twitter

MetaCyc Compound: NADH

Synonyms: NADH2, NADH2, dihydrodiphosphopyridine nucleotide, diphosphopyridine nucleotide reduced, dihydronicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide reduced, NAD-reduced, NADH+H+, DPNH, β-NADH

Superclasses: a nucleic acid component a nucleotide a dinucleotide a dinucleotide electron carrier NAD(P)H
a nucleic acid component a nucleotide a dinucleotide electron carrier NAD(P)H
a nucleic acid component an oligonucleotide a dinucleotide a dinucleotide electron carrier NAD(P)H
an acceptor a redox electron carrier NAD(P)H

Summary:
NAD+ and NADP+ are dinucleotides containing one nicotinamide base and one adenine base. Each nucleotide is connected to a ribose sugar at position 1, and the two riboses are connected at their 5 position via a diphosphate. The only difference between the two is that in NADP there is an additional phosphate group at the 2' position of the ribose that carries the adenine moiety.

These molecules are biological carriers of reductive equivalents (i.e. high potential electrons). They are often referred to as coenzymes, although in most of their reactions they function as cosubstrates rather than true coenzymes.

The most common function of NAD+ is to accept two electrons and a proton (a hydride ion) from a substrate that is being oxidized. This reduction converts NAD+ to NADH, the reduced form. NADH then diffuses or is being transported to a terminal oxidase, where the electrons are passed on, regenerating the oxidized form.

NADPH, on the other hand, is mostly involved in biosynthetic reactions, where it serves as an electron donor. NADPH is formed by reduction of NADP+, which occurs by different mechanisms in different types of organisms. In photosynthetic organisms NADP+ is reduced by photosystem I. In heterotrophic organisms it is reduced by central metabolism processes such as the pentose phosphate pathway (see pentose phosphate pathway (oxidative branch)).

Chemical Formula: C21H27N7O14P2

Molecular Weight: 663.43 Daltons

Monoisotopic Molecular Weight: 665.1247716966999 Daltons

NADH compound structure

SMILES: C1(=C(CC=CN1C5(OC(COP(=O)([O-])OP(=O)([O-])OCC2(OC(C(O)C(O)2)N4(C=NC3(C(N)=NC=NC=34))))C(O)C(O)5))C(N)=O)

InChI: InChI=1S/C21H29N7O14P2/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(32)14(30)11(41-21)6-39-44(36,37)42-43(34,35)38-5-10-13(29)15(31)20(40-10)27-3-1-2-9(4-27)18(23)33/h1,3-4,7-8,10-11,13-16,20-21,29-32H,2,5-6H2,(H2,23,33)(H,34,35)(H,36,37)(H2,22,24,25)/p-2/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1

InChIKey: InChIKey=BOPGDPNILDQYTO-NNYOXOHSSA-L

Unification Links: CAS:58-68-4 , ChEBI:57945 , ChemSpider:10239197 , HMDB:HMDB01487 , IAF1260:33484 , KEGG:C00004 , MetaboLights:MTBLC57945 , PubChem:21604869

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -325.20697 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(+)-camphor degradation :
(+)-bornane-2,5-dione + NADH + H+ + oxygen → (+)-5-oxo-1,2-campholide + NAD+ + H2O

(-)-camphor degradation :
3,6-diketocamphane + NADH + H+ + oxygen → (-)-5-oxo-1,2-campholide + NAD+ + H2O

(5Z)-dodec-5-enoate biosynthesis :
a (5Z)-dodec-5-enoyl-[acp] + NAD+ ← a (3E,5Z)-dodeca-3,5-dienoyl-[acp] + NADH + H+

(R)-acetoin biosynthesis I :
(R)-acetoin + NAD+ ← diacetyl + NADH + H+

(S)-acetoin biosynthesis :
(S)-acetoin + NAD+ ← diacetyl + NADH + H+

(Z)-9-tricosene biosynthesis :
(15Z)-tetracos-15-enal + coenzyme A + NAD+ ← (Z)-15-tetracosenoyl-CoA + NADH + H+

1,2,4,5-tetrachlorobenzene degradation :
1,2,4,5-tetrachlorobenzene + NADH + oxygen + H+ → 1,3,4,6-tetrachloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+

