twitter

MetaCyc Compound: NAD+

Synonyms: NAD+, beta-nicotinamide adenine dinucleotide, coenzyme I, diphosphopyridine nucleotide, diphosphopyridine nucleotide oxidized, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide oxidized, NAD-oxidized, NAD-ox, DPN+, DPN-ox, DPN, β-nicotinamide adenine dinucleotide, NAD, β-NAD+

Superclasses: a nucleic acid component a nucleotide a dinucleotide a dinucleotide electron carrier NAD(P)+
a nucleic acid component a nucleotide a dinucleotide electron carrier NAD(P)+
a nucleic acid component an oligonucleotide a dinucleotide a dinucleotide electron carrier NAD(P)+
a redox electron carrier NAD(P)+

Summary:
NAD+ and NADP+ are dinucleotides containing one nicotinamide base and one adenine base. Each nucleotide is connected to a ribose sugar at position 1, and the two riboses are connected at their 5 position via a diphosphate. The only difference between the two is that in NADP there is an additional phosphate group at the 2' position of the ribose that carries the adenine moiety.

These molecules are biological carriers of reductive equivalents (i.e. high potential electrons). They are often referred to as coenzymes, although in most of their reactions they function as cosubstrates rather than true coenzymes.

The most common function of NAD+ is to accept two electrons and a proton (a hydride ion) from a substrate that is being oxidized. This reduction converts NAD+ to NADH, the reduced form. NADH then diffuses or is being transported to a terminal oxidase, where the electrons are passed on, regenerating the oxidized form.

NADPH, on the other hand, is mostly involved in biosynthetic reactions, where it serves as an electron donor. NADPH is formed by reduction of NADP+, which occurs by different mechanisms in different types of organisms. In photosynthetic organisms NADP+ is reduced by photosystem I. In heterotrophic organisms it is reduced by central metabolism processes such as the pentose phosphate pathway (see pentose phosphate pathway (oxidative branch)).

Chemical Formula: C21H26N7O14P2

Molecular Weight: 662.42 Daltons

Monoisotopic Molecular Weight: 664.1169466645999 Daltons

NAD<sup>+</sup> compound structure

SMILES: C1(C(=CC=C[N+]=1C5(OC(COP(=O)([O-])OP(=O)([O-])OCC2(OC(C(O)C(O)2)N4(C=NC3(C(N)=NC=NC=34))))C(O)C(O)5))C(N)=O)

InChI: InChI=1S/C21H27N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-10)27-3-1-2-9(4-27)18(23)33/h1-4,7-8,10-11,13-16,20-21,29-32H,5-6H2,(H5-,22,23,24,25,33,34,35,36,37)/p-1/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1

InChIKey: InChIKey=BAWFJGJZGIEFAR-NNYOXOHSSA-M

Unification Links: CAS:53-84-9 , ChEBI:57540 , ChemSpider:10239196 , HMDB:HMDB00902 , IAF1260:33480 , KEGG:C00003 , MetaboLights:MTBLC57540 , PubChem:15938971

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -338.38196 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(+)-camphor degradation :
(+)-exo-5-hydroxycamphor + NAD+ → (+)-bornane-2,5-dione + NADH + H+

(-)-camphor biosynthesis :
(-)-borneol + NAD+ → (-)-camphor + NADH + H+

(-)-camphor degradation :
(-)-exo-3-hydroxycamphor + NAD+ → 3,6-diketocamphane + NADH + H+

(1'S,5'S)-averufin biosynthesis :
(1'S,5'S)-hydroxyaverantin + NAD+ → 5'-oxoaverantin + NADH + H+
(1'S,5'R)-hydroxyaverantin + NAD+ → 5'-oxoaverantin + NADH + H+

