Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites MAYBE down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites MAYBE down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites MAYBE down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites MAYBE down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites MAYBE down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Compound: oxygen

Systematic Name: O2

Abbrev Name: O2

Synonyms: oxygen molecule

Superclasses: a non-metabolic compound

Chemical Formula: O2

Molecular Weight: 31.999 Daltons

Monoisotopic Molecular Weight: 31.9898292442 Daltons

SMILES: O=O

InChI: InChI=1S/O2/c1-2

InChIKey: InChIKey=MYMOFIZGZYHOMD-UHFFFAOYSA-N

Unification Links: CAS:7782-44-7 , ChEBI:15379 , ChemSpider:952 , HMDB:HMDB01377 , IAF1260:33493 , KEGG:C00007 , MetaboLights:MTBLC15379 , PubChem:977

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 3.92 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(+)-camphor degradation :
(+)-bornane-2,5-dione + NADH + H+ + oxygen → (+)-5-oxo-1,2-campholide + NAD+ + H2O
[(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA + NADPH + H+ + oxygen → [(2R)-3,3,4-trimethyl-6-oxo-3,6-dihydro-1H-pyran-2-yl]acetyl-CoA + NADP+ + H2O
(+)-camphor + a reduced putidaredoxin + oxygen → (+)-5-exo-hydroxycamphor + an oxidized putidaredoxin + H2O

(-)-camphor degradation :
[(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA + NADPH + H+ + oxygen → [(2R)-3,3,4-trimethyl-6-oxo-3,6-dihydro-1H-pyran-2-yl]acetyl-CoA + NADP+ + H2O
(-)-camphor + a reduced putidaredoxin + oxygen → (-)-3-exo-hydroxycamphor + an oxidized putidaredoxin + H2O
3,6-diketocamphane + NADH + H+ + oxygen → (-)-5-oxo-1,2-campholide + NAD+ + H2O

(1'S,5'S)-averufin biosynthesis :
(1'S)-averantin + NADPH + H+ + oxygen → (1'S,5'R)-hydroxyaverantin + NADP+ + H2O
(1'S)-averantin + NADPH + H+ + oxygen → (1'S,5'S)-hydroxyaverantin + NADP+ + H2O
norsolorinate anthrone + oxygen → norsolorinate + H2O

(3E)-4,8-dimethylnona-1,3,7-triene biosynthesis :
(3S,6E)-nerolidol + NADPH + H+ + oxygen → (3E)-4,8-dimethylnona-1,3,7-triene + but-1-en-3-one + NADP+ + 2 H2O
(3R,6E)-nerolidol + NADPH + H+ + oxygen → (3E)-4,8-dimethylnona-1,3,7-triene + but-1-en-3-one + NADP+ + 2 H2O

(4R)-carveol and (4R)-dihydrocarveol degradation :
(+)-isodihydrocarvone + NADPH + oxygen + H+ → (3S,6R)-6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O
(+)-dihydrocarvone + NADPH + H+ + oxygen → (4R,7R)-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O

(4R)-carvone biosynthesis :
(4S)-limonene + NADPH + oxygen + H+ → (-)-trans-carveol + NADP+ + H2O

(4S)-carveol and (4S)-dihydrocarveol degradation :
(-)-dihydrocarvone + NADPH + oxygen + H+ → (3S,6S)-6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O
(-)-isodihydrocarvone + NADPH + H+ + oxygen → (4S,7R)-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O

(4S)-carvone biosynthesis :
(4R)-limonene + NADPH + H+ + oxygen → (+)-trans-carveol + NADP+ + H2O

(5R)-carbapenem carboxylate biosynthesis :
(3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + oxygen → (5R)-carbapen-2-em-3-carboxylate + succinate + CO2 + H2O

(E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene biosynthesis :
(E,E)-geranyllinalool + NADPH + H+ + oxygen → 4,8,12-trimethyl-1,3,7,11-tridecatetraene + but-1-en-3-one + NADP+ + 2 H2O

(S)-reticuline biosynthesis I :
(S)-N-methylcoclaurine + NADPH + oxygen + H+ → 3'-hydroxy-N-methyl-(S)-coclaurine + NADP+ + H2O
L-tyrosine + 0.5 oxygen → L-dopa

(S)-reticuline biosynthesis II :
L-tyrosine + 0.5 oxygen → L-dopa

(Z)-9-tricosene biosynthesis :
(15Z)-tetracos-15-enal + NADPH + oxygen + H+ → (Z)-9-tricosene + CO2 + NADP+ + H2O

1,2,4,5-tetrachlorobenzene degradation :
1,2,4,5-tetrachlorobenzene + NADH + oxygen + H+ → 1,3,4,6-tetrachloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+

