twitter

MetaCyc Compound: L-isoleucine

Abbrev Name: ile

Synonyms: I, ile, iso-leucine, L-ile

Superclasses: an amino acid or its derivative an amino acid a non-polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a branched-chain amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an L-amino acid

Chemical Formula: C6H13NO2

Molecular Weight: 131.17 Daltons

Monoisotopic Molecular Weight: 131.0946286667 Daltons

L-isoleucine compound structure

SMILES: CCC(C)C([N+])C(=O)[O-]

InChI: InChI=1S/C6H13NO2/c1-3-4(2)5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t4-,5-/m0/s1

InChIKey: InChIKey=AGPKZVBTJJNPAG-WHFBIAKZSA-N

Unification Links: CAS:73-32-5 , ChEBI:58045 , HMDB:HMDB00172 , IAF1260:34887 , KEGG:C00407 , MetaboLights:MTBLC58045 , PubChem:7043901

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 51.324574 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

jadomycin biosynthesis :
3-(2-formyl-6-hydroxy-4-methylphenyl)-8-hydroxy-1,4-dioxonaphthalene-2-carboxylate + L-isoleucine → jadomycin A + CO2 + H2O

jasmonoyl-amino acid conjugates biosynthesis I , jasmonoyl-amino acid conjugates biosynthesis II :
a jasmonic acid + L-isoleucine + ATP → a jasmonoyl-isoleucine + AMP + diphosphate

lotaustralin biosynthesis :
L-isoleucine + NADPH + oxygen → N-hydroxy-L-isoleucine + NADP+ + H2O

tRNA charging :
a tRNAile + L-isoleucine + ATP + H+ → an L-isoleucyl-[tRNAile] + AMP + diphosphate

Not in pathways:
L-isoleucine + 2-oxoglutarate + oxygen → (2S,3R,4S)-4-hydroxy-L-isoleucine + succinate + CO2
L-isoleucine + 2 NADPH + 2 oxygen + 2 H+ → (E)-2-methylbutanal oxime + CO2 + 2 NADP+ + 3 H2O
(-)-jasmonate + L-isoleucine + ATP → (-)-jasmonoyl-L-isoleucine + AMP + diphosphate + H+
indole-3-acetate + L-isoleucine + ATP → indole-3-acetyl-isoleucine + AMP + diphosphate + H+

γ-glutamyl cycle :
glutathione + a standard α amino acid → an (γ-L-glutamyl)-L-amino acid + L-cysteinyl-glycine

leukotriene biosynthesis :
leukotriene-C4 + a standard α amino acid → an (γ-L-glutamyl)-L-amino acid + leukotriene-D4

Not in pathways:
a standard α amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

prodigiosin biosynthesis :
(S)-3-acetyloctanal + an L-amino acid → 2-methyl-3-n-amyl-dihydropyrrole + a 2-oxo acid + H2O

rhizocticin A and B biosynthesis :
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acidL-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate

Not in pathways:
ATP + 2 an L-amino acid → ADP + a dipeptide + phosphate + H+

Reactions known to produce the compound:

dimethylsulfoniopropanoate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

seed germination protein turnover , wound-induced proteolysis I :
a peptide with an N-terminal X-L-proline + H2O → a standard α amino acid + a peptide with an N-terminal L-proline + H+

Not in pathways:
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
a dipetide with L-histidine at the C-terminal + H2O → a standard α amino acid + L-histidine
a dipeptide + H2O → 2 amino acids
β-aspartyl dipeptide + H2O → L-aspartate + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → 2 a standard α amino acid
a peptide + H2O → a standard α amino acid + a peptide
a peptide + H2O → a peptide + a standard α amino acid
a peptide + H2O → a peptide + a standard α amino acid
an oligopeptide + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a standard α amino acid + a peptide
a peptide + H2O → a standard α amino acid + a peptide
a protein + H2O → a standard α amino acid + a peptide
a tripeptide + H2O → a dipeptide + a standard α amino acid
a dipetide with an N-terminal L-aspartate + H2O → L-aspartate + a standard α amino acid
a dipeptide with an N-terminal L-methionine + H2O → a standard α amino acid + L-methionine
a dipeptide with proline at the C-terminal + H2O → L-proline + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid

Reactions known to both consume and produce the compound:

L-isoleucine biosynthesis I (from threonine) , L-isoleucine biosynthesis II , L-isoleucine biosynthesis III , L-isoleucine biosynthesis IV , L-isoleucine biosynthesis V , L-isoleucine degradation I , L-isoleucine degradation II :
L-isoleucine + 2-oxoglutarate ↔ L-glutamate + (S)-3-methyl-2-oxopentanoate

Not in pathways:
(S)-3-methyl-2-oxopentanoate + L-valine ↔ L-isoleucine + 3-methyl-2-oxobutanoate

dimethylsulfoniopropanoate biosynthesis III (algae) , ethylene biosynthesis III (microbes) :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

glucosinolate biosynthesis from dihomomethionine :
2-oxo-6-methylthiohexanoate + a standard α amino acid ↔ L-dihomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from hexahomomethionine :
2-oxo-10-methylthiodecanoate + a standard α amino acid ↔ hexahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from pentahomomethionine :
2-oxo-9-methylthiononanoate + a standard α amino acid ↔ pentahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from tetrahomomethionine :
2-oxo-8-methylthiooctanoate + a standard α amino acid ↔ tetrahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from trihomomethionine :
2-oxo-7-methylthioheptanoate + a standard α amino acid ↔ trihomomethionine + a 2-oxo carboxylate