(4R)-carveol and (4R)-dihydrocarveol degradation :
(-)-dihydrocarveol + NAD+ → (+)-dihydrocarvone + NADH + H+
(3R,6R)-6-hydroxy-3-isopropenylheptanoate + NAD+ → (3R)-3-isopropenyl-6-oxoheptanoate + NADH + H+
(+)-isodihydrocarveol + NAD+ → (+)-isodihydrocarvone + NADH + H+
(+)-neoisodihydrocarveol + NAD+ → (+)-isodihydrocarvone + NADH + H+
(+)-neodihydrocarveol + NAD+ → (+)-dihydrocarvone + NADH + H+

(4S)-carveol and (4S)-dihydrocarveol degradation :
(+)-trans-carveol + NAD+S-(+)-carvone + NADH + H+
(3S,6R)-6-hydroxy-3-isopropenyl-heptanoate + NAD+ → (3S)-3-isopropenyl-6-oxoheptanoate + NADH + H+
(-)-neodihydrocarveol + NAD+ → (-)-dihydrocarvone + NADH + H+
(+)-dihydrocarveol + NAD+ → (-)-dihydrocarvone + NADH + H+
(-)-isodihydrocarveol + NAD+ → (-)-isodihydrocarvone + NADH + H+
(-)-neoisodihydrocarveol + NAD+ → (-)-isodihydrocarvone + NADH + H+

(4S)-carvone biosynthesis :
(+)-trans-carveol + NAD+S-(+)-carvone + NADH + H+

1,2,4-trichlorobenzene degradation :
3,4,6-trichloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+ → 3,4,6-trichlorocatechol + NADH + 2 H+

1,2-dichlorobenzene degradation :
1,2-dichlorobenzene dihydrodiol + NAD+ → 4,5-dichlorobenzene-1,2-diol + NADH + H+

1,3-dichlorobenzene degradation :
3,5-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+ → 3,5-dichlorocatechol + NADH + H+

1,8-cineole degradation :
6-endo-hydroxycineole + NAD+ → 6-oxocineole + NADH + H+

10-cis-heptadecenoyl-CoA degradation (yeast) :
3-hydroxy-heptanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-pentanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-nonanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-heptanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-undecanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-nonanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy, 6-cis-tridecenoyl-CoA + NAD+ → 6-cis, 3-oxo-tridecenoyl-CoA + NADH + H+

Reactions known to produce the compound:

(+)-camphor degradation :
(+)-bornane-2,5-dione + NADH + H+ + oxygen → (+)-5-oxo-1,2-campholide + NAD+ + H2O

(-)-camphor degradation :
3,6-diketocamphane + NADH + H+ + oxygen → (-)-5-oxo-1,2-campholide + NAD+ + H2O

(R)-acetoin biosynthesis I :
(R)-acetoin + NAD+ ← diacetyl + NADH + H+

(S)-acetoin biosynthesis :
(S)-acetoin + NAD+ ← diacetyl + NADH + H+

(Z)-9-tricosene biosynthesis :
(15Z)-tetracos-15-enal + coenzyme A + NAD+ ← (Z)-15-tetracosenoyl-CoA + NADH + H+

1,2,4,5-tetrachlorobenzene degradation :
1,2,4,5-tetrachlorobenzene + NADH + oxygen + H+ → 1,3,4,6-tetrachloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+

1,2,4-trichlorobenzene degradation :
1,2,4-trichlorobenzene + NADH + oxygen + H+ → 3,4,6-trichloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+

1,2-dichlorobenzene degradation :
1,2-dichlorobenzene + NADH + oxygen + H+ → 1,2-dichlorobenzene dihydrodiol + NAD+

1,3-dichlorobenzene degradation :
1,3-dichlorobenzene + NADH + oxygen + H+ → 3,5-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+

1,4-dichlorobenzene degradation :
1,4-dichlorobenzene + NADH + oxygen + H+ → 3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+

2,2'-dihydroxybiphenyl degradation :
2,2'-dihydroxybiphenyl + NADH + oxygen + H+ → 2,2',3-trihydroxybiphenyl + NAD+ + H2O
2,2',3-trihydroxybiphenyl + NADH + oxygen + H+ → 2,2',3,3'-tetrahydroxybiphenyl + NAD+ + H2O
2,3-dihydroxybenzoate + NADH + oxygen + 2 H+ → pyrogallol + CO2 + NAD+ + H2O