1,2,4-trichlorobenzene degradation :
1,2,4-trichlorobenzene + NADH + oxygen + H+ → 3,4,6-trichloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+

1,2-dichlorobenzene degradation :
1,2-dichlorobenzene + NADH + oxygen + H+ → 1,2-dichlorobenzene dihydrodiol + NAD+

1,3-dichlorobenzene degradation :
1,3-dichlorobenzene + NADH + oxygen + H+ → 3,5-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+

1,4-dichlorobenzene degradation :
1,4-dichlorobenzene + NADH + oxygen + H+ → 3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+

1,5-anhydrofructose degradation :
1,5-anhydro-D-mannitol + a reduced flavoprotein + oxygen → D-mannose + an oxidized flavoprotein + H2O

1,8-cineole degradation :
6-oxocineole + NADPH + oxygen + H+ → 1,6,6-trimethyl-2,7-dioxobicyclo-(3,2,2)nonan-3-one + NADP+ + H2O
1,8-cineole + 2 H+ + oxygen → 6-endo-hydroxycineole + H2O

10-cis-heptadecenoyl-CoA degradation (yeast) :
3-hydroxy-heptanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-pentanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-nonanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-heptanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-undecanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-nonanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
4-cis-undecenoyl-CoA + oxygen → 2-trans, 4-cis-undecadienoyl-CoA + hydrogen peroxide
6-cis-tridecenoyl-CoA + oxygen → 6-cis, 2-trans-tridecadienoyl-CoA + hydrogen peroxide
10-cis-heptadecenoyl-CoA + 2 coenzyme A + 2 NAD+ + 2 H2O + 2 oxygen → 6-cis-tridecenoyl-CoA + 2 acetyl-CoA + 2 hydrogen peroxide + 2 NADH + 2 H+

10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) :
3-hydroxy-heptanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-pentanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-nonanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-heptanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+

10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) :
4-trans-undecenoyl-CoA + oxygen → 2-trans, 4-trans-undecadienoyl-CoA + hydrogen peroxide
6-trans-tridecenoyl-CoA + oxygen → 2-trans-6-trans-tridecadienoyl-CoA + hydrogen peroxide
10-trans-heptadecenoyl-CoA + 2 coenzyme A + 2 NAD+ + 2 H2O + 2 oxygen → 6-trans-tridecenoyl-CoA + 2 acetyl-CoA + 2 hydrogen peroxide + 2 NADH + 2 H+
3-hydroxy-heptanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-pentanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-nonanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-heptanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-undecanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-nonanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+

11-cis-3-hydroxyretinal biosynthesis :
zeaxanthin + oxygen → (3R)-11-cis-3-hydroxyretinal + (3R)-all-trans-3-hydroxyretinal

2,2'-dihydroxybiphenyl degradation :
pyrogallol + oxygen → (2Z,4E)-2-hydroxyhexa-2,4-dienedioate + 2 H+
2,3-dihydroxybenzoate + NADH + oxygen + 2 H+ → pyrogallol + CO2 + NAD+ + H2O
2,2',3,3'-tetrahydroxybiphenyl + oxygen → 2-hydroxy-6-oxo-6-(2,3-dihydroxyphenyl)-hexa-2,4-dienoate + H+
2,2',3-trihydroxybiphenyl + NADH + oxygen + H+ → 2,2',3,3'-tetrahydroxybiphenyl + NAD+ + H2O
2,2',3-trihydroxybiphenyl + oxygen → 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate + H+
2,2'-dihydroxybiphenyl + NADH + oxygen + H+ → 2,2',3-trihydroxybiphenyl + NAD+ + H2O

2,3-dihydroxybenzoate degradation :
2,3-dihydroxybenzoate + oxygen → 3-carboxy-2-hydroxymuconate semialdehyde + H+

2,4,5-trichlorophenoxyacetate degradation :
2,4,5-trichlorophenol + FADH2 + oxygen → 2,5-dichloro-p-quinone + chloride + FAD + H2O + H+
2,5-dichloro-p-quinol + FADH2 + oxygen → 5-chlorohydroxyquinone + chloride + FAD + H2O + 3 H+
1,2,4-benzenetriol + oxygen → 2-maleylacetate + 2 H+
2,4,5-trichloro-phenoxyacetate + NADH + oxygen → 2,4,5-trichlorophenol + glyoxylate + NAD+ + H2O

2,4,6-trichlorophenol degradation :
2,6-dichloro-p-hydroquinone + FADH2 + oxygen + H+ → 6-chlorohydroxyquinol + chloride + FAD + H2O
2,4,6-trichlorophenol + FADH2 + oxygen → 2,6-dichloro-p-hydroquinone + chloride + FAD + H2O
6-chlorohydroxyquinol + oxygen → 2-chloromaleylacetate + 2 H+

