twitter

MetaCyc Compound: NADP+

Synonyms: coenzyme II, triphosphopyridine nucleotide, nicotinamide adenine dinucleotide phosphate, NADP-oxidized, NADP-ox, TPN, TPN+, TPN-ox, nicotinamide adenine dinucleotide-P, NADP(+), NADP, β-NADP+

Superclasses: a nucleic acid component a nucleotide a dinucleotide a dinucleotide electron carrier NAD(P)+
a nucleic acid component a nucleotide a dinucleotide electron carrier NAD(P)+
a nucleic acid component an oligonucleotide a dinucleotide a dinucleotide electron carrier NAD(P)+
a redox electron carrier NAD(P)+

Summary:
NAD+ and NADP+ are dinucleotides containing one nicotinamide base and one adenine base. Each nucleotide is connected to a ribose sugar at position 1, and the two riboses are connected at their 5 position via a diphosphate. The only difference between the two is that in NADP there is an additional phosphate group at the 2' position of the ribose that carries the adenine moiety.

These molecules are biological carriers of reductive equivalents (i.e. high potential electrons). They are often referred to as coenzymes, although in most of their reactions they function as cosubstrates rather than true coenzymes.

The most common function of NAD+ is to accept two electrons and a proton (a hydride ion) from a substrate that is being oxidized. This reduction converts NAD+ to NADH, the reduced form. NADH then diffuses or is being transported to a terminal oxidase, where the electrons are passed on, regenerating the oxidized form.

NADPH, on the other hand, is mostly involved in biosynthetic reactions, where it serves as an electron donor. NADPH is formed by reduction of NADP+, which occurs by different mechanisms in different types of organisms. In photosynthetic organisms NADP+ is reduced by photosystem I. In heterotrophic organisms it is reduced by central metabolism processes such as the pentose phosphate pathway (see pentose phosphate pathway (oxidative branch)).

Chemical Formula: C21H25N7O17P3

Molecular Weight: 740.39 Daltons

Monoisotopic Molecular Weight: 744.083277073 Daltons

NADP<sup>+</sup> compound structure

SMILES: C5([N+](C1(OC(C(C1O)O)COP(OP(OCC4(C(C(C(N3(C2(=C(C(=NC=N2)N)N=C3)))O4)OP([O-])([O-])=O)O))([O-])=O)(=O)[O-]))=CC(=CC=5)C(=O)N)

InChI: InChI=1S/C21H28N7O17P3/c22-17-12-19(25-7-24-17)28(8-26-12)21-16(44-46(33,34)35)14(30)11(43-21)6-41-48(38,39)45-47(36,37)40-5-10-13(29)15(31)20(42-10)27-3-1-2-9(4-27)18(23)32/h1-4,7-8,10-11,13-16,20-21,29-31H,5-6H2,(H7-,22,23,24,25,32,33,34,35,36,37,38,39)/p-3/t10-,11-,13-,14-,15-,16-,20-,21-/m1/s1

InChIKey: InChIKey=XJLXINKUBYWONI-NNYOXOHSSA-K

Unification Links: CAS:53-59-8 , ChEBI:58349 , ChemSpider:10239198 , HMDB:HMDB00217 , IAF1260:33488 , KEGG:C00006 , MetaboLights:MTBLC58349 , PubChem:15938972

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -563.64954 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(4R)-carvone biosynthesis :
(-)-trans-carveol + NADP+R-(-)-carvone + NADPH + H+

11-cis-3-hydroxyretinal biosynthesis :
a (3S)-11-cis-3-hydroxyretinol-[retinoid-binding protein] + NADP+ → a (3S)-11-cis-3-hydroxyretinal-[retinoid-binding protein] + NADPH + H+

2,3-dihydroxypropane-1-sulfonate degradation :
(S)-2,3-dihydroxypropane 1-sulfonate + NADP+ → 2-oxo-3-hydroxy-propane-1-sulfonate + NADPH + H+

