+
G-418 + L-glutamate + oxygen → JI-20B + hydrogen peroxide + 2-oxoglutarate
gentamicin X2 + L-glutamate + oxygen → JI-20A + hydrogen peroxide + 2-oxoglutarate

hopanoid biosynthesis (bacteria) :
formyl hopane + L-glutamate → aminobacteriohopanetriol + 2-oxoglutarate

indole-3-acetate conjugate biosynthesis II , indole-3-acetyl-amide conjugate biosynthesis :
indole-3-acetate + L-glutamate + ATP → indole-3-acetyl-glutamate + AMP + diphosphate + H+

isopropylamine degradation :
isopropylamine + L-glutamate + ATP → γ-glutamyl-isopropylamide + ADP + phosphate + H+

L-arginine biosynthesis II (acetyl cycle) :
L-glutamate + N-acetyl-L-ornithine → N-acetyl-L-glutamate + L-ornithine

L-arginine biosynthesis IV (archaebacteria) :
L-glutamate + a [LysW protein]-L-glutamate + ATP → an [L-2-aminoadipate carrier protein]-L-glutamate + ADP + phosphate + H+

L-citrulline biosynthesis , L-ornithine de novo biosynthesis , L-proline biosynthesis I :
L-glutamate + ATP → γ-L-glutamyl 5-phosphate + ADP

L-glutamine biosynthesis II (tRNA-dependent) :
tRNAgln + L-glutamate + ATP + H+ → an L-glutamyl-[tRNAGln] + AMP + diphosphate

L-histidine biosynthesis :
imidazole acetol-phosphate + L-glutamate → L-histidinol-phosphate + 2-oxoglutarate

L-lysine biosynthesis II :
L-2-acetamido-6-oxoheptanedioate + L-glutamateN-acetyl-L,L-2,6-diaminopimelate + 2-oxoglutarate

Reactions known to produce the compound:

4-hydroxy-2-nonenal detoxification :
4-hydroxy-2-nonenal-glutathione conjugate + H2O → 4-hydroxy-2-nonenal-[Cys-Gly] conjugate + L-glutamate

5-aminoimidazole ribonucleotide biosynthesis I , 5-aminoimidazole ribonucleotide biosynthesis II , superpathway of 5-aminoimidazole ribonucleotide biosynthesis :
ATP + N2-formyl-N1-(5-phospho-β-D-ribosyl)glycinamide + L-glutamine + H2O → L-glutamate + ADP + 2-(formamido)-N1-(5-phospho-β-D-ribosyl)acetamidine + phosphate + H+

adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I , adenosylcobalamin biosynthesis from cobyrinate a,c-diamide II :
adenosyl-cobyrinate a,c-diamide + 4 L-glutamine + 4 ATP + 4 H2O → 4 L-glutamate + adenosylcobyrate + 4 ADP + 4 phosphate + 4 H+

alliin metabolism :
γ-L-glutamyl-(S)-allyl-L-cysteine + H2O → S-allyl-L-cysteine + L-glutamate

ammonia assimilation cycle I , L-glutamate biosynthesis IV :
2 L-glutamate + NAD+ ← L-glutamine + 2-oxoglutarate + NADH + H+

ammonia assimilation cycle II , L-glutamate biosynthesis V , L-glutamine biosynthesis III :
2 L-glutamate + 2 an oxidized ferredoxin ← 2-oxoglutarate + L-glutamine + 2 a reduced ferredoxin + 2 H+

aniline degradation :
N5-phenyl-L-glutamine + H2O → L-glutamate + aniline + H+
γ-glutamylanilide diol + H2O → 1-aminocyclohexa-3,5-diene-1,2-diol + L-glutamate

camalexin biosynthesis :
indole-3-acetonitrile-γ-glutamylcysteine conjugate + H2O → indole-3-acetonitrile-cysteine conjugate + L-glutamate

cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion) :
cobyrinate + 2 L-glutamine + 2 ATP + 2 H2O → cob(II)yrinate a,c-diamide + 2 L-glutamate + 2 ADP + 2 phosphate + 2 H+

cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation) :
hydrogenobyrinate + 2 L-glutamine + 2 ATP + 2 H2O → 2 L-glutamate + hydrogenobyrinate a,c-diamide + 2 ADP + 2 phosphate + 2 H+

ergothioneine biosynthesis I (bacteria) :
γ-glutamyl-hercynylcysteine S-oxide + H2O → hercynylcysteine S-oxide + L-glutamate

ethylene biosynthesis II (microbes) , L-arginine degradation I (arginase pathway) , L-proline degradation :
L-glutamate-5-semialdehyde + NAD+ + H2O → L-glutamate + NADH + 2 H+