1,2,4-trichlorobenzene degradation :
1,2,4-trichlorobenzene + NADH + oxygen + H+ → 3,4,6-trichloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+

1,2-dichlorobenzene degradation :
1,2-dichlorobenzene + NADH + oxygen + H+ → 1,2-dichlorobenzene dihydrodiol + NAD+

1,3-dichlorobenzene degradation :
1,3-dichlorobenzene + NADH + oxygen + H+ → 3,5-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+

1,4-dichlorobenzene degradation :
1,4-dichlorobenzene + NADH + oxygen + H+ → 3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+

2,2'-dihydroxybiphenyl degradation :
2,3-dihydroxybenzoate + NADH + oxygen + 2 H+ → pyrogallol + CO2 + NAD+ + H2O
2,2',3-trihydroxybiphenyl + NADH + oxygen + H+ → 2,2',3,3'-tetrahydroxybiphenyl + NAD+ + H2O
2,2'-dihydroxybiphenyl + NADH + oxygen + H+ → 2,2',3-trihydroxybiphenyl + NAD+ + H2O

2,2'-dihydroxyketocarotenoids biosynthesis :
2-hydroxycanthaxanthin + NADH + H+ + oxygen → 2,2'-dihydroxycanthaxanthin + NAD+ + H2O
canthaxanthin + NADH + H+ + oxygen → 2-hydroxycanthaxanthin + NAD+ + H2O
2-hydroxyadonixanthin + NADH + H+ + oxygen → 2,3,2',3'-tetrahydroxy-β,β-caroten-4-one + NAD+ + H2O
adonixanthin + NADH + H+ + oxygen → 2-hydroxyadonixanthin + NAD+ + H2O
2-hydroxyastaxanthin + NADH + H+ + oxygen → 2,3,2',3'-tetrahydroxy-β,β-carotene-4,4'-dione + NAD+ + H2O
3S,3'S-astaxanthin + NADH + H+ + oxygen → 2-hydroxyastaxanthin + NAD+ + H2O

2,3-dihydroxypropane-1-sulfonate degradation :
(R)-2,3-dihydroxypropane 1-sulfonate + NAD+ ← 2-oxo-3-hydroxy-propane-1-sulfonate + NADH + H+

2,4,5-trichlorophenoxyacetate degradation :
2,4,5-trichloro-phenoxyacetate + NADH + oxygen → 2,4,5-trichlorophenol + glyoxylate + NAD+ + H2O
2-hydroxy-1,4-benzoquinone + NADH + 2 H+ → 1,2,4-benzenetriol + NAD+

2,4-dichlorotoluene degradation :
2,4-dichlorotoluene + NADH + oxygen + H+ → 4,6-dichloro-3-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+

2,4-dinitrotoluene degradation :
2,4-dinitrotoluene + NADH + oxygen → 4-methyl-5-nitrocatechol + nitrite + NAD+

Reactions known to produce the compound:

(+)-camphor degradation :
(+)-exo-5-hydroxycamphor + NAD+ → (+)-bornane-2,5-dione + NADH + H+

(-)-camphor biosynthesis :
(-)-borneol + NAD+ → (-)-camphor + NADH + H+

(-)-camphor degradation :
(-)-exo-3-hydroxycamphor + NAD+ → 3,6-diketocamphane + NADH + H+

(1'S,5'S)-averufin biosynthesis :
(1'S,5'R)-hydroxyaverantin + NAD+ → 5'-oxoaverantin + NADH + H+
(1'S,5'S)-hydroxyaverantin + NAD+ → 5'-oxoaverantin + NADH + H+

(4R)-carveol and (4R)-dihydrocarveol degradation :
(+)-neodihydrocarveol + NAD+ → (+)-dihydrocarvone + NADH + H+
(+)-neoisodihydrocarveol + NAD+ → (+)-isodihydrocarvone + NADH + H+
(+)-isodihydrocarveol + NAD+ → (+)-isodihydrocarvone + NADH + H+
(3R,6R)-6-hydroxy-3-isopropenylheptanoate + NAD+ → (3R)-3-isopropenyl-6-oxoheptanoate + NADH + H+
(-)-dihydrocarveol + NAD+ → (+)-dihydrocarvone + NADH + H+

