Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: L-isoleucine

Abbrev Name: ile

Synonyms: I, ile, iso-leucine, L-ile

Superclasses: an amino acid or its derivative an amino acid a non-polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a branched-chain amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an L-amino acid

Chemical Formula: C6H13NO2

Molecular Weight: 131.17 Daltons

Monoisotopic Molecular Weight: 131.0946286667 Daltons

SMILES: CCC(C)C([N+])C(=O)[O-]

InChI: InChI=1S/C6H13NO2/c1-3-4(2)5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t4-,5-/m0/s1

InChIKey: InChIKey=AGPKZVBTJJNPAG-WHFBIAKZSA-N

Unification Links: CAS:73-32-5 , ChEBI:58045 , HMDB:HMDB00172 , IAF1260:34887 , KEGG:C00407 , MetaboLights:MTBLC58045 , PubChem:7043901

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 51.324574 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

jadomycin biosynthesis :
3-(2-formyl-6-hydroxy-4-methylphenyl)-8-hydroxy-1,4-dioxonaphthalene-2-carboxylate + L-isoleucine → jadomycin A + CO2 + H2O

jasmonoyl-amino acid conjugates biosynthesis I , jasmonoyl-amino acid conjugates biosynthesis II :
a jasmonic acid + L-isoleucine + ATP → a jasmonoyl-isoleucine + AMP + diphosphate

lotaustralin biosynthesis :
L-isoleucine + NADPH + oxygen → N-hydroxy-L-isoleucine + NADP+ + H2O

tRNA charging :
tRNAile + L-isoleucine + ATP + H+ → L-isoleucyl-tRNAile + AMP + diphosphate

Not in pathways:
L-isoleucine + 2-oxoglutarate + oxygen → (2S,3R,4S)-4-hydroxy-L-isoleucine + succinate + CO2
L-isoleucine + 2 NADPH + 2 oxygen + 2 H+ → (E)-2-methylbutanal oxime + CO2 + 2 NADP+ + 3 H2O
(-)-jasmonate + L-isoleucine + ATP → (-)-jasmonoyl-L-isoleucine + AMP + diphosphate + H+
indole-3-acetate + L-isoleucine + ATP → indole-3-acetyl-isoleucine + AMP + diphosphate + H+

γ-glutamyl cycle :
glutathione + a standard α amino acid → L-cysteinyl-glycine + an (γ-L-glutamyl)-L-amino acid

leukotriene biosynthesis :
leukotriene-C4 + a standard α amino acid → an (γ-L-glutamyl)-L-amino acid + leukotriene-D4

methanofuran biosynthesis :
2-furaldehyde phosphate + a standard α amino acid → 2-methylamine-furan phosphate + a 2-oxo carboxylate


a standard α amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

prodigiosin biosynthesis :
(S)-3-acetyloctanal + an L-amino acid → 2-methyl-3-n-amyl-dihydropyrrole + a 2-oxo acid + H2O

rhizocticin A and B biosynthesis :
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acidL-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate


ATP + 2 an L-amino acid → ADP + a dipeptide + phosphate + H+

Reactions known to produce the compound:

dimethylsulfoniopropionate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

seed germination protein turnover , wound-induced proteolysis I :
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)

Not in pathways:
a dipeptide + H2O → 2 amino acids
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
β-aspartyl dipeptide + H2O → L-aspartate + a standard α amino acid
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → 2 a standard α amino acid
a peptide + H2O → a standard α amino acid + a peptide
a peptide + H2O → a peptide + a standard α amino acid
a peptide + H2O → a peptide + a standard α amino acid
an oligopeptide + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a standard α amino acid + a peptide
a peptide + H2O → a standard α amino acid + a peptide
a protein + H2O → a standard α amino acid + a peptide
a tripeptide + H2O → a dipeptide + a standard α amino acid
a dipetide with L-aspartate at the N-terminal + H2O → L-aspartate + a standard α amino acid
a dipetide with L-histidine at the C-terminal + H2O → a standard α amino acid + L-histidine
a dipeptide with L-methionine at the N-terminal + H2O → a standard α amino acid + L-methionine
a dipeptide with proline at the C-terminal + H2O → L-proline + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)


an ester of hydrophobic-amino acids + H2O → a non-polar amino acid + a non-polar amino acid

γ-glutamyl cycle :
an (γ-L-glutamyl)-L-amino acid → an L-amino acid + 5-oxoproline


a peptide + H2O → an L-amino acid + a peptide
a peptide + H2O → a peptide + an L-amino acid
a N-methyl L-amino acid + oxygen + H2O → an L-amino acid + formaldehyde + hydrogen peroxide
a polypeptide + H2O → a polypeptide + an L-amino acid


amino acids(n) + H2O → amino acids(n-1) + an α amino acid
an α amino acid ester + H2O → an alcohol + an α amino acid + H+
a protein + H2O → a protein + an α amino acid

Reactions known to both consume and produce the compound:

isoleucine biosynthesis I (from threonine) , isoleucine biosynthesis II , isoleucine biosynthesis III , isoleucine biosynthesis IV , isoleucine biosynthesis V , isoleucine degradation I , isoleucine degradation II :
L-isoleucine + 2-oxoglutarate ↔ L-glutamate + (S)-3-methyl-2-oxopentanoate