γ-glutamyl cycle :
5-oxo-L-proline + ATP + 2 H2O → L-glutamate + ADP + phosphate + H+

glucosinolate biosynthesis from dihomomethionine :
5-methylthiopentylhydroximoyl-glutathione + H2O → 5-methylthiopentylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from hexahomomethionine :
9-methylthiononylhydroximoyl-glutathione + H2O → 9-methylthiononylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from homomethionine :
4-methylthiobutylhydroximoyl-glutathione + H2O → 4-methylthiobutylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from pentahomomethionine :
8-methylthiooctylhydroximoyl-glutathione + H2O → 8-methylthiooctylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from phenylalanine :
phenylacetohydroximoyl-glutathione + H2O → phenylacetohydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from tetrahomomethionine :
7-methylthioheptylhydroximoyl-glutathione + H2O → 7-methylthioheptylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from trihomomethionine :
6-methylthiohexylhydroximoyl-glutathione + H2O → 6-methylthiohexylhydroximoyl-cysteinylglycine + L-glutamate

glucosinolate biosynthesis from tryptophan :
indole-3-acetohydroximoyl-glutathione + H2O → indole-3-acetohydroximoyl-cysteinylglycine + L-glutamate

glutamate removal from folates :
tetrahydropteroyl-[γ-Glu](n) + H2O → tetrahydropteroyl-[γ-Glu](n-1) + L-glutamate

glutathione degradation (DUG pathway - yeast) :
glutathione + H2O → L-cysteinyl-glycine + L-glutamate

glutathione-mediated detoxification I :
a glutathione-toxin conjugate + H2O → a [Cys-Gly]-S-conjugate + L-glutamate

Reactions known to both consume and produce the compound:

(R)-cysteate degradation , coenzyme M biosynthesis II , sulfolactate degradation III :
L-cysteate + 2-oxoglutarate ↔ 3-sulfopyruvate + L-glutamate

(S)-reticuline biosynthesis I , 4-hydroxybenzoate biosynthesis I (eukaryotes) , 4-hydroxyphenylpyruvate biosynthesis , atromentin biosynthesis , L-tyrosine biosynthesis I , L-tyrosine degradation I , L-tyrosine degradation II , L-tyrosine degradation III , L-tyrosine degradation IV (to 4-methylphenol) , rosmarinic acid biosynthesis I :
L-tyrosine + 2-oxoglutarate ↔ 4-hydroxyphenylpyruvate + L-glutamate

(S)-reticuline biosynthesis II , rosmarinic acid biosynthesis II :
L-dopa + 2-oxoglutarate ↔ 3,4-dihydroxyphenylpyruvate + L-glutamate

2'-deoxymugineic acid phytosiderophore biosynthesis :
L-nicotianamine + 2-oxoglutarate ↔ L-glutamate + 3''-deamino-3''-oxonicotianamine

2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis , 4-hydroxy-2(1H)-quinolone biosynthesis , acridone alkaloid biosynthesis , L-tryptophan biosynthesis :
chorismate + L-glutamine ↔ anthranilate + L-glutamate + pyruvate + H+

3-methylarginine biosynthesis , L-arginine degradation XI :
L-arginine + 2-oxoglutarate ↔ L-glutamate + 5-guanidino-2-oxo-pentanoate

4-amino-2-methyl-5-phosphomethylpyrimidine biosynthesis (yeast) , 5-aminoimidazole ribonucleotide biosynthesis I , 5-aminoimidazole ribonucleotide biosynthesis II , superpathway of 5-aminoimidazole ribonucleotide biosynthesis :
5-phospho-β-D-ribosylamine + L-glutamate + diphosphate ↔ 5-phospho-α-D-ribose 1-diphosphate + L-glutamine + H2O

4-aminobenzoate biosynthesis :
chorismate + L-glutamine ↔ 4-amino-4-deoxychorismate + L-glutamate

4-aminobutyrate degradation I , 4-aminobutyrate degradation II , 4-aminobutyrate degradation III , L-glutamate degradation IV , nicotine degradation I :
4-aminobutanoate + 2-oxoglutarate ↔ succinate semialdehyde + L-glutamate

4-aminobutyrate degradation V :
4-aminobutanoate + 2-oxoglutarate ↔ succinate semialdehyde + L-glutamate
L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+

anaerobic energy metabolism (invertebrates, cytosol) :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate

archaeosine biosynthesis :
preQ0 at position 15 of an archaeal tRNA + L-glutamine + H2O ↔ archaeosine at position 15 of an archaeal tRNA + L-glutamate

β-alanine degradation I :
β-alanine + 2-oxoglutarate ↔ 3-oxopropanoate + L-glutamate

C4 photosynthetic carbon assimilation cycle, NAD-ME type :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