2,3-dihydroxypropane-1-sulfonate degradation :
(R)-2,3-dihydroxypropane 1-sulfonate + NAD+ ← 2-oxo-3-hydroxy-propane-1-sulfonate + NADH + H+

2,4,5-trichlorophenoxyacetate degradation :
2-hydroxy-1,4-benzoquinone + NADH + 2 H+ → 1,2,4-benzenetriol + NAD+
2,4,5-trichloro-phenoxyacetate + NADH + oxygen → 2,4,5-trichlorophenol + glyoxylate + NAD+ + H2O

2,4-dichlorotoluene degradation :
2,4-dichlorotoluene + NADH + oxygen + H+ → 4,6-dichloro-3-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+

2,4-dinitrotoluene degradation :
2-hydroxy-5-methylquinone + NADH + 2 H+ → 2,4,5-trihydroxytoluene + NAD+
2,4-dinitrotoluene + NADH + oxygen → 4-methyl-5-nitrocatechol + nitrite + NAD+

2,5-dichlorotoluene degradation :
2,5-dichlorotoluene + NADH + oxygen + H+ → 3,6-dichloro-4-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+

2,6-dinitrotoluene degradation :
2,6-dinitrotoluene + NADH + oxygen → 3-methyl-4-nitrocatechol + nitrite + NAD+

2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA :
2-oxoadipate + ammonium + NAD+ ← 2-aminomuconate + NADH + H2O + 2 H+

2-chlorobenzoate degradation :
2-chlorobenzoate + NADH + oxygen + H+ → catechol + chloride + CO2 + NAD+

2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis :
2-heptyl-4(1H)-quinolone + NADH + oxygen + H+ → 2-heptyl-3-hydroxy-4(1H)-quinolone + NAD+ + H2O

2-hydroxybiphenyl degradation :
2-hydroxybiphenyl + NADH + H+ + oxygen → biphenyl-2, 3-diol + NAD+ + H2O

Reactions known to both consume and produce the compound:

(+)-camphor biosynthesis :
(+)-borneol + NAD+ ↔ (+)-camphor + NADH + H+

(R)- and (S)-3-hydroxybutyrate biosynthesis , 3-hydroxypropanoate/4-hydroxybutanate cycle , glutaryl-CoA degradation , pyruvate fermentation to butanoate , pyruvate fermentation to butanol I , pyruvate fermentation to butanol II , pyruvate fermentation to hexanol :
(S)-3-hydroxybutanoyl-CoA + NAD+ ↔ acetoacetyl-CoA + NADH + H+

(R)-cysteate degradation , coenzyme M biosynthesis I :
(2R)-3-sulfolactate + NAD+ ↔ 3-sulfopyruvate + NADH + H+

(R,R)-butanediol biosynthesis , (R,R)-butanediol degradation :
(R,R)-2,3-butanediol + NAD+ ↔ (R)-acetoin + NADH + H+

(S,S)-butanediol biosynthesis , (S,S)-butanediol degradation :
(S,S)-2,3-butanediol + NAD+ ↔ (S)-acetoin + NADH + H+

1,2-dichloroethane degradation :
chloroacetaldehyde + NAD+ + H2O ↔ chloroacetate + NADH + 2 H+

1,2-propanediol biosynthesis from lactate (engineered) :
(S)-lactaldehyde + coenzyme A + NAD+ ↔ (S)-lactoyl-CoA + NADH + H+
(R)-lactaldehyde + coenzyme A + NAD+ ↔ (R)-lactoyl-CoA + NADH + H+

1,3-propanediol biosynthesis (engineered) , glycerol-3-phosphate shuttle , superpathway of phosphatidate biosynthesis (yeast) :
sn-glycerol 3-phosphate + NAD+ ↔ glycerone phosphate + NADH + H+

1,4-dichlorobenzene degradation :
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+
3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+ ↔ 3,6-dichlorocatechol + NADH + H+