3,6-anhydro-α-L-galactopyranose degradation :
3,6-anhydro-α-L-galactofuranose + NADP+ + H2O → 3,6-anhydro-α-L-galactonate + NADPH + 2 H+

3-amino-4,7-dihydroxy-coumarin biosynthesis :
(R)-β-hydroxy-L-tyrosine-S-[NovH protein] + NADP+ → β-oxo-L-tyrosine-S-[NovH protein] + NADPH + H+

4-aminobutyrate degradation II , 4-hydroxyphenylacetate degradation , nicotine degradation I , TCA cycle IV (2-oxoglutarate decarboxylase) :
succinate semialdehyde + NADP+ + H2O → succinate + NADPH + 2 H+

4-hydroxymandelate degradation :
4-hydroxybenzaldehyde + NADP+ + H2O → 4-hydroxybenzoate + NADPH + 2 H+

7-dehydroporiferasterol biosynthesis :
poriferst-7-enol + NADP+ → porifersta-5,7-dienol + NADPH + H+
porifersta-5,7-dienol + NADP+ → 7-dehydroporiferasterol + NADPH + H+

benzoate biosynthesis I (CoA-dependent, β-oxidative) , benzoyl-CoA biosynthesis :
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ → 3-oxo-3-phenylpropanoyl-CoA + NADPH + H+

benzoyl-CoA degradation I (aerobic) :
3,4-dehydroadipyl-CoA semialdehyde + NADP+ + H2O → cis-3,4-dehydroadipyl-CoA + NADPH + 2 H+

brassinosteroid biosynthesis I :
6α-hydroxy-castasterone + NADP+ → castasterone + NADPH + H+
3-dehydro-6-hydroxyteasterone + NADP+ → 3-dehydroteasterone + NADPH + H+
6-hydroxyteasterone + NADP+ → teasterone + NADPH + H+
6-hydroxytyphasterol + NADP+ → typhasterol + NADPH + H+

C4 photosynthetic carbon assimilation cycle, NADP-ME type , C4 photosynthetic carbon assimilation cycle, PEPCK type , gluconeogenesis I :
(S)-malate + NADP+ → CO2 + pyruvate + NADPH

camalexin biosynthesis :
indole-3-acetonitrile-cysteine conjugate + NADP+ → dihydrocamalexate + hydrogen cyanide + NADPH + 2 H+

chlorophyllide a biosynthesis II (anaerobic) :
magnesium-protoporphyrin IX 13-monomethyl ester + NADP+ + H2O → 131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + NADPH + H+
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + NADP+ → 2,4-divinyl protochlorophyllide a + NADPH + 2 H+
131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + NADP+ → 131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + NADPH + H+

costunolide biosynthesis :
germacra-1(10),4,11(13)-trien-12-ol + NADP+ → germacra-1(10),4,11(13)-trien-12-al + NADPH + H+
germacra-1(10),4,11(13)-trien-12-al + NADP+ + H2O → germacra-1(10),4,11(13)-trien-12-oate + NADPH + 2 H+

cutin biosynthesis :
16-oxo-palmitate + NADP+ + H2O → hexadecanedioate + NADPH + 2 H+
16-hydroxypalmitate + NADP+ → 16-oxo-palmitate + NADPH + H+
18-hydroxyoleate + NADP+ → 18-oxo-oleate + NADPH + H+

Reactions known to produce the compound:

(+)-camphor degradation , (-)-camphor degradation :
[(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA + NADPH + H+ + oxygen → [(2R)-3,3,4-trimethyl-6-oxo-3,6-dihydro-1H-pyran-2-yl]acetyl-CoA + NADP+ + H2O

(1'S,5'S)-averufin biosynthesis :
(1'S)-averantin + NADPH + H+ + oxygen → (1'S,5'S)-hydroxyaverantin + NADP+ + H2O
(1'S)-averantin + NADPH + H+ + oxygen → (1'S,5'R)-hydroxyaverantin + NADP+ + H2O