(4S)-carveol and (4S)-dihydrocarveol degradation :
(-)-neoisodihydrocarveol + NAD+ → (-)-isodihydrocarvone + NADH + H+
(-)-isodihydrocarveol + NAD+ → (-)-isodihydrocarvone + NADH + H+
(+)-dihydrocarveol + NAD+ → (-)-dihydrocarvone + NADH + H+
(-)-neodihydrocarveol + NAD+ → (-)-dihydrocarvone + NADH + H+
(3S,6R)-6-hydroxy-3-isopropenyl-heptanoate + NAD+ → (3S)-3-isopropenyl-6-oxoheptanoate + NADH + H+
(+)-trans-carveol + NAD+S-(+)-carvone + NADH + H+

(4S)-carvone biosynthesis :
(+)-trans-carveol + NAD+S-(+)-carvone + NADH + H+

(8E,10E)-dodeca-8,10-dienol biosynthesis :
(S)-3-hydroxyhexadecanoyl-CoA + NAD+ → 3-oxo-palmitoyl-CoA + NADH + H+
(S)-3-hydroxytetradecanoyl-CoA + NAD+ → 3-oxo-myristoyl-CoA + NADH + H+

1,2,4-trichlorobenzene degradation :
3,4,6-trichloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+ → 3,4,6-trichlorocatechol + NADH + 2 H+

1,2-dichlorobenzene degradation :
1,2-dichlorobenzene dihydrodiol + NAD+ → 4,5-dichlorobenzene-1,2-diol + NADH + H+

1,3-dichlorobenzene degradation :
3,5-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+ → 3,5-dichlorocatechol + NADH + H+

1,8-cineole degradation :
6-endo-hydroxycineole + NAD+ → 6-oxocineole + NADH + H+

10-cis-heptadecenoyl-CoA degradation (yeast) :
10-cis-heptadecenoyl-CoA + 2 coenzyme A + 2 NAD+ + 2 H2O + 2 oxygen → 6-cis-tridecenoyl-CoA + 2 acetyl-CoA + 2 hydrogen peroxide + 2 NADH + 2 H+
3-hydroxy, 6-cis-tridecenoyl-CoA + NAD+ → 6-cis, 3-oxo-tridecenoyl-CoA + NADH + H+

Reactions known to both consume and produce the compound:

(+)-camphor biosynthesis :
(+)-borneol + NAD+ ↔ (+)-camphor + NADH + H+

(R)- and (S)-3-hydroxybutanoate biosynthesis , 3-hydroxypropanoate/4-hydroxybutanate cycle , glutaryl-CoA degradation , pyruvate fermentation to butanoate , pyruvate fermentation to butanol I , pyruvate fermentation to butanol II , pyruvate fermentation to hexanol :
(S)-3-hydroxybutanoyl-CoA + NAD+ ↔ acetoacetyl-CoA + NADH + H+

(R)-cysteate degradation , coenzyme M biosynthesis I :
(2R)-3-sulfolactate + NAD+ ↔ 3-sulfopyruvate + NADH + H+

(R,R)-butanediol biosynthesis , (R,R)-butanediol degradation :
(R,R)-2,3-butanediol + NAD+ ↔ (R)-acetoin + NADH + H+

(S,S)-butanediol biosynthesis , (S,S)-butanediol degradation :
(S,S)-2,3-butanediol + NAD+ ↔ (S)-acetoin + NADH + H+

1,2-dichloroethane degradation :
chloroacetaldehyde + NAD+ + H2O ↔ chloroacetate + NADH + 2 H+

1,2-propanediol biosynthesis from lactate (engineered) :
(R)-lactaldehyde + coenzyme A + NAD+ ↔ (R)-lactoyl-CoA + NADH + H+
(S)-lactaldehyde + coenzyme A + NAD+ ↔ (S)-lactoyl-CoA + NADH + H+