2,4-dichlorophenoxyacetate degradation :
2,4-dichlorophenol + NADPH + oxygen + H+ → 3,5-dichlorocatechol + NADP+ + H2O
2,4-dichlorophenoxyacetate + 2-oxoglutarate + oxygen → 2,4-dichlorophenol + glyoxylate + succinate + CO2

2,4-dichlorotoluene degradation :
2,4-dichlorotoluene + NADH + oxygen + H+ → 4,6-dichloro-3-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+
4,6-dichloro-3-methylcatechol + oxygen → 3,5-dichloro-2-methyl-muconate + 2 H+

2,4-dinitrotoluene degradation :
2,4,5-trihydroxytoluene + oxygen → 2,4-dihydroxy-5-methyl-6-oxohexa-2,4-dienoate + H+
4-methyl-5-nitrocatechol + NADPH + oxygen → 2-hydroxy-5-methylquinone + nitrite + NADP+ + H+ + H2O
2,4-dinitrotoluene + NADH + oxygen → 4-methyl-5-nitrocatechol + nitrite + NAD+

2,5-dichlorotoluene degradation :
2,5-dichlorotoluene + NADH + oxygen + H+ → 3,6-dichloro-4-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+
3,6-dichloro-4-methylcatechol + oxygen → 2,5-dichloro-3-methyl-muconate + 2 H+

2,6-dinitrotoluene degradation :
3-methyl-4-nitrocatechol + oxygen → 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoate + H+
2,6-dinitrotoluene + NADH + oxygen → 3-methyl-4-nitrocatechol + nitrite + NAD+

2-aminoethylphosphonate degradation III :
(2-amino-1-hydroxyethyl)phosphonate + oxygen → glycine + phosphate + 2 H+
(2-aminoethyl)phosphonate + 2-oxoglutarate + oxygen → (2-amino-1-hydroxyethyl)phosphonate + succinate + CO2

2-aminophenol degradation :
2-aminophenol + oxygen → 2-aminomuconate 6-semialdehyde + H+

2-chlorobenzoate degradation :
2-chlorobenzoate + NADH + oxygen + H+ → catechol + chloride + CO2 + NAD+

2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis :
2-heptyl-4(1H)-quinolone + NADH + oxygen + H+ → 2-heptyl-3-hydroxy-4(1H)-quinolone + NAD+ + H2O

2-hydroxybiphenyl degradation :
biphenyl-2, 3-diol + oxygen → 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate + H+
2-hydroxybiphenyl + NADH + H+ + oxygen → biphenyl-2, 3-diol + NAD+ + H2O

2-hydroxyphenazine biosynthesis :
phenazine-1-carboxylate + NAD(P)H + oxygen + H+ → 2-hydroxyphenazine-1-carboxylate + NAD(P)+ + H2O

2-isopropylphenol degradation :
3-isopropylcatechol + oxygen → 2-hydroxy-6-oxo-7-methyl-octa-2,4-dienoate + H+
2-isopropylphenol + NADH + oxygen + H+ → 3-isopropylcatechol + NAD+ + H2O

2-nitrobenzoate degradation I , tryptophan degradation XII (Geobacillus) :
3-hydroxyanthranilate + oxygen → aminocarboxymuconate semialdehyde + H+

2-nitrobenzoate degradation II , anthranilate degradation I (aerobic) :
anthranilate + NAD(P)H + oxygen + 3 H+ → catechol + CO2 + ammonium + NAD(P)+

2-nitrophenol degradation :
2-nitrophenol + NADPH + oxygen + 3 H+ → catechol + nitrite + NADP+ + H2O

2-nitrotoluene degradation :
3-methylcatechol + oxygencis,cis-2-hydroxy-6-oxohepta-2,4-dienoate + H+
2-nitrotoluene + H+ + oxygen → 3-methylcatechol + nitrite

2-propylphenol degradation :
2-propylphenol + NADH + oxygen + H+ → 3-propylcatechol + NAD+ + H2O
3-propylcatechol + oxygen → 2-hydroxy-6-oxo-nona-2,4-dienoate + H+

2α,7β-dihydroxylation of taxusin :
2α-hydroxytaxusin + NADPH + oxygen + H+ → 2α, 7β-dihydroxytaxusin + NADP+ + H2O
7β-hydroxytaxusin + NADPH + oxygen + H+ → 2α, 7β-dihydroxytaxusin + NADP+ + H2O
taxusin + NADPH + oxygen + H+ → 2α-hydroxytaxusin + NADP+ + H2O
taxusin + NADPH + oxygen + H+ → 7β-hydroxytaxusin + NADP+ + H2O