1-butanol autotrophic biosynthesis , anaerobic energy metabolism (invertebrates, mitochondrial) , photosynthetic 3-hydroxybutyrate biosynthesis (engineered) , pyruvate fermentation to acetate II , pyruvate fermentation to acetate V , superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass :
pyruvate + coenzyme A + NAD+ ↔ acetyl-CoA + CO2 + NADH

2'-deoxy-α-D-ribose 1-phosphate degradation , 2-aminoethylphosphonate degradation I , 2-oxopentenoate degradation , L-threonine degradation IV , triethylamine degradation :
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

2,4,6-trichlorophenol degradation , 3,5-dichlorocatechol degradation , pentachlorophenol degradation :
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+

2-methylbutyrate biosynthesis :
2-methyl-3-hydroxybutyryl-CoA + NAD+ ↔ 2-methylacetoacetyl-CoA + NADH + H+

2-oxoglutarate decarboxylation to succinyl-CoA :
a [2-oxoglutarate dehydrogenase E2 protein] N6-dihydrolipoyl-L-lysine + NAD+ ↔ a [2-oxoglutarate dehydrogenase E2 protein] N6-lipoyl-L-lysine + NADH + H+

2-oxoisovalerate decarboxylation to isobutanoyl-CoA :
an [apo BCAA dehydrogenase E2 protein] N6-dihydrolipoyl-L-lysine + NAD+ ↔ an [apo BCAA dehydrogenase E2 protein] N6-lipoyl-L-lysine + NADH + H+

3-methylbutanol biosynthesis :
(2R,3S)-3-isopropylmalate + NAD+ ↔ (2S)-2-isopropyl-3-oxosuccinate + NADH + H+
3-methylbutanol + NAD+ ↔ 3-methylbutanal + NADH + H+

4-aminobutyrate degradation V :
L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+
4-hydroxybutanoate + NAD+ ↔ succinate semialdehyde + NADH + H+

4-toluenecarboxylate degradation :
4-carboxybenzaldehyde + NAD+ + H2O ↔ terephthalate + NADH + 2 H+
4-carboxybenzyl alcohol + NAD+ ↔ 4-carboxybenzaldehyde + NADH + H+

4-toluenesulfonate degradation I :
4-sulfobenzaldehyde + NAD+ + H2O ↔ 4-sulfobenzoate + NADH + 2 H+
4-sulfobenzyl alcohol + NAD+ ↔ 4-sulfobenzaldehyde + NADH + H+

In Reactions of unknown directionality:

dimethyl sulfoxide degradation :
dimethyl sulfoxide + NADH + H+ = dimethyl sulfide + NAD+ + H2O

L-gulonate degradation :
L-gulonate + NAD+ = D-fructuronate + NADH + H+

sulfoacetaldehyde degradation II :
sulfoacetaldehyde + NAD+ + H2O = sulfoacetate + NADH + 2 H+