(3E)-4,8-dimethylnona-1,3,7-triene biosynthesis :
(3R,6E)-nerolidol + NADPH + H+ + oxygen → (3E)-4,8-dimethylnona-1,3,7-triene + but-1-en-3-one + NADP+ + 2 H2O
(3S,6E)-nerolidol + NADPH + H+ + oxygen → (3E)-4,8-dimethylnona-1,3,7-triene + but-1-en-3-one + NADP+ + 2 H2O

(4R)-carveol and (4R)-dihydrocarveol degradation :
(+)-dihydrocarvone + NADPH + H+ + oxygen → (4R,7R)-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(+)-isodihydrocarvone + NADPH + oxygen + H+ → (3S,6R)-6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O

(4R)-carvone biosynthesis :
(4S)-limonene + NADPH + oxygen + H+ → (-)-trans-carveol + NADP+ + H2O

(4S)-carveol and (4S)-dihydrocarveol degradation :
(-)-isodihydrocarvone + NADPH + H+ + oxygen → (4S,7R)-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O
(-)-dihydrocarvone + NADPH + oxygen + H+ → (3S,6S)-6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O

(4S)-carvone biosynthesis :
(4R)-limonene + NADPH + H+ + oxygen → (+)-trans-carveol + NADP+ + H2O

(E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene biosynthesis :
(E,E)-geranyllinalool + NADPH + H+ + oxygen → 4,8,12-trimethyl-1,3,7,11-tridecatetraene + but-1-en-3-one + NADP+ + 2 H2O

(R)- and (S)-3-hydroxybutyrate biosynthesis , acetyl-CoA fermentation to butyrate II , ethylmalonyl pathway , polyhydroxybutyrate biosynthesis :
(R)-3-hydroxybutanoyl-CoA + NADP+ ← acetoacetyl-CoA + NADPH + H+

(R)-canadine biosynthesis :
berberine + NADPH → 7,8-dihydroberberine + NADP+
7,8-dihydroberberine + NADPH + H+ → (R)-canadine + NADP+

(S)-reticuline biosynthesis I :
(S)-N-methylcoclaurine + NADPH + oxygen + H+ → 3'-hydroxy-N-methyl-(S)-coclaurine + NADP+ + H2O

(Z)-9-tricosene biosynthesis :
(15Z)-tetracos-15-enal + NADPH + oxygen + H+ → (Z)-9-tricosene + CO2 + NADP+ + H2O

1,2-propanediol biosynthesis from lactate (engineered) :
(S)-propane-1,2-diol + NADP+ ← (S)-lactaldehyde + NADPH + H+
(R)-propane-1,2-diol + NADP+ ← (R)-lactaldehyde + NADPH + H+

1,3-propanediol biosynthesis (engineered) :
1,3-propanediol + NADP+ ← 3-hydroxypropionaldehyde + NADPH + H+

1,8-cineole degradation :
6-oxocineole + NADPH + oxygen + H+ → 1,6,6-trimethyl-2,7-dioxobicyclo-(3,2,2)nonan-3-one + NADP+ + H2O

10-cis-heptadecenoyl-CoA degradation (yeast) :
2-trans, 4-cis-undecadienoyl-CoA + NADPH + H+ → 3-trans-undecenoyl-CoA + NADP+

10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) :
2-trans, 4-trans-undecadienoyl-CoA + NADPH + H+ → 3-trans-undecenoyl-CoA + NADP+

11-cis-3-hydroxyretinal biosynthesis :
a (3R)-all-trans-3-hydroxyretinol-[retinoid-binding protein] + NADP+ ← a (3R)-all-trans-3-hydroxyretinal-[retinoid-binding protein] + NADPH + H+

2,3-cis-flavanols biosynthesis :
epiafzelechin + 2 NADP+ ← pelargonidin + 2 NADPH + 3 H+

Reactions known to both consume and produce the compound:

(1'S,5'S)-averufin biosynthesis :
(1'S)-averantin + NADP+ ↔ norsolorinate + NADPH + H+

