Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Compound: L-aspartate

Abbrev Name: asp

Synonyms: L-aspartic acid, aspartic acid, D, aspartate, asp, L-asp

Superclasses: an acid all carboxy acids a carboxylate a dicarboxylate a C4-dicarboxylate
an amino acid or its derivative an amino acid a polar amino acid a negatively-charged polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an L-amino acid

Chemical Formula: C4H6NO4

Molecular Weight: 132.1 Daltons

Monoisotopic Molecular Weight: 133.0375077183 Daltons

SMILES: C(C(=O)[O-])C([N+])C(=O)[O-]

InChI: InChI=1S/C4H7NO4/c5-2(4(8)9)1-3(6)7/h2H,1,5H2,(H,6,7)(H,8,9)/p-1/t2-/m0/s1

InChIKey: InChIKey=CKLJMWTZIZZHCS-REOHCLBHSA-M

Unification Links: CAS:56-84-8 , ChEBI:29991 , ChemSpider:4573879 , HMDB:HMDB00191 , IAF1260:33663 , KEGG:C00049 , MetaboLights:MTBLC29991 , PubChem:5460294

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -105.78535 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

adenosine ribonucleotides de novo biosynthesis :
L-aspartate + IMP + GTP → adenylo-succinate + GDP + phosphate + 2 H+

arginine biosynthesis I (via L-ornithine) , arginine biosynthesis II (acetyl cycle) , arginine biosynthesis III (via N-acetyl-L-citrulline) , arginine biosynthesis IV (archaebacteria) , citrulline-nitric oxide cycle , urea cycle :
L-aspartate + L-citrulline + ATP → L-arginino-succinate + AMP + diphosphate + H+

asparagine biosynthesis I :
L-glutamine + L-aspartate + ATP + H2O → L-glutamate + L-asparagine + AMP + diphosphate + H+

asparagine biosynthesis II :
L-aspartate + ammonium + ATP → L-asparagine + AMP + diphosphate + H+

asparagine biosynthesis III (tRNA-dependent) :
tRNAasn + L-aspartate + ATP + H+ → L-aspartyl-tRNAasn + AMP + diphosphate

β-alanine biosynthesis III :
L-aspartate + H+ → β-alanine + CO2

canavanine biosynthesis :
O-ureidohomoserine + L-aspartate + ATP → canavaninosuccinate + AMP + diphosphate + H+

cyanophycin metabolism :
cyanophycin primer + L-aspartate + ATP → cyanophycin primer-L-aspartate + ADP + phosphate + H+
cyanophycin + L-aspartate + ATP → [cyanophycin]-L-aspartate + ADP + phosphate

indole-3-acetate conjugate biosynthesis II , indole-3-acetate degradation II , indole-3-acetate degradation III , indole-3-acetate degradation IV , indole-3-acetate degradation VI , indole-3-acetate degradation VII , indole-3-acetyl-amide conjugate biosynthesis :
indole-3-acetate + L-aspartate + ATP → indole-3-acetyl-L-aspartate + AMP + diphosphate + H+

inosine-5'-phosphate biosynthesis I , inosine-5'-phosphate biosynthesis II , inosine-5'-phosphate biosynthesis III :
ATP + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate + L-aspartate → ADP + 5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole + phosphate + H+

NAD biosynthesis I (from aspartate) , nicotine biosynthesis , superpathway of nicotine biosynthesis :
L-aspartate + oxygen → α-iminosuccinate + hydrogen peroxide + H+

tetrahydromethanopterin biosynthesis :
4-(β-D-ribofuranosyl)hydroxybenzene 5'-phosphate + L-aspartate + ATP → 4-(β-D-ribofuranosyl)-N-succinylaminobenzene 5'-phosphate + ADP + phosphate + 2 H+

toyocamycin biosynthesis :
GTP + [(1R,2R,3S,4S)-4-{5-cyano-4-oxo-3H-pyrrolo[2,3-d]pyrimidin-7-yl}-2,3-dihydroxycyclopentyl]methyl phosphate + L-aspartate → succinylo-toyocamycin phosphate + GDP + phosphate + 2 H+

tRNA charging :
tRNAasp + L-aspartate + ATP + H+ → L-aspartyl-tRNAasp + AMP + diphosphate