C4 photosynthetic carbon assimilation cycle, PEPCK type :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

CMP-legionaminate biosynthesis I :
β-D-fructofuranose 6-phosphate + L-glutamine ↔ D-glucosamine 6-phosphate + L-glutamate
GDP-2-acetamido-2,6-dideoxy-α-D-xylo-hexos-4-ulose + L-glutamate ↔ GDP-4-amino-4,6-dideoxy-α-D-N-acetylglucosamine + 2-oxoglutarate

In Reactions of unknown directionality:

Not in pathways:
γ-glutamyl-ethylamide + H2O = L-glutamate + ethylamine
L-serine + 2-oxoglutarate = L-glutamate + hydroxypyruvate
cob(II)yrinate c-monoamide + L-glutamine + ATP + H2O = cob(II)yrinate a,c-diamide + L-glutamate + ADP + phosphate + H+
(S)-1-pyrroline-5-carboxylate + NAD(P)+ + 2 H2O = L-glutamate + NAD(P)H + H+
cobyrinate + L-glutamine + ATP + H2O = cob(II)yrinate c-monoamide + L-glutamate + ADP + phosphate + H+
an N-long-chain-fatty-acyl-L-glutamate + H2O = L-glutamate + a long-chain fatty acid
L-glutamate + 2 an oxidized ferredoxin + H2O = ammonium + 2-oxoglutarate + 2 a reduced ferredoxin + 2 H+
methylamine + L-glutamate = N-methyl-L-glutamate + ammonium
L-glutamate = 3-aminopentanedioate
poly (D-glutamate)n + L-glutamate + ATP = poly (D-glutamate)(n+1) + ADP + phosphate
an N5-formyl-tetrahydrofolate + L-glutamate + ATP = 5-formyl-THF-Glun+1 + ADP + phosphate
L-glutamate + ATP = α-L-glutamyl phosphate + ADP

Not in pathways:
L-arginine + a standard α amino acid + ATP = a dipeptide with N-terminal L-arginine + ADP + phosphate + H+

Not in pathways:
an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid

Not in pathways:
a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

In Transport reactions:
L-glutamate[cytosol] + L-cystine[extracellular space] → L-cystine[cytosol] + L-glutamate[extracellular space] ,
L-glutamate[cytosol]L-glutamate[mitochondrial lumen] ,
L-glutamate[chloroplast stroma]L-glutamate[cytosol] ,
2 L-glutamate[out] + 2 H+[out] ↔ 2 L-glutamate[in] + 2 H+[in] ,
4-aminobutanoate[cytosol] + L-glutamate[periplasmic space]L-glutamate[cytosol] + 4-aminobutanoate[periplasmic space] ,
2 Na+[periplasmic space] + L-glutamate[periplasmic space] → 2 Na+[cytosol] + L-glutamate[cytosol] ,
L-glutamate[periplasmic space] + 2 H+[periplasmic space]L-glutamate[cytosol] + 2 H+[cytosol] ,
ATP + L-glutamate[periplasmic space] + H2O → ADP + L-glutamate[cytosol] + phosphate + H+ ,
a polar amino acid[extracellular space] + ATP + H2O ↔ a polar amino acid[cytosol] + ADP + phosphate ,
an L-amino acid[cytosol]an L-amino acid[periplasmic space]

Enzymes activated by L-glutamate, sorted by the type of activation, are:

Activator (Allosteric) of: glutaminase B [Prusiner76, Prusiner76a]

Activator (Mechanism unknown) of: malate dehydrogenase [Bologna07]

Enzymes inhibited by L-glutamate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: L-glutamine:D-fructose-6-phosphate aminotransferase [Badet88, Isupov96, Comment 1] , diaminopimelate decarboxylase [White65] , glutaminase [Hartman68] , glutaminase B [Prusiner76, Comment 2] , L-glutamate γ-semialdehyde dehydrogenase [ForteMcRobbie89] , tyrosine/phenylalanine aminotransferase [Comment 3] , glutamate synthase (NADH-dependent) [Boland77]

Inhibitor (Noncompetitive) of: glutamate dehydrogenase (NAD-dependent) [Bonete89, Comment 4] , formiminoglutamate formiminohydrolase [Kaminskas70] , glutamate dehydrogenase (NADP-dependent) [Bonete90, Comment 5]

Inhibitor (Allosteric) of: pyruvate kinase [Smith00] , pyruvate kinase [Turner00]

Inhibitor (Mechanism unknown) of: 4-hydroxyglutamate transaminase [MAITRA64] , S-methyl-L-methionine decarboxylase [Kocsis00] , citrate lyase deacetylase [Giffhorn80] , L-lysine-α-ketoglutarate reductase [Hutzler75]