Not in pathways:
(S)-3-methyl-2-oxopentanoate + L-valine ↔ L-isoleucine + 3-methyl-2-oxobutanoate

asparagine degradation II :
a 2-oxo carboxylate + L-asparagine ↔ 2-oxosuccinamate + a standard α amino acid

dimethylsulfoniopropionate biosynthesis III (algae) , ethylene biosynthesis III (microbes) :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

glucosinolate biosynthesis from dihomomethionine :
2-oxo-6-methylthiohexanoate + a standard α amino acid ↔ L-dihomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from hexahomomethionine :
2-oxo-10-methylthiodecanoate + a standard α amino acid ↔ hexahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from pentahomomethionine :
2-oxo-9-methylthiononanoate + a standard α amino acid ↔ pentahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from tetrahomomethionine :
2-oxo-8-methylthiooctanoate + a standard α amino acid ↔ tetrahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from trihomomethionine :
2-oxo-7-methylthioheptanoate + a standard α amino acid ↔ trihomomethionine + a 2-oxo carboxylate

homomethionine biosynthesis :
2-oxo-5-methylthiopentanoate + a standard α amino acid ↔ L-homomethionine + a 2-oxo carboxylate
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid


L-ornithine + a 2-oxo carboxylate ↔ a standard α amino acid + L-glutamate-5-semialdehyde


L-alanine + a 2-oxo carboxylate ↔ pyruvate + an L-amino acid

In Reactions of unknown directionality:

Not in pathways:
L-isoleucine + NAD+ + H2O = ammonium + (S)-3-methyl-2-oxopentanoate + NADH + H+


an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid


a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

In Transport reactions:
Na+[periplasmic space] + L-isoleucine[periplasmic space] → Na+[cytosol] + L-isoleucine[cytosol] ,
ATP + L-isoleucine[periplasmic space] + H2O → ADP + L-isoleucine[cytosol] + phosphate + H+ ,
a non-polar amino acid[extracellular space] + ATP + H2O ↔ a non-polar amino acid[cytosol] + ADP + phosphate ,
an L-amino acid[cytosol]an L-amino acid[periplasmic space]

Enzymes activated by L-isoleucine, sorted by the type of activation, are:

Activator (Allosteric) of: α-acetolactate decarboxylase [Phalip94]

Activator (Mechanism unknown) of: glutamate dehydrogenase (NAD-dependent) [Bonete96]

Enzymes inhibited by L-isoleucine, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: pyruvate:pyruvate acetaldehydetransferase (decarboxylating) [Xing94]

Inhibitor (Noncompetitive) of: arginase [Colleluori01]

Inhibitor (Allosteric) of: (R)-citramalate synthase [Xu04d]

Inhibitor (Mechanism unknown) of: threonine deaminase [Vonder72, Umbarger57, Umbarger56] , acetolactate synthase [Barak88] , (R)-2,3-dihydroxy-3-methylbutanoate isomeroreductase [Lu14] , (S)-2-acetolactate synthase [Lu14]


References

Barak88: Barak Z, Calvo JM, Schloss JV (1988). "Acetolactate synthase isozyme III from Escherichia coli." Methods Enzymol 1988;166;455-8. PMID: 3071721

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Colleluori01: Colleluori DM, Morris SM, Ash DE (2001). "Expression, purification, and characterization of human type II arginase." Arch Biochem Biophys 389(1);135-43. PMID: 11370664

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Lu14: Lu J, Brigham CJ, Plassmeier JK, Sinskey AJ (2014). "Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16." Appl Microbiol Biotechnol. PMID: 25081555

Phalip94: Phalip V, Monnet C, Schmitt P, Renault P, Godon JJ, Divies C (1994). "Purification and properties of the alpha-acetolactate decarboxylase from Lactococcus lactis subsp. lactis NCDO 2118." FEBS Lett 351(1);95-9. PMID: 8076701

Umbarger56: Umbarger HE, Brown B (1956). "Threonine deamination in Escherichia coli. I. D- and L-threonine deaminase activities of cell-free extracts." J Bacteriol 71(4);443-9. PMID: 13319259

Umbarger57: Umbarger HE, Brown B (1957). "Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases." J Bacteriol 73(1);105-12. PMID: 13405870

Vonder72: Vonder Haar RA, Umbarger HE (1972). "Isoleucine and valine metabolism in Escherichia coli. XIX. Inhibition of isoleucine biosynthesis by glycyl-leucine." J Bacteriol 112(1);142-7. PMID: 4562390

Xing94: Xing R, Whitman WB (1994). "Purification and characterization of the oxygen-sensitive acetohydroxy acid synthase from the archaebacterium Methanococcus aeolicus." J Bacteriol 176(5);1207-13. PMID: 8113159

Xu04d: Xu, H., Zhang, Y., Guo, X., Ren, S., Staempfli, A.A., Chiao, J., Jiang, W., Zhao, G. (2004). "Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway." J. Bacteriol. 186(16):5400-5409. PMID: 15292141


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Fri Dec 19, 2014, BIOCYC14A.