Not in pathways:
L-aspartate + fumarate → α-iminosuccinate + succinate + H+
ammonium + L-aspartate + ATP → L-asparagine + ADP + phosphate + H+
tRNAAsx + L-aspartate + ATP + 2 H+ → L-aspartyl-tRNAAsx + AMP + diphosphate

γ-glutamyl cycle :
glutathione + a standard α amino acid → L-cysteinyl-glycine + an (γ-L-glutamyl)-L-amino acid

leukotriene biosynthesis :
leukotriene-C4 + a standard α amino acid → an (γ-L-glutamyl)-L-amino acid + leukotriene-D4

methanofuran biosynthesis :
2-furaldehyde phosphate + a standard α amino acid → 2-methylamine-furan phosphate + a 2-oxo carboxylate


a standard α amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

prodigiosin biosynthesis :
(S)-3-acetyloctanal + an L-amino acid → 2-methyl-3-n-amyl-dihydropyrrole + a 2-oxo acid + H2O

rhizocticin A and B biosynthesis :
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acidL-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate


ATP + 2 an L-amino acid → ADP + a dipeptide + phosphate + H+

methyl ketone biosynthesis :
a carboxylate + ATP + coenzyme A → an acyl-CoA + AMP + diphosphate


an acyl-protein synthetase + a carboxylate + ATP → an acyl-protein thioester + AMP + diphosphate
a carboxylate + GTP + coenzyme A → an acyl-CoA + GDP + phosphate

Reactions known to produce the compound:

asparagine degradation I , superpathway of aspartate and asparagine biosynthesis; interconversion of aspartate and asparagine :
L-asparagine + H2O → L-aspartate + ammonium

asparagine degradation III (mammalian) :
N4-(β-N-acetyl-D-glucosaminyl)-L-asparagine + H2O → N-acetyl-β-glucosaminylamine + L-aspartate + H+
L-asparagine + H2O → L-aspartate + ammonium

cyanide detoxification I :
3-cyano-L-alanine + H+ + 2 H2O → ammonium + L-aspartate

indole-3-acetate conjugate biosynthesis II :
indole-3-acetyl-aspartate-N-beta-D-glucose + H2O → indole-3-acetyl-N-beta-D-glucose + L-aspartate

indole-3-acetate degradation II :
2-oxindole-3-acetyl-L-aspartate + H2O → 2-oxo-indole-3-acetate + L-aspartate

Not in pathways:
an N-acyl-L-aspartate + H2O → L-aspartate + a carboxylate
a dipetide with L-aspartate at the N-terminal + H2O → L-aspartate + a standard α amino acid
L-alanyl-L-aspartate + H2O → L-alanine + L-aspartate
glycyl-L-aspartate + H2O → glycine + L-aspartate
a protein + H2O → a protein + L-aspartate
β-aspartyl dipeptide + H2O → L-aspartate + a standard α amino acid

dimethylsulfoniopropionate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

seed germination protein turnover , wound-induced proteolysis I :
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)


a dipeptide + H2O → 2 amino acids
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → 2 a standard α amino acid
a peptide + H2O → a standard α amino acid + a peptide
a peptide + H2O → a peptide + a standard α amino acid
a peptide + H2O → a peptide + a standard α amino acid
an oligopeptide + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a standard α amino acid + a peptide
a peptide + H2O → a standard α amino acid + a peptide
a protein + H2O → a standard α amino acid + a peptide
a tripeptide + H2O → a dipeptide + a standard α amino acid
a dipetide with L-histidine at the C-terminal + H2O → a standard α amino acid + L-histidine
a dipeptide with L-methionine at the N-terminal + H2O → a standard α amino acid + L-methionine
a dipeptide with proline at the C-terminal + H2O → L-proline + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)

γ-glutamyl cycle :
an (γ-L-glutamyl)-L-amino acid → an L-amino acid + 5-oxoproline


a peptide + H2O → an L-amino acid + a peptide
a peptide + H2O → a peptide + an L-amino acid
a N-methyl L-amino acid + oxygen + H2O → an L-amino acid + formaldehyde + hydrogen peroxide
a polypeptide + H2O → a polypeptide + an L-amino acid


amino acids(n) + H2O → amino acids(n-1) + an α amino acid
an α amino acid ester + H2O → an alcohol + an α amino acid + H+
a protein + H2O → a protein + an α amino acid