This compound has been characterized as an alternative substrate of the following enzymes: aspartate aminotransferase , 4-hydroxyglutamate transaminase , methionine-oxo-acid transaminase , carbapenam synthetase , L-alanine:D-1-guanidino-1-deoxy-3-dehydro-scyllo-inositol transaminase , valine-pyruvate aminotransferase , aspartate aminotransferase , phosphinothricin N-acetyltransferase , dihydroxyacetone phosphate transaminase , 3,4-dihydroxyphenylalanine oxidative deaminase


References

Badet88: Badet B, Vermoote P, Le Goffic F (1988). "Glucosamine synthetase from Escherichia coli: kinetic mechanism and inhibition by N3-fumaroyl-L-2,3-diaminopropionic derivatives." Biochemistry 1988;27(7);2282-7. PMID: 3132968

Boland77: Boland MJ, Benny AG (1977). "Enzymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules." Eur J Biochem 79(2);355-62. PMID: 21790

Bologna07: Bologna FP, Andreo CS, Drincovich MF (2007). "Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure." J Bacteriol 189(16);5937-46. PMID: 17557829

Bonete89: Bonete MJ, Camacho ML, Cadenas E (1989). "Kinetic mechanism of Halobacterium halobium NAD+-glutamate dehydrogenase." Biochim Biophys Acta 1989;990(2);150-5. PMID: 2917175

Bonete90: Bonete MJ, Camacho ML, Cadenas E (1990). "Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase." Biochim Biophys Acta 1990;1041(3);305-10. PMID: 1980084

ForteMcRobbie89: Forte-McRobbie C, Pietruszko R (1989). "Human glutamic-gamma-semialdehyde dehydrogenase. Kinetic mechanism." Biochem J 261(3);935-43. PMID: 2803253

Giffhorn80: Giffhorn F, Rode H, Kuhn A, Gottschalk G (1980). "Citrate lyase deacetylase of Rhodopseudomonas gelatinosa. Isolation of the enzyme and studies on the inhibition by L-glutamate." Eur J Biochem 111(2);461-71. PMID: 7460909

Hartman68: Hartman SC (1968). "Glutaminase of Escherichia coli. I. Purification and general catalytic properties." J Biol Chem 1968;243(5);853-63. PMID: 4966660

Hutzler75: Hutzler J, Dancis J (1975). "Lysine-ketoglutarate reductase in human tissues." Biochim Biophys Acta 377(1);42-51. PMID: 235294

Isupov96: Isupov MN, Obmolova G, Butterworth S, Badet-Denisot MA, Badet B, Polikarpov I, Littlechild JA, Teplyakov A (1996). "Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase." Structure 4(7);801-10. PMID: 8805567

Kaminskas70: Kaminskas E, Kimhi Y, Magasanik B (1970). "Urocanase and N-formimino-L-glutamate formiminohydrolase of Bacillus subtilis, two enzymes of the histidine degradation pathway." J Biol Chem 1970;245(14);3536-44. PMID: 4990470

Kocsis00: Kocsis MG, Hanson AD (2000). "Biochemical evidence for two novel enzymes in the biosynthesis of 3-dimethylsulfoniopropionate in Spartina alterniflora." Plant Physiol 123(3);1153-61. PMID: 10889264

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

MAITRA64: MAITRA U, DEEKKER E (1964). "PURIFICATION OF RAT-LIVER GAMMA-HYDROXYGLUTAMATE TRANSAMINASE AND ITS PROBABLE IDENTITY WITH GLUTAMATE-ASPARTATE TRANSAMINASE." Biochim Biophys Acta 81;517-32. PMID: 14170323

Prusiner76: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. II. Modulaltion of activity by carbosylate and borate ions." J Biol Chem 1976;251(11);3457-62. PMID: 776969

Prusiner76a: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations." J Biol Chem 1976;251(11);3463-9. PMID: 776970

Smith00: Smith CR, Knowles VL, Plaxton WC (2000). "Purification and characterization of cytosolic pyruvate kinase from Brassica napus (rapeseed) suspension cell cultures: implications for the integration of glycolysis with nitrogen assimilation." Eur J Biochem 267(14);4477-85. PMID: 10880971

Turner00: Turner WL, Plaxton WC (2000). "Purification and characterization of cytosolic pyruvate kinase from banana fruit." Biochem J 352 Pt 3;875-82. PMID: 11104698

Weigent76: Weigent DA, Nester EW (1976). "Purification and properties of two aromatic aminotransferases in Bacillus subtilis." J Biol Chem 1976;251(22);6974-80. PMID: 11213

White65: White PJ, Kelly B (1965). "Purification and properties of diaminopimelate decarboxylase from Escherichia coli." Biochem J 96;75-84. PMID: 14343156


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Mon May 25, 2015, BIOCYC14B.