3-hydroxypropanoate cycle , 3-hydroxypropanoate/4-hydroxybutanate cycle , glyoxylate assimilation :
3-oxopropanoate + coenzyme A + NADP+ ↔ malonyl-CoA + NADPH + H+

4-amino-2-methyl-5-phosphomethylpyrimidine biosynthesis (yeast) , pyridoxal 5'-phosphate salvage II (plants) :
pyridoxine + NADP+ ↔ pyridoxal + NADPH + H+

acetone degradation I (to methylglyoxal) :
acetol + NADP+ ↔ methylglyoxal + NADPH + H+
isopropanol + NADP+ ↔ acetone + NADPH + H+

acetone degradation II (to acetoacetate) , acetone degradation III (to propane-1,2-diol) , isopropanol biosynthesis :
isopropanol + NADP+ ↔ acetone + NADPH + H+

acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase) :
pyruvate + coenzyme A + NADP+ ↔ acetyl-CoA + CO2 + NADPH

ajmaline and sarpagine biosynthesis :
geissoschizine + NADP+ ↔ 4,21-dehydrogeissoschizine + NADPH

carbon tetrachloride degradation II :
formate + NADP+ ↔ CO2 + NADPH

cholesterol biosynthesis I , cholesterol biosynthesis II (via 24,25-dihydrolanosterol) , ecdysone and 20-hydroxyecdysone biosynthesis :
cholesterol + NADP+ ↔ 7-dehydrocholesterol + NADPH + H+

chorismate biosynthesis from 3-dehydroquinate :
shikimate + NADP+ ↔ 3-dehydroshikimate + NADPH + H+

cinchona alkaloids biosynthesis :
quinine + quinidine + 2 NADP+ ↔ 2 quinidinone + 2 NADPH + 4 H+
cinchonidine + cinchonine + 2 NADP+ ↔ 2 cinchoninone + 2 NADPH + 4 H+

clavulanate biosynthesis :
clavaldehyde + NADPH + H+ ↔ clavulanate + NADP+

cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation) :
precorrin-6B + NADP+ ↔ precorrin-6A + NADPH + H+

cocaine biosynthesis :
ecgonine methyl ester + NADP+ ↔ methyl ecgonone + NADPH + 2 H+

D-galacturonate degradation III , L-ascorbate biosynthesis V :
aldehydo-L-galactonate + NADP+aldehydo-D-galacturonate + NADPH + H+

D-glucuronate degradation I :
xylitol + NADP+ ↔ L-xylulose + NADPH + H+

detoxification of reactive carbonyls in chloroplasts , methylglyoxal degradation III :
acetol + NADP+ ↔ methylglyoxal + NADPH + H+

ectoine biosynthesis , grixazone biosynthesis , L-homoserine biosynthesis , L-lysine biosynthesis I , L-lysine biosynthesis II , L-lysine biosynthesis VI , norspermidine biosynthesis , spermidine biosynthesis II :
L-aspartate-semialdehyde + NADP+ + phosphate ↔ L-aspartyl-4-phosphate + NADPH + H+

ethylene biosynthesis V (engineered) , L-glutamine biosynthesis III , methylaspartate cycle , mixed acid fermentation , NAD/NADP-NADH/NADPH cytosolic interconversion (yeast) , reductive TCA cycle I , TCA cycle I (prokaryotic) , TCA cycle IV (2-oxoglutarate decarboxylase) , TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase) , TCA cycle VII (acetate-producers) , TCA cycle VIII (helicobacter) :
D-threo-isocitrate + NADP+ ↔ 2-oxoglutarate + CO2 + NADPH

ethylmalonyl pathway :
(S)-ethylmalonyl-CoA + NADP+ ↔ crotonyl-CoA + CO2 + NADPH

farnesylcysteine salvage pathway , juvenile hormone III biosynthesis I , juvenile hormone III biosynthesis II :
(2E,6E)-farnesol + NADP+ ↔ (2E,6E)-farnesal + NADPH + H+

folate transformations I , folate transformations II , formate reduction to 5,10-methylenetetrahydrofolate , N10-formyl-tetrahydrofolate biosynthesis , purine nucleobases degradation II (anaerobic) :
a 5,10-methylene-tetrahydrofolate + NADP+ ↔ a 5,10-methenyltetrahydrofolate + NADPH

galactose degradation IV :
L-xylo-3-hexulose + NADPH + H+ ↔ D-sorbitol + NADP+

In Reactions of unknown directionality:

CDP-abequose biosynthesis :
CDP-α-D-abequose + NADP+ = CDP-4-dehydro-3,6-dideoxy-D-glucose + NADPH + H+

chrysophanol biosynthesis :
emodin + NADPH + 2 H+ = chrysophanol + NADP+ + H2O

fatty acids biosynthesis (yeast) :
acetyl-CoA + n malonyl-CoA + 2n NADPH + 4n H+ = a long-chain acyl-CoA + n CO2 + n coenzyme A + 2n NADP+

plumbagin biosynthesis :
acetyl-CoA + 5 malonyl-CoA + 2 NADPH + 6 H+ + oxygen = hexaketide pyrone + 5 CO2 + 6 coenzyme A + 2 NADP+ + 3 H2O

poly-hydroxy fatty acids biosynthesis :
oleate + NADPH + oxygen + H+ = 9,10-epoxystearate + NADP+ + H2O

Not in pathways:
hydrogen peroxide + NADPH + H+ = NADP+ + 2 H2O
S-glutathionyl-L-cysteine + NADPH + H+ = L-cysteine + glutathione + NADP+
GDP-4-dehydro-6-L-deoxygalactose + NADPH + H+ = GDP-L-fucose + NADP+
an oxidized nitroaromatic compound + NADPH = a reduced nitroaromatic compound + NADP+
3'-phosphoadenylyl-sulfate + NADPH = adenosine 3',5'-bisphosphate + sulfite + NADP+ + H+
sinapoyl-CoA + NADPH + H+ = sinapaldehyde + coenzyme A + NADP+
coniferyl alcohol + NADPH + H+ + oxygen = 5-hydroxy-coniferyl-alcohol + NADP+ + H2O
an acyl-CoA + n (R)-methylmalonyl-CoA + 2n NADPH + 2n H+ = a multi-methyl-branched acyl-CoA + n CO2 + n coenzyme A + 2n NADP+
acetol + NADPH + oxygen = acetate + formaldehyde + NADP+ + H2O
cyclohexane + NADPH + H+ + oxygen = cyclohexanol + NADP+ + H2O
geranylgeranyl-bacteriopheophytin + NADPH + H+ = dihydrogeranylgeranyl-bacteriopheophytin + NADP+
dihydrogeranylgeranyl-bacteriopheophytin + NADPH + H+ = tetrahydrogeranylgeranyl-bacteriopheophytin + NADP+
tetrahydrogeranylgeranyl-bacteriopheophytin + NADPH + H+ = bacteriopheophytin a + NADP+
O-methylandrocymbine + NADPH = demecolcine + NADP+
UDP-4-keto-rhamnose + NADPH + H+ = UDP-β-L-rhamnose + NADP+
6-methylthiohexanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-6-methylthiohexylhydroximoyl-L-cysteine + NADP+ + 2 H2O
9-methylthiononanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-9-methylthiononylhydroximoyl-L-cysteine + NADP+ + 2 H2O
7-methylthioheptanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-7-methylthioheptylhydroximoyl-L-cysteine + NADP+ + 2 H2O
8-methylthiooctanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-8-methylthiooctylhydroximoyl-L-cysteine + NADP+ + 2 H2O
5-methylthiopentanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-5-methylthiopentylhydroximoyl-L-cysteine + NADP+ + 2 H2O