1,3-propanediol biosynthesis (engineered) , glycerol-3-phosphate shuttle , superpathway of phosphatidate biosynthesis (yeast) :
sn-glycerol 3-phosphate + NAD+ ↔ glycerone phosphate + NADH + H+

1,4-dichlorobenzene degradation :
3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+ ↔ 3,6-dichlorocatechol + NADH + H+
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+

1-butanol autotrophic biosynthesis , anaerobic energy metabolism (invertebrates, mitochondrial) , photosynthetic 3-hydroxybutanoate biosynthesis (engineered) , pyruvate fermentation to acetate II , pyruvate fermentation to acetate V , superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass :
pyruvate + coenzyme A + NAD+ ↔ acetyl-CoA + CO2 + NADH

2'-deoxy-α-D-ribose 1-phosphate degradation , 2-aminoethylphosphonate degradation I , 2-oxopentenoate degradation , L-threonine degradation IV , triethylamine degradation :
acetaldehyde + coenzyme A + NAD+ ↔ acetyl-CoA + NADH + H+

2,4,6-trichlorophenol degradation , 3,5-dichlorocatechol degradation , pentachlorophenol degradation :
2-chloromaleylacetate + NADH ↔ 2-maleylacetate + chloride + NAD+

2-methylbutanoate biosynthesis :
2-methyl-3-hydroxybutyryl-CoA + NAD+ ↔ 2-methylacetoacetyl-CoA + NADH + H+

2-oxoglutarate decarboxylation to succinyl-CoA :
a [2-oxoglutarate dehydrogenase E2 protein] N6-dihydrolipoyl-L-lysine + NAD+ ↔ a [2-oxoglutarate dehydrogenase E2 protein] N6-lipoyl-L-lysine + NADH + H+

2-oxoisovalerate decarboxylation to isobutanoyl-CoA :
an [apo BCAA dehydrogenase E2 protein] N6-dihydrolipoyl-L-lysine + NAD+ ↔ an [apo BCAA dehydrogenase E2 protein] N6-lipoyl-L-lysine + NADH + H+

3-methylbutanol biosynthesis :
3-methylbutanol + NAD+ ↔ 3-methylbutanal + NADH + H+
(2R,3S)-3-isopropylmalate + NAD+ ↔ (2S)-2-isopropyl-3-oxosuccinate + NADH + H+

4-aminobutanoate degradation V :
4-hydroxybutanoate + NAD+ ↔ succinate semialdehyde + NADH + H+
L-glutamate + NAD+ + H2O ↔ 2-oxoglutarate + ammonium + NADH + H+

4-deoxy-L-threo-hex-4-enopyranuronate degradation :
2-dehydro-3-deoxy-D-gluconate + NAD+ ↔ 3-deoxy-D-glycero-2,5-hexodiulosonate + NADH + H+

4-toluenecarboxylate degradation :
4-carboxybenzaldehyde + NAD+ + H2O ↔ terephthalate + NADH + 2 H+
4-carboxybenzyl alcohol + NAD+ ↔ 4-carboxybenzaldehyde + NADH + H+

4-toluenesulfonate degradation I :
4-sulfobenzyl alcohol + NAD+ ↔ 4-sulfobenzaldehyde + NADH + H+

In Reactions of unknown directionality:

dimethyl sulfoxide degradation :
dimethyl sulfoxide + NADH + H+ = dimethyl sulfide + NAD+ + H2O

L-gulonate degradation :
L-gulonate + NAD+ = D-fructuronate + NADH + H+

sulfoacetaldehyde degradation II :
sulfoacetaldehyde + NAD+ + H2O = sulfoacetate + NADH + 2 H+