3,3'-dithiodipropionate degradation , 3,3'-thiodipropionate degradation :
3-mercaptopropionate + oxygen → 3-sulfinopropionate + H+

3,4,6-trichlorocatechol degradation :
3,4,6-trichlorocatechol + oxygen → 2,3,5-trichloro-cis,cis-muconate + H+

3,4-dichlorobenzoate degradation :
3,4-dichlorobenzoate + a reduced electron acceptor + oxygen → 3,4-dichlorobenzoate-cis-4,5-diol + an oxidized electron acceptor
5-chloroprotocatechuate + oxygen → 6-chloro-2-hydroxy-4-carboxymuconate-6-semialdehyde + H+

3,4-dichlorotoluene degradation :
3,4-dichloro-6-methylcatechol + oxygen → 2,3-dichloro-5-methyl-muconate + 2 H+
3,4-dichlorotoluene + NADH + oxygen + H+ → 3,4-dichlorotoluene dihydrodiol + NAD+

3,5,6-trichloro-2-pyridinol degradation :
3,5,6-trichloro-2-pyridinol + FADH2 + oxygen + 2 H2O → 3,6-dihydroxypyridine-2,5-dione + 3 chloride + FAD + H2O + 4 H+

3,5-dichlorocatechol degradation :
3,5-dichlorocatechol + oxygen → 2,4-dichloro-cis,cis-muconate + 2 H+

3-(4-sulfophenyl)butyrate degradation :
4-sulfoacetophenone + NADPH + H+ + oxygen → 4-sulfophenyl acetate + NADP+ + H2O

Reactions known to produce the compound:

capsaicin biosynthesis , capsiconiate biosynthesis :
2 a malonyl-[acp] + isobutanoyl-CoA + 3 H2O → 8-methyl-6-nonenoate + 2 a holo-[acyl-carrier protein] + coenzyme A + 4 oxygen

ethylene biosynthesis III (microbes) :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen

hydrogen production VIII , photosynthesis light reactions :
4 hν + 2 a plastoquinone + 2 H2O ↔ 2 a plastoquinol + oxygen

intra-aerobic nitrite reduction :
2 nitric oxide → N2 + oxygen

methanol oxidation to formaldehyde IV :
2 hydrogen peroxide → 2 H2O + oxygen

reactive oxygen species degradation (mammalian) :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen
2 hydrogen peroxide → 2 H2O + oxygen

superoxide radicals degradation :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen
2 hydrogen peroxide → 2 H2O + oxygen

Not in pathways:
2 a plastoquinol[chloroplast thylakoid membrane] + oxygen[chloroplast thylakoid lumen] + 4 H+[chloroplast thylakoid lumen] ← hν + 2 a plastoquinone[chloroplast thylakoid membrane] + 2 H2O[chloroplast thylakoid lumen] + 4 H+[chloroplast stroma]

Reactions known to both consume and produce the compound:

1,4-dichlorobenzene degradation :
3,6-dichlorocatechol + oxygen ↔ 2,5-dichloro-cis,cis-muconate + 2 H+

chlorate reduction , perchlorate reduction :
chloride + oxygen ↔ chlorite

γ-hexachlorocyclohexane degradation :
chlorohydroquinone + oxygen ↔ 5-chlorocarbonyl-4-hydroxy-penta-2,4-dienate + 2 H+

pentachlorophenol degradation :
2,6-dichloro-p-hydroquinone + oxygen + H2O ↔ 2-chloromaleylacetate + chloride + 2 H+

photorespiration :
2-phosphoglycolate + 3-phospho-D-glycerate + 2 H+ ↔ D-ribulose-1,5-bisphosphate + oxygen

In Reactions of unknown directionality:

plumbagin biosynthesis :
acetyl-CoA + 5 malonyl-CoA + 2 NADPH + 6 H+ + oxygen = hexaketide pyrone + 5 CO2 + 6 coenzyme A + 2 NADP+ + 3 H2O

poly-hydroxy fatty acids biosynthesis :
oleate + 2 NADPH + oxygen = 9,10-epoxystearate + 2 NADP+ + H2O