In Redox half-reactions:
NADP+[in] + H+[in] + 2 e-[membrane] → NADPH[in] ,
NAD(P)+[in] + H+[in] + 2 e-[membrane] → NAD(P)H[in]

Enzymes activated by NADP+, sorted by the type of activation, are:

Activator (Mechanism unknown) of: GDP-D-mannose-5''-epimerase [Watanabe06] , GDP-D-mannose-3'',5''-epimerase [Wolucka03]

Enzymes inhibited by NADP+, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: 2-dehydropantoate 2-reductase [Zheng00, Comment 1] , GDP-fucose synthase [Menon99] , 4-hydroxy-tetrahydrodipicolinate reductase [Reddy95] , pyrroline-5-carboxylate reductase [Rossi77a] , 6-phosphogluconate dehydrogenase [Westwood74, Comment 2] , flavin reductase [Eschenbrenner95] , sulfite reductase [Siegel74, Comment 3] , glutamate-5-semialdehyde dehydrogenase [Hayzer83, Comment 4] , FMN reductase [Fieschi95, Comment 5] , 1-piperideine 6-carboxylate reductase [Merrill89] , glyceollin synthase [Welle88] , glyceollin synthase [Welle88] , sulfite reductase [Comment 6] , glyceollin synthase [Welle88] , pterocarpan synthase [Fischer90] , pyrroline-5-carboxylate reductase [Merrill89] , glutamate dehydrogenase (NADP-dependent) [Comment 7] , NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase [Hensel87, Brunner98] , chalcone 3-hydroxylase [Wimmer98] , deoxysarpagine hydroxylase [Yu02] , L-xylulose reductase [Witteveen94]

Inhibitor (Uncompetitive) of: D-octopine synthase [Hack80]

Inhibitor (Noncompetitive) of: FMN reductase [Fieschi95, Comment 8] , glutamate dehydrogenase (NAD-dependent) [Bonete96, Comment 9] , vellosimine reductase [Pfitzner84]

Inhibitor (Allosteric) of: methylglyoxal oxidase [Rhee87]

Inhibitor (Mechanism unknown) of: 2,3-dihydroxy-isovalerate:NADP+ oxidoreductase (isomerizing) [Chunduru89] , malate dehydrogenase [Sanwal69, Sanwal69a, Brown81] , glutaminase B [Prusiner76a] , isocitrate dehydrogenase kinase [Nimmo84] , UDP-L-rhamnose synthase [Martinez12] , phosphotransbutyrylase [Comment 10] , NAD-dependent formate dehydrogenase [Jollie91] , 4-hydroxy-tetrahydrodipicolinate reductase [Tyagi83] , glutamate synthase [Schreier84]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: GDP-mannose 4,6-dehydratase , ADP-L-glycero-D-mannoheptose-6-epimerase , UDP-N-acetylglucosamine 4,6-dehydratase , geraniol dehydrogenase , geraniol dehydrogenase , trimethylamine monooxygenase , meso-diaminopimelate dehydrogenase , methanol:N,N-dimethyl-4-nitrosoaniline oxidoreductase , UDP-N-acetylglucosamine 4,6-dehydratase , germacra-1(10),4,11(13)-trien-12-ol dehydrogenase , NADPH:germacrene acid oxidoreductase , glucose-fructose oxidoreductase , GDP-D-mannose dehydratase , GDP-D-mannose:GDP-L-gulose epimerase , betaine aldehyde dehydrogenase , malonate semialdehyde dehydrogenase

This compound has been characterized as an alternative substrate of the following enzymes: 2-amino-2-deoxy-D-mannitol dehydrogenase , phosphoenolpyruvate phosphatase , 4-hydroxy-L-threonine phosphate dehydrogenase, NAD-dependent , succinate semialdehyde dehydrogenase, NAD+-dependent


References

Bonete90: Bonete MJ, Camacho ML, Cadenas E (1990). "Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase." Biochim Biophys Acta 1990;1041(3);305-10. PMID: 1980084