Not in pathways:
trimethylamine N-oxide + NADH + 2 H+ = trimethylamine + NAD+ + H2O
hydrogen peroxide + NADH + H+ = NAD+ + 2 H2O
hybrid-cluster proteinox + NADH = hybrid-cluster proteinred + NAD+
(S)-usnate + NADH + 2 H+ = reduced-(S)-usnate + NAD+
methylglyoxal + NADH + H+ = acetol + NAD+
3-nitrotoluene + NADH + oxygen = 4-methylcatechol + nitrite + NAD+
1,2,3-trichlorobenzene + NADH + oxygen + H+ = 1,2,3-trichlorobenzene dihydrodiol + NAD+
phenylacetate + NADH + oxygen + H+ = 2-hydroxyphenylacetate + NAD+ + H2O
phenanthrene + NADH + H+ + oxygen = (+)-cis-3,4-dihydrophenanthrene-3,4-diol + NAD+
docosapentaenoyl-2-enoyl [acp] + NADH + H+ = a docosapentaenoyl [acp] + NAD+
methyl red + 2 NADH + 2 H+ = anthranilate + N,N'-dimethyl-p-phenylenediamine + 2 NAD+
NADH + an unknown oxidized electron acceptor + H+ = NAD+ + an unknown reduced electron acceptor
NADH + an electron-transfer quinone + H+ = NAD+ + an electron-transfer quinol
menadione + NADH + H+ = menadiol + NAD+
11-deoxycorticosterone + NADH + H+ = 4-pregnen-20,21-diol-3-one + NAD+
2 a quinone + NADH + H+ = 2 a semiquinone + NAD+
Cu2+ + NADH = Cu+ + NAD+
L-dopa + NADH + H+ = 3,4-dihydroxyphenylpropanoate + ammonium + NAD+
2,4-dinitrophenol + NADH = 4-nitrophenol + nitrite + NAD+
a reduced electron-transfer flavoprotein + NAD+ = an oxidized electron-transfer flavoprotein + NADH + 2 H+
a [dinitrogen reductase]-L-arginine + NAD+ = an ADP-D-ribosyl-[dinitrogen reductase]-L-arginine + nicotinamide + H+
L-pipecolate + NAD+ = 1-piperideine-2-carboxylate + NADH + 2 H+

In Transport reactions:
NAD+[extracellular space]NAD+[periplasmic space] ,
Na+[in] + NADH + an ubiquinone + H+ → Na+[out] + NAD+ + an ubiquinol

In Redox half-reactions:
NAD+[in] + H+[in] + 2 e-[membrane] → NADH[in] ,
NAD(P)+[in] + H+[in] + 2 e-[membrane] → NAD(P)H[in]

Enzymes activated by NAD+, sorted by the type of activation, are:

Activator (Allosteric) of: UDP-D-apiose synthase [Molhoj03] , UDP-D-xylose synthase [Molhoj03]

Activator (Mechanism unknown) of: α-galactosidase [Burstein71, Comment 1] , acetaldehyde dehydrogenase [Shone81] , (+)-trans-carveol dehydrogenase [Bouwmeester98] , dTDP-glucose 4,6-dehydratase [Chen09] , manganese-oxidizing peroxidase [Anderson09] , GDP-D-mannose-5''-epimerase [Watanabe06] , GDP-D-mannose-3'',5''-epimerase [Wolucka03]

Enzymes inhibited by NAD+, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: D-mannonate oxidoreductase [Portalier72a, MandrandBerthel77] , malate:quinone oxidoreductase [Narindrasorasak79] , NADH:ubiquinone oxidoreductase [Euro09a] , L-aspartate oxidase [Griffith75, Nasu82, Tedeschi99, Comment 2] , fumarase [Payne79] , glycerol 3-phosphate dehydrogenase [Albertyn92] , FMN reductase (NADH) [Iwaki13] , NADP+-dependent methylenetetrahydrofolate dehydrogenase [OBrien73] , glutamate synthase (NADH-dependent) [Boland77]

Inhibitor (Uncompetitive) of: malate dehydrogenase, NAD-requiring [Wang07a]