L-asparagine degradation II :
a 2-oxo carboxylate + L-asparagine ↔ 2-oxosuccinamate + a standard α amino acid

L-homomethionine biosynthesis :
2-oxo-5-methylthiopentanoate + a standard α amino acid ↔ L-homomethionine + a 2-oxo carboxylate
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

Not in pathways:
L-ornithine + a 2-oxo carboxylate ↔ a standard α amino acid + L-glutamate-5-semialdehyde

Not in pathways:
L-alanine + a 2-oxo carboxylate ↔ pyruvate + an L-amino acid

In Reactions of unknown directionality:

Not in pathways:
(2E)-4-[[(2)-2-amino-2-carboxyethyl]amino]-4-oxobut-2-enoate + L-isoleucine + ATP = dapdiamide B + ADP + phosphate + H+
L-isoleucine + NAD+ + H2O = ammonium + (S)-3-methyl-2-oxopentanoate + NADH + H+

Not in pathways:
L-arginine + a standard α amino acid + ATP = a dipeptide with N-terminal L-arginine + ADP + phosphate + H+

Not in pathways:
an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid

Not in pathways:
a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

In Transport reactions:
Na+[periplasmic space] + L-isoleucine[periplasmic space] → Na+[cytosol] + L-isoleucine[cytosol] ,
ATP + L-isoleucine[periplasmic space] + H2O → ADP + L-isoleucine[cytosol] + phosphate + H+ ,
a non-polar amino acid[extracellular space] + ATP + H2O ↔ a non-polar amino acid[cytosol] + ADP + phosphate ,
an L-amino acid[cytosol]an L-amino acid[periplasmic space]

Enzymes activated by L-isoleucine, sorted by the type of activation, are:

Activator (Allosteric) of: α-acetolactate decarboxylase [Phalip94]

Activator (Mechanism unknown) of: glutamate dehydrogenase (NAD-dependent) [Bonete96]

Enzymes inhibited by L-isoleucine, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: pyruvate:pyruvate acetaldehydetransferase (decarboxylating) [Xing94]

Inhibitor (Noncompetitive) of: arginase [Colleluori01]

Inhibitor (Allosteric) of: (R)-citramalate synthase [Xu04c]

Inhibitor (Mechanism unknown) of: threonine deaminase [Vonder72, Umbarger57, Umbarger56] , acetolactate synthase [Barak88] , (R)-2,3-dihydroxy-3-methylbutanoate isomeroreductase [Lu14a] , (S)-2-acetolactate synthase [Lu14a]

This compound has been characterized as an alternative substrate of the following enzymes: methionine-oxo-acid transaminase , valine N-monooxygenase , valine decarboxylase , L-alanine dehydrogenase , L-valine:2-oxoglutarate aminotransferase , valine N-monooxygenase , leucine efflux transporter , valine N-monooxygenase , branched chain amino acid transaminase , valine N-monooxygenase


References

Barak88: Barak Z, Calvo JM, Schloss JV (1988). "Acetolactate synthase isozyme III from Escherichia coli." Methods Enzymol 1988;166;455-8. PMID: 3071721

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Colleluori01: Colleluori DM, Morris SM, Ash DE (2001). "Expression, purification, and characterization of human type II arginase." Arch Biochem Biophys 389(1);135-43. PMID: 11370664

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Lu14a: Lu J, Brigham CJ, Plassmeier JK, Sinskey AJ (2014). "Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16." Appl Microbiol Biotechnol. PMID: 25081555

Phalip94: Phalip V, Monnet C, Schmitt P, Renault P, Godon JJ, Divies C (1994). "Purification and properties of the alpha-acetolactate decarboxylase from Lactococcus lactis subsp. lactis NCDO 2118." FEBS Lett 351(1);95-9. PMID: 8076701

Umbarger56: Umbarger HE, Brown B (1956). "Threonine deamination in Escherichia coli. I. D- and L-threonine deaminase activities of cell-free extracts." J Bacteriol 71(4);443-9. PMID: 13319259

Umbarger57: Umbarger HE, Brown B (1957). "Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases." J Bacteriol 73(1);105-12. PMID: 13405870

Vonder72: Vonder Haar RA, Umbarger HE (1972). "Isoleucine and valine metabolism in Escherichia coli. XIX. Inhibition of isoleucine biosynthesis by glycyl-leucine." J Bacteriol 112(1);142-7. PMID: 4562390

Xing94: Xing R, Whitman WB (1994). "Purification and characterization of the oxygen-sensitive acetohydroxy acid synthase from the archaebacterium Methanococcus aeolicus." J Bacteriol 176(5);1207-13. PMID: 8113159

Xu04c: Xu, H., Zhang, Y., Guo, X., Ren, S., Staempfli, A.A., Chiao, J., Jiang, W., Zhao, G. (2004). "Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway." J. Bacteriol. 186(16):5400-5409. PMID: 15292141


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Wed Apr 1, 2015, biocyc14.