Not in pathways:
1-octanol + NAD+ = octanal + NADH + H+
L-threonate + NAD+ = 3-dehydro-L-threonate + NADH + H+
2-hydroxymalonate + NAD+ = oxomalonate + NADH + H+
1-hexadecanol + NAD+ = palmitaldehyde + NADH + H+
2-hydroxyadipate + NAD+ = 2-oxoadipate + NADH + H+
(R)-3,3-dimethylmalate + NAD+ = CO2 + 3-methyl-2-oxobutanoate + NADH
diiodo-4-hydroxyphenyl-lactate + NAD+ = diiodo-4-hydroxyphenylpyruvate + NADH + H+
α-D-xylopyranose + NAD+ = D-xylonolactone + NADH + H+
cyclopentanol + NAD+ = cyclopentanone + NADH + H+
trans-cyclohexane-1,2-diol + NAD+ = 2-hydroxycyclohexan-1-one + NADH + H+
(1S,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylate + NAD+ = (1S,4S)-4-hydroxy-3-oxocyclohexane-1-carboxylate + NADH + H+
pregnan-21-ol + NAD+ = pregnan-21-al + NADH + H+
prostaglandin E2 + NAD+ = 15-dehydro-prostaglandin E2 + NADH + H+
(R)-2-hydroxystearate + NAD+ = 2-oxostearate + NADH + H+
trans-4-hydroxy-L-proline + NAD+ = 4-oxoproline + NADH + 2 H+
(-)-ephedrine + NAD+ = (R)-2-methylimino-1-phenylpropan-1-ol + NADH + H+
5,12-dihydroxanthommatin + NAD+ = xanthommatin + NADH + H+
succinate + NAD+ = fumarate + NADH + H+
meso-tartrate + NAD+ = dihydroxyfumarate + NADH + H+
(+)-cis-3,4-dihydrophenanthrene-3,4-diol + NAD+ = phenanthrene-3,4-diol + NADH + H+
7,8-dihydro-7,8-dihydroxykynurenate + NAD+ = 7,8-dihydroxykynurenate + NADH
melilotate + NAD+ = 2-coumarate + NADH + H+

In Transport reactions:
Na+[in] + NADH + a ubiquinone + H+ → Na+[out] + NAD+ + an ubiquinol

In Redox half-reactions:
NAD+[in] + H+[in] + 2 e-[membrane]NADH[in] ,
NAD(P)+[in] + H+[in] + 2 e-[membrane]NAD(P)H[in]

Enzymes activated by NADH, sorted by the type of activation, are:

Activator (Mechanism unknown) of: UDP-glucose 6-dehydrogenase [Schiller73] , pyruvate dehydrogenase kinase [Chen99c] , prolycopene isomerase [Isaacson04]

Enzymes inhibited by NADH, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: dihydrolipoyl dehydrogenase [Harmych02] , L-glutamate γ-semialdehyde dehydrogenase [ForteMcRobbie89] , formate dehydrogenase [Hopner82] , phosphonate dehydrogenase [Costas01] , D-galacturonate dehydrogenase [Wagner76] , NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase [Crow79] , UDP-galactose 4-epimerase [Dey84] , malonate semialdehyde dehydrogenase [Goodwin89] , UDP-glucose dehydrogenase [Stewart99a] , NAD-dependent glyceraldehyde-3-phosphate dehydrogenase [Copeland94] , glutamate dehydrogenase (NAD-dependent) [Bonete89, Comment 1] , NADH-ferredoxin oxidoreductase [Comment 2] , succinate semialdehyde dehydrogenase [Busch99] , 1L-inositol 1-phosphate synthase [Loewus84] , NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase [Brunner98] , acyl-CoA hydrolase (short chain) [Alexson88]

Inhibitor (Uncompetitive) of: L-erythro-3,5-diaminohexanoate dehydrogenase [Baker72]

Inhibitor (Noncompetitive) of: phosphate acetyltransferase [Suzuki69, CamposBermudez10, Comment 3] , 2,4-dienoyl-CoA reductase [Dommes84] , benzyl alcohol dehydrogenase [Shaw90]

Inhibitor (Allosteric) of: NAD kinase [Kawai01, Zerez87] , citrate synthase , malate dehydrogenase [Brown81, Sanwal69, Sanwal69a] , UDP-D-apiose synthase [Molhoj03] , UDP-D-xylose synthase [Molhoj03]