Inhibitor (Allosteric) of: citrate synthase

Inhibitor (Mechanism unknown) of: 3-dehydroquinate synthase , glutaminase B [Prusiner76a] , nitrite reductase [Comment 3] , L-lactate dehydrogenase [Davies72] , L-aspartate oxidase [Hosokawa83]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: dTDP-glucose 4,6-dehydratase , dTDP-glucose 4,6-dehydratase , 3-dehydroquinate synthase , UDP-glucose 4-epimerase , 6-phospho-β-D-glucosyl-(1,4)-D-glucose glucohydrolase , monoacetylchitobiose-6-phosphate hydrolase , GDP-D-glycero-α-D-manno-heptose 4,6-dehydratase , UDP-glucose 4,6-dehydratase , UDP-xylose synthase , dTDP-glucose 4,6-dehydratase , UDP-N-acetylglucosamine 4,6-dehydratase , UDP-glucuronate 4-epimerase , NAD-dependent GDP-N-acetylglucosamine 4.6-dehydratase , L-lysine cyclodeaminase , UDP-N-acetylglucosamine C-6 dehydratase , 2-deoxy-scyllo-inosose synthase , 2-deoxy-scyllo-inosose synthase , dTDP-glucose 4,6-dehydratase , carnitine monooxygenase , urocanase , ethanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase , methanol dehydrogenase , CDP-D-glucose-4,6-dehydratase , UDP-N-acetylglucosamine 4-epimerase , UDP-N-acetylglucosamine C4-epimerase , UDP-N-acetylglucosamine C4-epimerase , UDP-galactose 4-epimerase , GDP-D-mannose:GDP-L-gulose epimerase , UDP-galactose 4-epimerase , fluorene 1,2-dioxygenase , betaine aldehyde dehydrogenase , 6-endo-hydroxycineole dehydrogenase , L-carnitine dehydrogenase , L-lactate dehydrogenase , 3-dehydroquinate synthase , UDP-D-glucose/UDP-D-galactose 4-epimerase , D-lactate dehydrogenase , 2-hydroxycyclohexanecarboxyl-CoA dehydrogenase , UDP-sulfoquinovose synthase , GDP-D-mannose-3'',5''-epimerase , fluorene monooxygenase , 1,10-dihydro-1,10-dihydroxyfluoren-9-one dehydrogenase , malonate semialdehyde dehydrogenase , indole-3-lactate dehydrogenase , sarcosine oxidase , urocanase , ornithine cyclodeaminase , ornithine cyclodeaminase

This compound has been characterized as an alternative substrate of the following enzymes: 3-oxo-5,6-dehydrosuberyl-CoA semialdehyde dehydrogenase , NADH pyrophosphatase , D-xylose dehydrogenase


References

Albertyn92: Albertyn J, van Tonder A, Prior BA (1992). "Purification and characterization of glycerol-3-phosphate dehydrogenase of Saccharomyces cerevisiae." FEBS Lett 308(2);130-2. PMID: 1499720

Anderson09: Anderson CR, Johnson HA, Caputo N, Davis RE, Torpey JW, Tebo BM (2009). "Mn(II) oxidation is catalyzed by heme peroxidases in "Aurantimonas manganoxydans" strain SI85-9A1 and Erythrobacter sp. strain SD-21." Appl Environ Microbiol 75(12);4130-8. PMID: 19411418

Boland77: Boland MJ, Benny AG (1977). "Enzymes of nitrogen metabolism in legume nodules. Purification and properties of NADH-dependent glutamate synthase from lupin nodules." Eur J Biochem 79(2);355-62. PMID: 21790

Bouwmeester98: Bouwmeester HJ, Gershenzon J, Konings MC, Croteau R (1998). "Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration Of enzyme activities and their changes with development." Plant Physiol 117(3);901-12. PMID: 9662532

Burstein71: Burstein C, Kepes A (1971). "The alpha-galactosidase from Escherichia coli K12." Biochim Biophys Acta 1971;230(1);52-63. PMID: 5543331

Chen09: Chen YL, Chen YH, Lin YC, Tsai KC, Chiu HT (2009). "Functional characterization and substrate specificity of spinosyn rhamnosyltransferase by in vitro reconstitution of spinosyn biosynthetic enzymes." J Biol Chem 284(11);7352-63. PMID: 19126547

Davies72: Davies DD, Davies S (1972). "Purification and properties of L(+)-lactate dehydrogenase from potato tubers." Biochem J 129(4);831-9. PMID: 4144124

Euro09a: Euro L, Belevich G, Bloch DA, Verkhovsky MI, Wikstrom M, Verkhovskaya M (2009). "The role of the invariant glutamate 95 in the catalytic site of Complex I from Escherichia coli." Biochim Biophys Acta 1787(1);68-73. PMID: 19061856

Griffith75: Griffith GR, Chandler JL, Gholson RK (1975). "Studies on the de novo biosynthesis of NAD in Escherichia coli. The separation of the nadB gene product from the nadA gene product and its purification." Eur J Biochem 54(1);239-45. PMID: 238844