3,3'-thiodipropionate degradation :
3-sulfinopropionate + an acyl-CoA → 3-sulfinopropanoyl-CoA + a carboxylate

dimethylsulfoniopropionate degradation II (cleavage) :
dimethylsulfoniopropanoate + an acyl-CoA → dimethylsulfoniopropioyl-CoA + a carboxylate

NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast) :
an aldehyde + NADP+ + H2O → a carboxylate + NADPH + 2 H+
an aldehyde + NAD+ + H2O → a carboxylate + NADH + 2 H+

phosphatidylcholine resynthesis via glycerophosphocholine :
a phosphatidylcholine + 2 H2O → sn-glycero-3-phosphocholine + 2 a carboxylate + 2 H+


an acyl-CoA + H2O → a carboxylate + coenzyme A + H+
an L-1-phosphatidyl-inositol + H2O → 1-acyl-sn-glycero-3-phospho-D-myo-inositol + a carboxylate + H+
a carboxylic ester + H2O → an alcohol + a carboxylate + H+
an aldehyde + oxygen + H2O → a carboxylate + hydrogen peroxide + H+
a 1-lysophosphatidylcholine[periplasmic space] + H2O[periplasmic space]a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an aldehyde + FMNH2 + oxygen → hν + a carboxylate + FMN + H2O + 2 H+
an acylcholine + H2O → choline + a carboxylate + H+
a 1,2-diacyl-3-β-D-galactosyl-sn-glycerol + 2 H2O → 2 a carboxylate + 3-β-D-galactosyl-sn-glycerol + 2 H+
an acyl phosphate + H2O → a carboxylate + phosphate + H+
an S-acylglutathione + H2O → a carboxylate + glutathione

Reactions known to both consume and produce the compound:

anaerobic energy metabolism (invertebrates, cytosol) , asparagine degradation III (mammalian) , aspartate biosynthesis , aspartate degradation I , aspartate degradation II , TCA cycle VI (obligate autotrophs) :
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate

C4 photosynthetic carbon assimilation cycle, NAD-ME type :
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate

C4 photosynthetic carbon assimilation cycle, PEPCK type :
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate

ectoine biosynthesis , grixazone biosynthesis , homoserine biosynthesis , lysine biosynthesis I , lysine biosynthesis II , lysine biosynthesis III , lysine biosynthesis VI , norspermidine biosynthesis , spermidine biosynthesis II :
L-aspartate + ATP ↔ L-aspartyl-4-phosphate + ADP

glutamate degradation II :
L-aspartate + 2-oxoglutarate ↔ L-glutamate + oxaloacetate
L-aspartate ↔ ammonium + fumarate

UMP biosynthesis :
L-aspartate + carbamoyl-phosphate ↔ N-carbamoyl-L-aspartate + phosphate + H+

Not in pathways:
oxaloacetate + glycine ↔ L-aspartate + glyoxylate
pyridoxamine + oxaloacetate ↔ pyridoxal + L-aspartate
L-arogenate + oxaloacetate ↔ prephenate + L-aspartate
2-oxo-3-phenylpropanoate + L-aspartate ↔ L-phenylalanine + oxaloacetate

asparagine degradation II :
a 2-oxo carboxylate + L-asparagine ↔ 2-oxosuccinamate + a standard α amino acid

dimethylsulfoniopropionate biosynthesis III (algae) , ethylene biosynthesis III (microbes) :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

glucosinolate biosynthesis from dihomomethionine :
2-oxo-6-methylthiohexanoate + a standard α amino acid ↔ L-dihomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from hexahomomethionine :
2-oxo-10-methylthiodecanoate + a standard α amino acid ↔ hexahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from pentahomomethionine :
2-oxo-9-methylthiononanoate + a standard α amino acid ↔ pentahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from tetrahomomethionine :
2-oxo-8-methylthiooctanoate + a standard α amino acid ↔ tetrahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from trihomomethionine :
2-oxo-7-methylthioheptanoate + a standard α amino acid ↔ trihomomethionine + a 2-oxo carboxylate

homomethionine biosynthesis :
2-oxo-5-methylthiopentanoate + a standard α amino acid ↔ L-homomethionine + a 2-oxo carboxylate
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid


L-ornithine + a 2-oxo carboxylate ↔ a standard α amino acid + L-glutamate-5-semialdehyde


L-alanine + a 2-oxo carboxylate ↔ pyruvate + an L-amino acid

sphingolipid recycling and degradation (yeast) :
a dihydroceramide + H2O ↔ sphinganine + a carboxylate

In Reactions of unknown directionality:

Not in pathways:
N-amidino-L-aspartate + H2O = urea + L-aspartate
N-formyl-L-aspartate + H2O = L-aspartate + formate
N-acetyl-L-aspartate + H2O = L-aspartate + acetate
N-carbamoyl-L-aspartate + 2 H+ + H2O = ammonium + CO2 + L-aspartate
L-aspartate + NAD(P)+ + H2O = oxaloacetate + ammonium + NAD(P)H + H+
L-aspartate + ATP + H+ = L-aspartyl adenylate + diphosphate
L-aspartate + dihydroxyacetone phosphate + oxygen = quinolinate + hydrogen peroxide + phosphate + H+ + 2 H2O
L-aspartate = D-aspartate
L-aspartate + acetyl-CoA = N-acetyl-L-aspartate + coenzyme A + H+
L-aspartate + H+ = CO2 + L-alanine


a monoamide of a dicarboxylate + H2O = ammonium + a dicarboxylate


an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid


eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
an aldehyde + pyrroloquinoline quinone + H2O = a carboxylate + pyrroloquinoline quinol + H+
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an oxidized electron acceptor + H2O = a carboxylate + a reduced electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an N-acylated aliphatic-L-amino acid + H2O = a carboxylate + an aliphatic L-amino acid
a D-hexose + an acyl phosphate = a D-hexose-phosphate + a carboxylate
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an N-acyl-D-glutamate + H2O = a carboxylate + D-glutamate
an anilide + H2O = aniline + a carboxylate + H+
a 5'-acylphosphoadenosine + H2O = a carboxylate + AMP + 2 H+
a 3-acylpyruvate + H2O = a carboxylate + pyruvate + H+
an N6acyl-L-lysine + H2O = a carboxylate + L-lysine
an N-acyl-D-aspartate + H2O = a carboxylate + D-aspartate


a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

In Transport reactions:
L-aspartate[periplasmic space] + 2 H+[periplasmic space]L-aspartate[cytosol] + 2 H+[cytosol] ,
succinate[cytosol] + L-aspartate[periplasmic space]L-aspartate[cytosol] + succinate[periplasmic space] ,
L-aspartate[periplasmic space]L-aspartate[cytosol] ,
ATP + L-aspartate[periplasmic space] + H2O → L-aspartate[cytosol] + ADP + phosphate + H+ ,
a C4-dicarboxylate[cytosol] + 2 H+[cytosol]a C4-dicarboxylate[cytosol] + 2 H+[cytosol] ,
a C4-dicarboxylate[periplasmic space] + 3 H+[periplasmic space]a C4-dicarboxylate[cytosol] + 3 H+[cytosol] ,
a polar amino acid[extracellular space] + ATP + H2O ↔ a polar amino acid[cytosol] + ADP + phosphate ,
an L-amino acid[cytosol]an L-amino acid[periplasmic space]

Enzymes activated by L-aspartate, sorted by the type of activation, are:

Activator (Allosteric) of: malate dehydrogenase, NAD-requiring [Milne79] , pyruvate kinase [Smith00]

Activator (Mechanism unknown) of: aspartate ammonia-lyase [Ida85a] , malate dehydrogenase [Bologna07] , pyruvate kinase [Singh98] , glutamate dehydrogenase (NAD-dependent) [Bonete96]

Enzymes inhibited by L-aspartate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: glutamate synthase (NADH-dependent) [Boland77] , L-asparaginase [Pritsa01] , cysteine aminotransferase [Akagi82]

Inhibitor (Allosteric) of: phosphoenolpyruvate carboxylase [Izui81] , phosphoenolpyruvate carboxylase