Inhibitor (Mechanism unknown) of: lactaldehyde dehydrogenase [Baldoma88] , glutaminase B [Prusiner76] , dihydrolipoate dehydrogenase [Scouten71] , lipoate acetyltransferase N6-(dihydrolipoyl)lysine:NAD+ oxidoreductase [SchminckeOtt81, McGarry68] , 2-dehydro-3-deoxy-D-gluconate 5-dehydrogenase [Condemine84] , 3,4-dihydroxyphenylalanine oxidative deaminase [Ranjith08] , 3-dehydroquinate synthase [Comment 4] , UDP-D-glucose/UDP-D-galactose 4-epimerase [Dormann96] , GDP-D-mannose-3'',5''-epimerase [Wolucka03] , pyruvate dehydrogenase [Camp88] , GDP-D-mannose:GDP-L-gulose epimerase [Wolucka03] , UDP-D-xylose synthase [Baron72] , UDP-D-apiose synthase [Baron72] , acyl-CoA hydrolase (medium chain) [Alexson88] , Δ1-piperideine-6-carboxylate dehydrogenase [deLa97] , ethylnitronate monooxygenase [Kido84] , 4-hydroxy-2-oxovalerate aldolase [Powlowski93]

Inhibitor (Other types) of: oxalosuccinate reductase [Aoshima08]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: isopentenyl-diphosphate:NAD(P)+ oxidoreductase , dimethylallyl-diphosphate:NAD(P)+ oxidoreductase , HMP-P synthase , 2-deoxy-scyllo-inosose synthase , tryptophan 7-halogenase , 3,5-xylenol methylhydroxylase

This compound has been characterized as an alternative substrate of the following enzymes: 5-amino-6-(5-phosphoribosylamino)uracil reductase , monodehydroascorbate reductase , 4-methyl-5-nitrocatechol monooxygenase , methylglyoxal reductase (NADPH-dependent) , riboflavin reductase , 15-cis phytoene desaturase , monodehydroascorbate reductase , dihydrofolate reductase , D-lysopine synthase , 4-hydroxy-tetrahydrodipicolinate reductase , acrylyl-CoA reductase , ADP-sugar pyrophosphorylase , carboxynorspermidine dehydrogenase


References

Alexson88: Alexson SE, Nedergaard J (1988). "A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria." J Biol Chem 263(27);13564-71. PMID: 2901416

Aoshima08: Aoshima M, Igarashi Y (2008). "Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase." J Bacteriol 190(6);2050-5. PMID: 18203822

Baker72: Baker JJ, Jeng I, Barker HA (1972). "Purification and properties of L-erythro-3,5-diaminohexanoate dehydrogenase from a lysine-fermenting Clostridium." J Biol Chem 247(23);7724-34. PMID: 4344229

Baldoma88: Baldoma L, Aguilar J (1988). "Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation." J Bacteriol 170(1);416-21. PMID: 3275622

Baron72: Baron D, Wellmann E, Grisebach H (1972). "Purification and properties of an enzyme from cell suspension cultures of parsley catalyzing the synthesis of UDP-apiose and UDP-D-xylose from UDP-D-glucuronic acid." Biochim Biophys Acta 258(1);310-8. PMID: 4333589

Bonete89: Bonete MJ, Camacho ML, Cadenas E (1989). "Kinetic mechanism of Halobacterium halobium NAD+-glutamate dehydrogenase." Biochim Biophys Acta 1989;990(2);150-5. PMID: 2917175

Brown81: Brown DA, Cook RA (1981). "Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation." Biochemistry 1981;20(9);2503-12. PMID: 7016178

Brunner98: Brunner NA, Brinkmann H, Siebers B, Hensel R (1998). "NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties." J Biol Chem 273(11);6149-56. PMID: 9497334

Busch99: Busch KB, Fromm H (1999). "Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides." Plant Physiol 121(2);589-97. PMID: 10517851

Camp88: Camp, Pamela J, Miernyk, Jan A, Randall, Douglas D (1988). "Some kinetic and regulatory properties of the pea chloroplast pyruvate dehydrogenase complex." Biochimica et Biophysica Acta, 933:269-275.