Not in pathways:
2 emodin + oxygen + 2 H2O = hypericin + 4 H2O + oxygen
vitamin K 2,3-epoxide + a [protein] 4-carboxy-L-glutamate + H2O = phylloquinone + a [protein]-α-L-glutamate + CO2 + oxygen + H+
2,5-bis-hydroxymethylfuran + oxygen = 5-hydroxymethylfurfural + hydrogen peroxide
5-hydroxymethylfurfural + 3 oxygen + 2 H2O = 2,5-dicarboxyfuran + 3 hydrogen peroxide + 2 H+
L-histidine + L-cysteine + oxygen = L-alanin-3-yl L-histidin-5-yl S-oxide + H2O
xanthine + 2-oxoglutarate + oxygen = urate + succinate + CO2
hercynine + L-selenocysteine + oxygen = hercynylselenocysteine + H2O
paspaline + NADPH + oxygen + H+ = terpendole E + NADP+ + H2O
2-hydroxy-5-methyl-1-naphthoate + a reduced electron acceptor + oxygen = 2,7-dihydroxy-5-methyl-1-naphthoate + an oxidized electron acceptor + H2O
(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoate + NADPH + H+ + oxygen = 22-hydroxydocosahexaenoate + NADP+ + H2O
dihydromonacolin L acid + NADPH + oxygen + H+ = monacolin L acid + NADP+ + 2 H2O
2-oxo-2'-hydroxyspirilloxanthin + a reduced ferredoxin + oxygen + 2 H+ = 2-oxo-2',2'-dihydroxyspirilloxanthin + an oxidized ferredoxin + H2O
2-oxospirilloxanthin + a reduced ferredoxin + oxygen + 2 H+ = 2-oxo-2'-hydroxyspirilloxanthin + an oxidized ferredoxin + H2O
2-hydroxyspirilloxanthin + a reduced ferredoxin + oxygen + 2 H+ = 2,2-dihydroxyspirilloxanthin + an oxidized ferredoxin + H2O
spirilloxanthin + a reduced ferredoxin + oxygen + 2 H+ = 2-hydroxyspirilloxanthin + an oxidized ferredoxin + H2O
spheroiden-2-ol + a reduced ferredoxin + oxygen + 2 H+ = 2,2-dihydroxyspheroidene + an oxidized ferredoxin + H2O
spheroidene + a reduced ferredoxin + oxygen + 2 H+ = spheroiden-2-ol + an oxidized ferredoxin + H2O
simazine + a reduced electron acceptor + oxygen = deethylsimazine + acetaldehyde + an oxidized electron acceptor + H2O
3,5,6-trichloro-2-pyridinol + FADH2 + oxygen = 3,6-dichloropyridine-2,5-dione + chloride + FAD + H2O + 2 H+
luteolin + NADPH + oxygen + H+ = 8-hydroxy-luteolin + NADP+ + H2O
2 3-amino-4-hydroxybenzaldehyde + N-acetyl-L-cysteine + 2 oxygen = grixazone A + formate + 3 H2O + H+
2 3-amino-4-hydroxybenzoate + N-acetyl-L-cysteine + 2 oxygen + H+ = grixazone B + CO2 + 4 H2O
(S)-3-chloro-β-tyrosyl-[SgcC2] + FADH2 + oxygen = (S)-3-chloro-5-hydroxy-β-tyrosyl-[SgcC2] + FAD + H2O + H+
(S)-β-tyrosyl-[SgcC2] + chloride + FADH2 + oxygen = (S)-3-chloro-β-tyrosyl-[SgcC2] + FAD + 2 H2O
phylloquinone + NADPH + H+ + oxygen = ω-hydroxyphylloquinone + NADP+ + H2O
4-mercaptobutanoate + oxygen = 4-oxo-4-sulfanylbutanoate + H2O
menadiol + oxygen + 2 H+ = menadione + 2 H2O
miltiradiene + 2 NADPH + 2 H+ + 2 oxygen = ferruginol + 2 NADP+ + 3 H2O
5-methyl-1-naphthoate + NADPH + H+ + oxygen = 3-hydroxy-5-methyl-1-naphthoate + NADP+ + H2O
(S)-4-hydroxymandelate + oxygen = 2-(4-hydroxyphenyl)-2-oxoacetate + hydrogen peroxide
4 Fe2+ + oxygen + 6 H2O = 4 [FeO(OH)] monomer + 8 H+
2 Fe2+ + oxygen + 4 H2O = 2 [FeO(OH)] monomer + hydrogen peroxide + 4 H+
(1R,4S)-1-hydroxymenth-8-en-2-one + NADPH + oxygen = (3R)-3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
(1S,4R)-1-hydroxymenth-8-en-2-one + NADPH + oxygen = (3S)-3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