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Brown81: Brown DA, Cook RA (1981). "Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation." Biochemistry 1981;20(9);2503-12. PMID: 7016178

Brunner98: Brunner NA, Brinkmann H, Siebers B, Hensel R (1998). "NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties." J Biol Chem 273(11);6149-56. PMID: 9497334

Chunduru89: Chunduru SK, Mrachko GT, Calvo KC (1989). "Mechanism of ketol acid reductoisomerase--steady-state analysis and metal ion requirement." Biochemistry 28(2);486-93. PMID: 2653423

Eschenbrenner95: Eschenbrenner M, Coves J, Fontecave M (1995). "The flavin reductase activity of the flavoprotein component of sulfite reductase from Escherichia coli. A new model for the protein structure." J Biol Chem 1995;270(35);20550-5. PMID: 7657631

Fieschi95: Fieschi F, Niviere V, Frier C, Decout JL, Fontecave M (1995). "The mechanism and substrate specificity of the NADPH:flavin oxidoreductase from Escherichia coli." J Biol Chem 1995;270(51);30392-400. PMID: 8530465

Fischer90: Fischer D, Ebenau-Jehle C, Grisebach H, (1990) "Purification and characterization of pterocarpan synthase from elicitor-challenged soybean cell cultures." Phytochemistry (1990), 29(9), 2879-2882.

Hack80: Hack E, Kemp JD (1980). "Purification and Characterization of the Crown Gall-specific Enzyme, Octopine Synthase." Plant Physiol 65(5);949-55. PMID: 16661312

Hayzer83: Hayzer DJ, Leisinger T (1983). "Proline biosynthesis in Escherichia coli. Kinetic and mechanistic properties of glutamate semialdehyde dehydrogenase." Biochim Biophys Acta 742(2);391-8. PMID: 6337636

Hensel87: Hensel R, Laumann S, Lang J, Heumann H, Lottspeich F (1987). "Characterization of two D-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax." Eur J Biochem 170(1-2);325-33. PMID: 3121324

Jollie91: Jollie DR, Lipscomb JD (1991). "Formate dehydrogenase from Methylosinus trichosporium OB3b. Purification and spectroscopic characterization of the cofactors." J Biol Chem 266(32);21853-63. PMID: 1657982

Kobayashi82: Kobayashi K, Yoshimoto A (1982). "Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics." Biochim Biophys Acta 1982;705(3);348-56. PMID: 6751400

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Martinez12: Martinez V, Ingwers M, Smith J, Glushka J, Yang T, Bar-Peled M (2012). "Biosynthesis of UDP-4-keto-6-deoxyglucose and UDP-rhamnose in pathogenic fungi Magnaporthe grisea and Botryotinia fuckeliana." J Biol Chem 287(2);879-92. PMID: 22102281

Menon99: Menon S, Stahl M, Kumar R, Xu GY, Sullivan F (1999). "Stereochemical course and steady state mechanism of the reaction catalyzed by the GDP-fucose synthetase from Escherichia coli." J Biol Chem 274(38);26743-50. PMID: 10480878

Merrill89: Merrill MJ, Yeh GC, Phang JM (1989). "Purified human erythrocyte pyrroline-5-carboxylate reductase. Preferential oxidation of NADPH." J Biol Chem 264(16);9352-8. PMID: 2722838

Nimmo84: Nimmo GA, Nimmo HG (1984). "The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase." Eur J Biochem 1984;141(2);409-14. PMID: 6329757

Pfitzner84: Pfitzner, Artur, Krausch, Brigitte, Stockigt, Joachim (1984). "Characterization of vellosimine reductase, a specific enzyme involved in the biosynthesis of the Rauvolfia alkaloid sarpagine." Tetrahetron, 40(10):1691-1699.