CamposBermudez10: Campos-Bermudez VA, Bologna FP, Andreo CS, Drincovich MF (2010). "Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation." FEBS J 277(8);1957-66. PMID: 20236319

Chen99c: Chen W, Komuniecki PR, Komuniecki R (1999). "Nematode pyruvate dehydrogenase kinases: role of the C-terminus in binding to the dihydrolipoyl transacetylase core of the pyruvate dehydrogenase complex." Biochem J 339 ( Pt 1);103-9. PMID: 10085233

Condemine84: Condemine G, Hugouvieux-Cotte-Pattat N, Robert-Baudouy J (1984). "An enzyme in the pectinolytic pathway of Erwinia chrysanthemi: 2-keto-3-deoxygluconate oxidoreductase." Journal of General Microbiology 130, 2839-2844.

Copeland94: Copeland L, Zammit A (1994). "Kinetic properties of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from the host fraction of soybean root nodules." Arch Biochem Biophys 312(1);107-13. PMID: 8031116

Costas01: Costas AM, White AK, Metcalf WW (2001). "Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88." J Biol Chem 276(20);17429-36. PMID: 11278981

Crow79: Crow VL, Wittenberger CL (1979). "Separation and properties of NAD+- and NADP+-dependent glyceraldehyde-3-phosphate dehydrogenases from Streptococcus mutans." J Biol Chem 254(4);1134-42. PMID: 33184

deLa97: de La Fuente JL, Rumbero A, Martin JF, Liras P (1997). "Delta-1-piperideine-6-carboxylate dehydrogenase, a new enzyme that forms alpha-aminoadipate in Streptomyces clavuligerus and other cephamycin C-producing actinomycetes." Biochem J 327 ( Pt 1);59-64. PMID: 9355735

Dey84: Dey P.M. (1984). "UDP-galactose 4-epimerase from Vicia faba seeds." Phytochemistry 23:729-732.

Dommes84: Dommes V, Kunau WH (1984). "2,4-Dienoyl coenzyme A reductases from bovine liver and Escherichia coli. Comparison of properties." J Biol Chem 1984;259(3);1781-8. PMID: 6363415

Dormann96: Dormann P, Benning C (1996). "Functional expression of uridine 5'-diphospho-glucose 4-epimerase (EC 5.1.3.2) from Arabidopsis thaliana in Saccharomyces cerevisiae and Escherichia coli." Arch Biochem Biophys 327(1);27-34. PMID: 8615692

ForteMcRobbie89: Forte-McRobbie C, Pietruszko R (1989). "Human glutamic-gamma-semialdehyde dehydrogenase. Kinetic mechanism." Biochem J 261(3);935-43. PMID: 2803253

Goodwin89: Goodwin GW, Rougraff PM, Davis EJ, Harris RA (1989). "Purification and characterization of methylmalonate-semialdehyde dehydrogenase from rat liver. Identity to malonate-semialdehyde dehydrogenase." J Biol Chem 264(25);14965-71. PMID: 2768248

Harmych02: Harmych S, Arnette R, Komuniecki R (2002). "Role of dihydrolipoyl dehydrogenase (E3) and a novel E3-binding protein in the NADH sensitivity of the pyruvate dehydrogenase complex from anaerobic mitochondria of the parasitic nematode, Ascaris suum." Mol Biochem Parasitol 125(1-2);135-46. PMID: 12467981

Hasan78: Hasan N, Nester EW (1978). "Dehydroquinate synthase in Bacillus subtilis. An enzyme associated with chorismate synthase and flavin reductase." J Biol Chem 1978;253(14);4999-5004. PMID: 97286

Hopner82: Hopner T, Ruschig U, Muller U, Willnow P (1982). "Formate dehydrogenase from Pseudomonas oxalaticus." Methods Enzymol 89 Pt D;531-7. PMID: 7144587

Isaacson04: Isaacson T, Ohad I, Beyer P, Hirschberg J (2004). "Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants." Plant Physiol 136(4);4246-55. PMID: 15557094

Kawai01: Kawai S, Mori S, Mukai T, Hashimoto W, Murata K (2001). "Molecular characterization of Escherichia coli NAD kinase." Eur J Biochem 268(15);4359-65. PMID: 11488932

Kido84: Kido T, Soda K (1984). "Oxidation of anionic nitroalkanes by flavoenzymes, and participation of superoxide anion in the catalysis." Arch Biochem Biophys 234(2);468-75. PMID: 6149727