a 1-hydroxymenth-8-en-2-one + NADPH + oxygen = a 3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
3-chloro-4-(3-chloro-2-nitrosophenyl)-1H-pyrrole + NAD(P)H + oxygen + H+ = pyrrolnitrin + NAD(P)+ + H2O
aminopyrrolnitrin + NAD(P)H + oxygen + H+ = N-[2-chloro-6-(4-chloro-1H-pyrrol-3-yl)phenyl]hydroxylamine + NAD(P)+ + H2O
L-tyrosine + H2O + oxygen = 4-hydroxyphenylpyruvate + ammonium + hydrogen peroxide
a 3' hydroxy flavanone + NADPH + oxygen + H+ = a 3',5'-dihydroxy isoflavanone + NADP+ + H2O
a flavanone + NADPH + oxygen + H+ = a 3' hydroxy flavanone + NADP+ + H2O
15-demethoxyaclacinomycin T + a reduced electron acceptor + H+ + oxygen = 10-decarboxymethylaclacinomycin T + CO2 + an oxidized electron acceptor + H2O
15-demethoxy-aclacinomycin A + a reduced electron acceptor + H+ + oxygen = 10-decarboxymethyl, 10-hydroxyaclacinomycin A + CO2 + an oxidized electron acceptor + H2O
15-demethoxy-ε-rhodomycinone + a reduced electron acceptor + oxygen + H+ = β-rhodomycinone + CO2 + an oxidized electron acceptor + H2O
20-hydroxyecdysone-26-aldehyde + a reduced flavoprotein + oxygen = 20-hydroxyecdysonate + an oxidized flavoprotein + H2O + H+
20,26-dihydroxyecdysone + a reduced flavoprotein + oxygen = 20-hydroxyecdysone-26-aldehyde + an oxidized flavoprotein + 2 H2O
20-hydroxyecdysone + a reduced flavoprotein + oxygen = 20,26-dihydroxyecdysone + an oxidized flavoprotein + H2O
methylsulfonyl + FMNH2 + oxygen = methanesulfonate + FMN + H2O + H+
gibberellin A37 (closed lactone form) + 2 H+ + oxygen = gibberellin A38 + H2O
cyclo[(Z)-α,β-didehydrophenylalanyl-L-leucyl] + oxygen = albonoursin + hydrogen peroxide
cyclo(L-leucyl-L-phenylalanyl) + oxygen = cyclo[(Z)-α,β-didehydrophenylalanyl-L-leucyl] + hydrogen peroxide
a 7-hydroxy-long-chain acyl-[acp] + a reduced flavodoxin + oxygen = a 7,8-dihydroxy-long-chain acyl-[acp] + an oxidized flavodoxin + H2O
a long-chain acyl-[acp] + a reduced flavodoxin + oxygen = a 7-hydroxy-long-chain acyl-[acp] + an oxidized flavodoxin + H2O
a 7,8-dihydroxy-long-chain acyl-[acp] + a reduced flavodoxin + oxygen = 7-oxoheptanoyl-[acyl-carrier-protein] + an n-alkanal + an oxidized flavodoxin + 2 H2O
benzoate + NADPH + H+ + oxygen = salicylate + NADP+ + H2O
2 5'-dehydroinosine + oxygen = 2 9-riburonosylhypoxanthine + 2 H+
2 inosine + oxygen = 2 5'-dehydroinosine + 2 H2O
cannabinerolate + oxygen = cannabidiolate + hydrogen peroxide
2 L-arginine + 2 NADPH + 2 H+ + 2 oxygen = 2 Nω-hydroxy-L-arginine + 2 NADP+ + 2 H2O
2 Nω-hydroxy-L-arginine + NAD(P)H + 2 oxygen = 2 L-citrulline + 2 nitric oxide + NAD(P)+ + 2 H2O + H+
2 Nω-hydroxy-L-arginine + NADPH + 2 oxygen = 2 L-citrulline + 2 nitric oxide + NADP+ + 2 H2O + H+
2 L-arginine + 2 NAD(P)H + 2 H+ + 2 oxygen = 2 Nω-hydroxy-L-arginine + 2 NAD(P)+ + 2 H2O
all-trans-β-carotene + a reduced electron acceptor + oxygen = β-carotene 15,15' epoxide + an oxidized electron acceptor + H2O
3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carbaldehyde + NAD(P)H + oxygen = 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carboxylate + NAD(P)+ + H2O
4β-hydroxymethyl-4α-methyl-5α-cholest-7-en-3β-ol + NAD(P)H + H+ + oxygen = 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carbaldehyde + NAD(P)+ + 2 H2O