Inhibitor (Mechanism unknown) of: L-glutamate:NADP+ oxidoreductase (transaminating) [Miller72] , 4-hydroxyglutamate transaminase [MAITRA64] , phosphoenolpyruvate carboxylase [Patel04] , proline racemase [Cardinale68] , asparaginase [Sodek80] , pyruvate carboxylase [Mukhopadhyay00] , canavaninosuccinate synthetase [Hwang96]


References

Akagi82: Akagi R (1982). "Purification and characterization of cysteine aminotransferase from rat liver cytosol." Acta Med Okayama 36(3);187-97. PMID: 7113743

Boland77: Boland MJ, Benny AG (1977). "Enzymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules." Eur J Biochem 79(2);355-62. PMID: 21790

Bologna07: Bologna FP, Andreo CS, Drincovich MF (2007). "Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure." J Bacteriol 189(16);5937-46. PMID: 17557829

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Cardinale68: Cardinale GJ, Abeles RH (1968). "Purification and mechanism of action of proline racemase." Biochemistry 1968;7(11);3970-8. PMID: 5722267

Hwang96: Hwang, In Doo, Lee, Yi, Kim, Sang-Gu, Lee, Jong Seob, Kwong, Young Myung (1996). "Enzyme activities of canavanine metabolism in Canavalia lineata L. callus." J. Plant Physiol., 1996, 149:494-500.

Ida85a: Ida N, Tokushige M (1985). "L-Aspartate-induced activation of aspartase." J Biochem (Tokyo) 98(1);35-9. PMID: 3900058

Izui81: Izui K, Taguchi M, Morikawa M, Katsuki H (1981). "Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. II. Kinetic studies with a reaction system containing physiological concentrations of ligands." J Biochem 90(5);1321-31. PMID: 7040354

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

MAITRA64: MAITRA U, DEEKKER E (1964). "PURIFICATION OF RAT-LIVER GAMMA-HYDROXYGLUTAMATE TRANSAMINASE AND ITS PROBABLE IDENTITY WITH GLUTAMATE-ASPARTATE TRANSAMINASE." Biochim Biophys Acta 81;517-32. PMID: 14170323

Miller72: Miller RE, Stadtman ER (1972). "Glutamate synthase from Escherichia coli. An iron-sulfide flavoprotein." J Biol Chem 247(22);7407-19. PMID: 4565085

Milne79: Milne JA, Cook RA (1979). "Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide specific malic enzyme depending on whether Mg2+ or Mn2+ serves as divalent cation." Biochemistry 18(16);3604-10. PMID: 224913

Mukhopadhyay00: Mukhopadhyay B, Purwantini E (2000). "Pyruvate carboxylase from Mycobacterium smegmatis: stabilization, rapid purification, molecular and biochemical characterization and regulation of the cellular level." Biochim Biophys Acta 1475(3);191-206. PMID: 10913817

Patel04: Patel HM, Kraszewski JL, Mukhopadhyay B (2004). "The phosphoenolpyruvate carboxylase from Methanothermobacter thermautotrophicus has a novel structure." J Bacteriol 186(15);5129-37. PMID: 15262949

Pritsa01: Pritsa AA, Kyriakidis DA (2001). "L-asparaginase of Thermus thermophilus: purification, properties and identification of essential amino acids for its catalytic activity." Mol Cell Biochem 216(1-2);93-101. PMID: 11216870

Singh98: Singh DK, Malhotra SP, Singh R (1998). "Purification and characterizaton of plastidic pyruvate kinase from developing seeds of Brassica campestris L." Indian J Biochem Biophys 35(6);346-52. PMID: 10412228

Smith00: Smith CR, Knowles VL, Plaxton WC (2000). "Purification and characterization of cytosolic pyruvate kinase from Brassica napus (rapeseed) suspension cell cultures: implications for the integration of glycolysis with nitrogen assimilation." Eur J Biochem 267(14);4477-85. PMID: 10880971

Sodek80: Sodek, Ladaslav, Lea, Peter, Miflin, Benjamin "Distribution and properties of a potassium-dependdent asparaginase isolated from developing seeds of Pisum sativa and other plants." Plant Physiology, 1980, 65:22-26.


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Mon Dec 22, 2014, biocyc11.