Prusiner76a: Prusiner S, Stadtman ER (1976). "Regulation of glutaminase B in Escherichia coli. III. Control by nucleotides and divalent cations." J Biol Chem 1976;251(11);3463-9. PMID: 776970

Reddy95: Reddy SG, Sacchettini JC, Blanchard JS (1995). "Expression, purification, and characterization of Escherichia coli dihydrodipicolinate reductase." Biochemistry 34(11);3492-501. PMID: 7893644

Rhee87: Rhee, H.I., Watanabe, K., Murata, K., Kimura, A. (1987). "Metabolism of 2-oxoaldehyde in bacteria: oxidative conversion of methylglyoxal to pyruvate by an enzyme from Pseudomonas putida." Agric. Biol. Chem. 51: 1059-1066.

Rossi77a: Rossi JJ, Vender J, Berg CM, Coleman WH (1977). "Partial purification and some properties of delta1-pyrroline-5-carboxylate reductase from Escherichia coli." J Bacteriol 1977;129(1);108-14. PMID: 12133

Sanwal69: Sanwal BD, Smando R (1969). "Malic enzyme of Escherichia coli. Diversity of the effectors controlling enzyme activity." J Biol Chem 1969;244(7);1817-23. PMID: 4388614

Sanwal69a: Sanwal BD, Smando R (1969). "Malic enzyme of Escherichia coli. Possible mechanism for allosteric effects." J Biol Chem 1969;244(7);1824-30. PMID: 4388615

Schreier84: Schreier HJ, Bernlohr RW (1984). "Purification and properties of glutamate synthase from Bacillus licheniformis." J Bacteriol 160(2);591-9. PMID: 6501215

Siegel74: Siegel LM, Davis PS, Kamin H (1974). "Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. 3. The Escherichia coli hemoflavoprotein: catalytic parameters and the sequence of electron flow." J Biol Chem 1974;249(5);1572-86. PMID: 4150390

Tyagi83: Tyagi, Vijai, Henke, Randolph, Karkas, Walter (1983). "Partial purification and characterization of dihydrodipicolinate reductase from maize." Plant Physiology, 73:687-691.

Watanabe06: Watanabe K, Suzuki K, Kitamura S (2006). "Characterization of a GDP-d-mannose 3'',5''-epimerase from rice." Phytochemistry 67(4);338-46. PMID: 16413588

Welle88: Welle R, Grisebach H, (1988) "Induction of phytoalexin synthesis in soybean: enzymatic cyclization of prenylated pterocarpans to glyceollin isomers." Arch Biochem Biosphys (1988), 263(1), 191-198.

Westwood74: Westwood AW, Doelle HW "Glucose-6-phosphate and 6-phosphogluconate dehydrogenases and their control mechanisms in Escherichia coli K-12." Microbios 1974;9:143-165.

Wiesenborn89: Wiesenborn DP, Rudolph FB, Papoutsakis ET (1989). "Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis." Appl Environ Microbiol 1989;55(2);317-22. PMID: 2719475

Wimmer98: Wimmer G, Halbwirth H, Wurst F, Forkmann G, Stich K (1998). "Enzymatic hydroxylation of 6'-deoxychalcones with protein preparations from petals of Dahlia variabilis." Phytochemistry, 47(6), 1013-1016.

Witteveen94: Witteveen C. F. B., Weber F., Busink R., Visser J. (1994). "Isolation and characterization of two xylitol dehydrogenases from Aspergillus niger." Microbiology 140, 1679-1685.

Wolucka03: Wolucka BA, Van Montagu M (2003). "GDP-mannose 3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants." J Biol Chem 278(48);47483-90. PMID: 12954627

Yu02: Yu B, Ruppert M, Stockigt J (2002). "Deoxysarpagine hydroxylase--a novel enzyme closing a short side pathway of alkaloid biosynthesis in Rauvolfia." Bioorg Med Chem 10(8);2479-83. PMID: 12057637

Zheng00: Zheng R, Blanchard JS (2000). "Kinetic and mechanistic analysis of the E. coli panE-encoded ketopantoate reductase." Biochemistry 2000;39(13);3708-17. PMID: 10736170


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Mon May 25, 2015, BIOCYC13A.