4,4-dimethyl-5α-cholest-7-en-3β-ol + NAD(P)H + oxygen + H+ = 4β-hydroxymethyl-4α-methyl-5α-cholest-7-en-3β-ol + NAD(P)+ + H2O
a [protein] N6,N6-dimethyl-L-lysine + 2-oxoglutarate + oxygen = a [protein] N6-methyl-L-lysine + succinate + formaldehyde + CO2
2 2-aminophenol + oxygen = 2 1,2-benzoquinone monoimine + 2 H2O
1-[4,5,7,10-tetrahydroxy-3-(3-oxobutanoyl)anthracen-2-yl]pentane-1,2,4-trione + oxygen = premithramycinone G + H2O
5'-dehydroadenosine + oxygen + H2O = adenin-9-yl riburonosate + hydrogen peroxide + H+
adenosine + oxygen = 5'-dehydroadenosine + hydrogen peroxide
phenanthrene + NADH + H+ + oxygen = (+)-cis-3,4-dihydrophenanthrene-3,4-diol + NAD+
phenylacetate + NADH + oxygen + H+ = 2-hydroxyphenylacetate + NAD+ + H2O
4-hydroxylaminobenzoate + oxygen = 4-nitrobenzoate + H2O
4-aminobenzoate + NADPH + oxygen + H+ = 4-hydroxylaminobenzoate + NADP+ + H2O
9'-cis-neurosporene + a reduced electron acceptor + oxygen = 7',9'-cis-lycopene + an oxidized electron acceptor + 2 H2O
a ferrohemoglobin + oxygen = an oxyhemoglobin
9-methylthiononanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-9-methylthiononylhydroximoyl-L-cysteine + NADP+ + 2 H2O
8-methylthiooctanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-8-methylthiooctylhydroximoyl-L-cysteine + NADP+ + 2 H2O
7-methylthioheptanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-7-methylthioheptylhydroximoyl-L-cysteine + NADP+ + 2 H2O
6-methylthiohexanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-6-methylthiohexylhydroximoyl-L-cysteine + NADP+ + 2 H2O
5-methylthiopentanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-5-methylthiopentylhydroximoyl-L-cysteine + NADP+ + 2 H2O
(Z)-phenylacetaldehyde oxime + L-cysteine + 2 NADPH + oxygen = S-(phenylacetothiohydroximoyl)-L-cysteine + 2 NADP+ + 2 H2O
4-methylthiobutanaldoxime + L-cysteine + 2 NADPH + oxygen = S-(4-methylthiobutylhydroximoyl)-L-cysteine + 2 NADP+ + 2 H2O
(E)-indol-3-ylacetaldoxime + L-cysteine + 2 NADPH + oxygen = S-(indolylmethylthiohydroximoyl)-L-cysteine + 2 NADP+ + 2 H2O
5-chloro-3-fluorocatechol + oxygen = 4-chloro-2-fluoromuconate + 2 H+
3-chloro-6-fluorocatechol + oxygen = 4-chloro-2-fluoromuconate + H+
3-chloro-5-fluorocatechol + oxygen = 2-chloro-4-fluoromuconate + 2 H+
3-fluorocatechol + oxygen = 2-fluoromuconate + 2 H+
urate + 2 H2O + oxygen = (S)-(+)-allantoin + CO2 + hydrogen peroxide
3-chloro-5-methylcatechol + oxygen = 2-chloro-4-methyl-cis,cis-muconate + 2 H+
1,2,3-trichlorobenzene + NADH + oxygen + H+ = 1,2,3-trichlorobenzene dihydrodiol + NAD+
S-methyl-L-cysteine + oxygen + H2O = methiin + hydrogen peroxide
3-nitrotoluene + NADH + oxygen = 4-methylcatechol + nitrite + NAD+
cyclohexane + NADPH + H+ + oxygen = cyclohexanol + NADP+ + H2O
acetol + NADPH + oxygen = acetate + formaldehyde + NADP+ + H2O
2 trans-4-hydroxy-L-proline + oxygen = 2 pyrroline-hydroxy-carboxylate + 2 H+ + 2 H2O
(3E)-3-nonenal + oxygen = 4-hydroperoxyoctadeca-t-2-nonenal
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + 3 oxygen = (+)-7-iso-jasmonate + 3 acetate + 3 H+
coniferyl alcohol + NADPH + H+ + oxygen = 5-hydroxy-coniferyl-alcohol + NADP+ + H2O
L-aspartate + dihydroxyacetone phosphate + oxygen = quinolinate + hydrogen peroxide + phosphate + H+ + 2 H2O