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Loewus84: Loewus MW, Bedgar DL, Loewus FA (1984). "1L-myo-inositol 1-phosphate synthase from pollen of Lilium longiflorum. An ordered sequential mechanism." J Biol Chem 259(12);7644-7. PMID: 6736020

McGarry68: McGarry JD (1968). "A comparative study of the reversibility of the reaction catalysed by bacterial lipoamide dehydrogenase." Biochim Biophys Acta 159(1);9-18. PMID: 4384985

Molhoj03: Molhoj M, Verma R, Reiter WD (2003). "The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis." Plant J 35(6);693-703. PMID: 12969423

Petitdemange76: Petitdemange H, Cherrier C, Raval R, Gay R (1976). "Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group." Biochim Biophys Acta 1976;421(2);334-7. PMID: 3218

Petitdemange77: Petitdemange H, Cherrier C, Bengone JM, Gay R (1977). "[Study of the NADH and NADPH-ferredoxin oxidoreductase activities in Clostridium acetobutylicum]." Can J Microbiol 1977;23(2);152-60. PMID: 13922

Powlowski93: Powlowski J, Sahlman L, Shingler V (1993). "Purification and properties of the physically associated meta-cleavage pathway enzymes 4-hydroxy-2-ketovalerate aldolase and aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600." J Bacteriol 175(2);377-85. PMID: 8419288

Prusiner76: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations." J Biol Chem 1976;251(11);3463-9. PMID: 776970

Ranjith08: Ranjith, N. K., Ramana, C. V., Sasikala, C. (2008). "Purification and characterization of 3,4-dihydroxyphenylalanine oxidative deaminase from Rhodobacter sphaeroides OU5." Can. J. of Microbiol. 54: 829-834.

Sanwal69: Sanwal BD, Smando R (1969). "Malic enzyme of Escherichia coli. Diversity of the effectors controlling enzyme activity." J Biol Chem 1969;244(7);1817-23. PMID: 4388614

Sanwal69a: Sanwal BD, Smando R (1969). "Malic enzyme of Escherichia coli. Possible mechanism for allosteric effects." J Biol Chem 1969;244(7);1824-30. PMID: 4388615

Schiller73: Schiller JG, Bowser AM, Feingold DS (1973). "Partial purification and properties of UDPG dehydrogenase from Escherichia coli." Biochim Biophys Acta 293(1);1-10. PMID: 4568129

SchminckeOtt81: Schmincke-Ott E, Bisswanger H (1981). "Dihydrolipoamide dehydrogenase component of the pyruvate dehydrogenase complex from Escherichia coli K12. Comparative characterization of the free and the complex-bound component." Eur J Biochem 114(2);413-20. PMID: 7011812

Scouten71: Scouten WH, McManus IR (1971). "Microbial lipoamide dehydrogenase. Purification and some characteristics of the enzyme derived from selected microorganisms." Biochim Biophys Acta 227(2);248-63. PMID: 4323856

Shaw90: Shaw JP, Harayama S (1990). "Purification and characterisation of TOL plasmid-encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putida." Eur J Biochem 191(3);705-14. PMID: 2202600

Stewart99a: Stewart D.C., Copeland L. "Kinetic properties of UDP-glucose dehydrogenase from soybean nodules." Plant Science (1999) 147:119-125.

Suzuki69: Suzuki T (1969). "Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides." Biochim Biophys Acta 1969;191(3);559-69. PMID: 4312205

Wagner76: Wagner G, Hollmann S (1976). "Uronic acid dehydrogenase from Pseudomonas syringae. Purification and properties." Eur J Biochem 61(2);589-96. PMID: 2471

Wolucka03: Wolucka BA, Van Montagu M (2003). "GDP-mannose 3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants." J Biol Chem 278(48);47483-90. PMID: 12954627

Zerez87: Zerez CR, Moul DE, Gomez EG, Lopez VM, Andreoli AJ (1987). "Negative modulation of Escherichia coli NAD kinase by NADPH and NADH." J Bacteriol 1987;169(1);184-8. PMID: 3025169


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Sat Jul 4, 2015, BIOCYC13B.