Hosokawa83: Hosokawa Y, Mitchell E, Gholson RK (1983). "Higher plants contain L-asparate oxidase, the first enzyme of the Escherichia coli quinolinate synthetase system." Biochem Biophys Res Commun 111(1);188-93. PMID: 6338879

Iwaki13: Iwaki H, Grosse S, Bergeron H, Leisch H, Morley K, Hasegawa Y, Lau PC (2013). "Camphor Pathway Redux: Functional Recombinant Expression of 2,5- and 3,6-Diketocamphane Monooxygenases of Pseudomonas putida ATCC 17453 with Their Cognate Flavin Reductase Catalyzing Baeyer-Villiger Reactions." Appl Environ Microbiol. PMID: 23524667

Jackson81: Jackson RH, Cole JA, Cornish-Bowden A (1981). "The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction." Biochem J 1981;199(1);171-8. PMID: 6279095

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

MandrandBerthel77: Mandrand-Berthelot MA, Lagarde AE (1977). ""Hit-and-run" mechanism for D-glucuronate reduction catalyzed by D-mannonate:NAD oxidoreductase of Escherichia coli." Biochim Biophys Acta 1977;483(1);6-23. PMID: 195622

Molhoj03: Molhoj M, Verma R, Reiter WD (2003). "The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis." Plant J 35(6);693-703. PMID: 12969423

Nagao88: Nagao Y, Nakada T, Imoto M, Shimamoto T, Sakai S, Tsuda M, Tsuchiya T (1988). "Purification and analysis of the structure of alpha-galactosidase from Escherichia coli." Biochem Biophys Res Commun 1988;151(1);236-41. PMID: 2831880

Narindrasorasak79: Narindrasorasak S, Goldie AH, Sanwal BD (1979). "Characteristics and regulation of a phospholipid-activated malate oxidase from Escherichia coli." J Biol Chem 1979;254(5);1540-5. PMID: 368072

Nasu82: Nasu S, Wicks FD, Gholson RK (1982). "L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase." J Biol Chem 1982;257(2);626-32. PMID: 7033218

OBrien73: O'Brien WE, Brewer JM, Ljungdahl LG (1973). "Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum." J Biol Chem 1973;248(2);403-8. PMID: 4405422

Payne79: Payne M, Powley D, Harris B (1979). "Purification, characterization and the presumptive role of fumarase in the energy metabolism of Ascaris suum." J. Parasitol. 65 833-841.

Portalier72a: Portalier RC (1972). "[D-mannonate: NAD-oxidoreductase from Escherichia coli K12. Kinetic studies of the enzymatic mechanism]." Eur J Biochem 1972;30(2);220-33. PMID: 4351435

Prusiner76a: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations." J Biol Chem 1976;251(11);3463-9. PMID: 776970

Shone81: Shone CC, Fromm HJ (1981). "Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli." Biochemistry 1981;20(26);7494-501. PMID: 7034777

Tedeschi99: Tedeschi G, Negri A, Ceciliani F, Mattevi A, Ronchi S (1999). "Structural characterization of l-aspartate oxidase and identification of an interdomain loop by limited proteolysis." Eur J Biochem 260(3);896-903. PMID: 10103021

Wang07a: Wang J, Tan H, Zhao ZK (2007). "Over-expression, purification, and characterization of recombinant NAD-malic enzyme from Escherichia coli K12." Protein Expr Purif 53(1):97-103. PMID: 17215140

Watanabe06: Watanabe K, Suzuki K, Kitamura S (2006). "Characterization of a GDP-d-mannose 3'',5''-epimerase from rice." Phytochemistry 67(4);338-46. PMID: 16413588

Wolucka03: Wolucka BA, Van Montagu M (2003). "GDP-mannose 3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants." J Biol Chem 278(48);47483-90. PMID: 12954627


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Sun May 24, 2015, BIOCYC14A.