In Transport reactions:
oxygen[periplasmic space]oxygen[cytosol]

In Redox half-reactions:
ammonia[in] + oxygen[in] + 2 H+[in] + 2 e- → hydroxylamine[in] + H2O[in] ,
oxygen[out] + 2 H+[out] + 2 e- → hydrogen peroxide[out] ,
oxygen[in] + 4 H+[in] + 4 e- → 2 H2O[in] ,
ammonium + oxygen + H+ + 2 e- → hydroxylamine + H2O

Enzymes inhibited by oxygen, sorted by the type of inhibition, are:

Inhibitor (Irreversible) of: pyruvate formate-lyase [Knappe84] , 4-hydroxyphenylacetate decarboxylase [Selmer01]

Inhibitor (Allosteric) of: L-lactate dehydrogenase

Inhibitor (Mechanism unknown) of: quinolinate synthase [DraczynskaLusia92, Gardner91] , formate dehydrogenase-N [Enoch75] , hydroxylamine reductase [Wolfe02] , formate dehydrogenase [Axley90] , aldehyde decarbonylase [SchneiderBelhad00] , methyl-H4MPT:coenzyme M methyltransferase [Gartner93] , D-ornithine aminomutase [Somack73] , 2,3-dihydroxy-isovalerate dehydratase [Xing91] , 2,3-dihydroxy-3-methylvalerate hydro-lyase [Xing91] , arginine 2-monooxygenase [Van62] , ornithine cyclodeaminase [Muth74] , tyrosinase [Steiner99]

Inhibitor (Other types) of: carbon-monoxide dehydrogenase [Bonam89] , 4-hydroxybutyrate dehydrogenase [Wolff95] , 2,3-dihydroxy-3-methylvalerate hydro-lyase [Xing91] , NAD-dependent formate dehydrogenase [Kearny72]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: deacetoxycephalosporin C hydroxylase , deacetoxycephalosporin C synthase , deacetoxycephalosporin C hydroxylase , deacetoxycephalosporin C synthase


References

Axley90: Axley MJ, Grahame DA, Stadtman TC (1990). "Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component." J Biol Chem 1990;265(30);18213-8. PMID: 2211698

Bonam89: Bonam D, Lehman L, Roberts GP, Ludden PW (1989). "Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity." J Bacteriol 171(6);3102-7. PMID: 2498285

DraczynskaLusia92: Draczynska-Lusiak B, Brown OR (1992). "Protein A of quinolinate synthetase is the site of oxygen poisoning of pyridine nucleotide coenzyme synthesis in Escherichia coli." Free Radic Biol Med 13(6);689-93. PMID: 1459486

Enoch75: Enoch HG, Lester RL (1975). "The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli." J Biol Chem 1975;250(17);6693-705. PMID: 1099093

Gardner91: Gardner PR, Fridovich I (1991). "Quinolinate synthetase: the oxygen-sensitive site of de novo NAD(P)+ biosynthesis." Arch Biochem Biophys 284(1);106-11. PMID: 1846509

Gartner93: Gartner P, Ecker A, Fischer R, Linder D, Fuchs G, Thauer RK (1993). "Purification and properties of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum." Eur J Biochem 1993;213(1);537-45. PMID: 8477726

Kearny72: Kearny JJ, Sagers RD (1972). "Formate dehydrogenase from Clostridium acidiurici." J Bacteriol 109(1);152-61. PMID: 4333376

Knappe84: Knappe J, Neugebauer FA, Blaschkowski HP, Ganzler M (1984). "Post-translational activation introduces a free radical into pyruvate formate-lyase." Proc Natl Acad Sci U S A 81(5);1332-5. PMID: 6369325

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Muth74: Muth WL, Costilow RN (1974). "Ornithine cyclase (deaminating). II. Properties of the homogeneous enzyme." J Biol Chem 249(23);7457-62. PMID: 4373469

SchneiderBelhad00: Schneider-Belhaddad F, Kolattukudy P (2000). "Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum." Arch Biochem Biophys 377(2);341-9. PMID: 10845712

Selmer01: Selmer T, Andrei PI (2001). "p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol." Eur J Biochem 268(5);1363-72. PMID: 11231288

Somack73: Somack R, Costilow RN (1973). "Purification and properties of a pyridoxal phosphate and coenzyme B 12 dependent D- -ornithine 5,4-aminomutase." Biochemistry 1973;12(14);2597-604. PMID: 4711468

Steiner99: Steiner U, Schliemann W, Boehm H, Strack D (1999). "Tyrosinase involved in betalain biosynthesis of higher plants." Planta, 208, 114-124.

Van62: Van Thoai, N., Olomucki, A. (1962). "Arginine decarboxy-oxydase I. Caracteres et nature de l'enzyme." Biochimica Biophysica Acta 59:533-544.

Wolfe02: Wolfe MT, Heo J, Garavelli JS, Ludden PW (2002). "Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli." J Bacteriol 184(21);5898-902. PMID: 12374823

Wolff95: Wolff RA, Kenealy WR (1995). "Purification and characterization of the oxygen-sensitive 4-hydroxybutanoate dehydrogenase from Clostridium kluyveri." Protein Expr Purif 6(2);206-12. PMID: 7606170

Xing91: Xing RY, Whitman WB (1991). "Characterization of enzymes of the branched-chain amino acid biosynthetic pathway in Methanococcus spp." J Bacteriol 173(6);2086-92. PMID: 2002010


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Wed Dec 24, 2014, biocyc13.