twitter

MetaCyc Compound: oxygen

Systematic Name: O2

Abbrev Name: O2

Synonyms: oxygen molecule

Superclasses: an inorganic compound

Chemical Formula: O2

Molecular Weight: 31.999 Daltons

Monoisotopic Molecular Weight: 31.9898292442 Daltons

oxygen compound structure

SMILES: O=O

InChI: InChI=1S/O2/c1-2

InChIKey: InChIKey=MYMOFIZGZYHOMD-UHFFFAOYSA-N

Unification Links: CAS:7782-44-7 , ChEBI:15379 , ChemSpider:952 , HMDB:HMDB01377 , IAF1260:33493 , KEGG:C00007 , MetaboLights:MTBLC15379 , PubChem:977

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 3.92 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(+)-camphor degradation :
(+)-bornane-2,5-dione + NADH + H+ + oxygen → (+)-5-oxo-1,2-campholide + NAD+ + H2O
[(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA + NADPH + H+ + oxygen → [(2R)-3,3,4-trimethyl-6-oxo-3,6-dihydro-1H-pyran-2-yl]acetyl-CoA + NADP+ + H2O
(+)-camphor + a reduced putidaredoxin + oxygen → (+)-exo-5-hydroxycamphor + an oxidized putidaredoxin + H2O

(-)-camphor degradation :
[(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA + NADPH + H+ + oxygen → [(2R)-3,3,4-trimethyl-6-oxo-3,6-dihydro-1H-pyran-2-yl]acetyl-CoA + NADP+ + H2O
(-)-camphor + a reduced putidaredoxin + oxygen → (-)-exo-3-hydroxycamphor + an oxidized putidaredoxin + H2O
3,6-diketocamphane + NADH + H+ + oxygen → (-)-5-oxo-1,2-campholide + NAD+ + H2O

(1'S,5'S)-averufin biosynthesis :
(1'S)-averantin + NADPH + H+ + oxygen → (1'S,5'R)-hydroxyaverantin + NADP+ + H2O
(1'S)-averantin + NADPH + H+ + oxygen → (1'S,5'S)-hydroxyaverantin + NADP+ + H2O
norsolorinate anthrone + oxygen → norsolorinate + H2O

(3E)-4,8-dimethylnona-1,3,7-triene biosynthesis :
(3S,6E)-nerolidol + NADPH + H+ + oxygen → (3E)-4,8-dimethylnona-1,3,7-triene + but-1-en-3-one + NADP+ + 2 H2O
(3R,6E)-nerolidol + NADPH + H+ + oxygen → (3E)-4,8-dimethylnona-1,3,7-triene + but-1-en-3-one + NADP+ + 2 H2O

(4R)-carveol and (4R)-dihydrocarveol degradation :
(+)-isodihydrocarvone + NADPH + oxygen + H+ → (3S,6R)-6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O
(+)-dihydrocarvone + NADPH + H+ + oxygen → (4R,7R)-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O

(4R)-carvone biosynthesis :
(4S)-limonene + NADPH + oxygen + H+ → (-)-trans-carveol + NADP+ + H2O

(4S)-carveol and (4S)-dihydrocarveol degradation :
(-)-dihydrocarvone + NADPH + oxygen + H+ → (3S,6S)-6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O
(-)-isodihydrocarvone + NADPH + H+ + oxygen → (4S,7R)-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O

(4S)-carvone biosynthesis :
(4R)-limonene + NADPH + H+ + oxygen → (+)-trans-carveol + NADP+ + H2O

(5R)-carbapenem carboxylate biosynthesis :
(3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + oxygen → (5R)-carbapen-2-em-3-carboxylate + succinate + CO2 + H2O

(7Z,10Z,13Z)-hexadecatrienoate biosynthesis :
a [glycerolipid]-palmitate + 2 a reduced ferredoxin + oxygen + 2 H+ → a [glycerolipid]-(7Z)-hexadecenoate + 2 an oxidized ferredoxin + 2 H2O
a [glycerolipid]-(7Z,10Z)-hexadecadienoate + 2 a reduced ferredoxin + oxygen + 2 H+ → a [glycerolipid]-(7Z,10Z,13Z)-hexadecatrienoate + 2 an oxidized ferredoxin + 2 H2O
a [glycerolipid]-(7Z)-hexadecenoate + 2 a reduced ferredoxin + oxygen + 2 H+ → a [glycerolipid]-(7Z,10Z)-hexadecadienoate + 2 an oxidized ferredoxin + 2 H2O

(E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene biosynthesis :
(E,E)-geranyllinalool + NADPH + H+ + oxygen → 4,8,12-trimethyl-1,3,7,11-tridecatetraene + but-1-en-3-one + NADP+ + 2 H2O

(S)-reticuline biosynthesis I :
(S)-N-methylcoclaurine + NADPH + oxygen + H+ → 3'-hydroxy-N-methyl-(S)-coclaurine + NADP+ + H2O
L-tyrosine + 0.5 oxygen → L-dopa

(S)-reticuline biosynthesis II :
L-tyrosine + 0.5 oxygen → L-dopa

Reactions known to produce the compound:

ethylene biosynthesis III (microbes) :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen

hydrogen production VIII , photosynthesis light reactions :
2 a plastoquinol[chloroplast thylakoid membrane] + 4 H+[chloroplast thylakoid lumen] + oxygen[chloroplast thylakoid lumen] ← hν + 2 a plastoquinone[chloroplast thylakoid membrane] + 4 H+[chloroplast stroma] + 2 H2O[chloroplast thylakoid lumen]

intra-aerobic nitrite reduction :
2 nitric oxide → N2 + oxygen

methanol oxidation to formaldehyde IV :
2 hydrogen peroxide → 2 H2O + oxygen

reactive oxygen species degradation :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen
2 hydrogen peroxide → 2 H2O + oxygen

superoxide radicals degradation :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen
2 hydrogen peroxide → 2 H2O + oxygen

Reactions known to both consume and produce the compound:

1,4-dichlorobenzene degradation :
3,6-dichlorocatechol + oxygen ↔ 2,5-dichloro-cis,cis-muconate + 2 H+

chlorate reduction , perchlorate reduction :
chloride + oxygen ↔ chlorite

γ-hexachlorocyclohexane degradation :
chlorohydroquinone + oxygen ↔ 5-chlorocarbonyl-4-hydroxy-penta-2,4-dienate + 2 H+

pentachlorophenol degradation :
2,6-dichloro-p-hydroquinone + oxygen + H2O ↔ 2-chloromaleylacetate + chloride + 2 H+

photorespiration :
2-phosphoglycolate + 3-phospho-D-glycerate + 2 H+ ↔ D-ribulose-1,5-bisphosphate + oxygen

In Reactions of unknown directionality:

α-linolenate biosynthesis II (cyanobacteria) :
a 1-linoleoyl 2-acyl-sn-glycerol 3-phosphate + 2 a reduced ferredoxin + oxygen + 2 H+ = a 1-α-linolenoyl 2-acyl-sn-glycerol 3-phosphate + 2 an oxidized ferredoxin + 2 H2O

calendate biosynthesis :
a [glycerolipid]-linoleate + an unknown reduced electron acceptor + oxygen = a [glycerolipid]-calendate + an unknown oxidized electron acceptor + 2 H2O

ceramide de novo biosynthesis :
a dihydroceramide + 2 a ferrocytochrome b5 + oxygen + 2 H+ = a (4E)-sphing-4-enine ceramide + 2 a ferricytochrome b5 + 2 H2O

Δ5-eicosenoate biosynthesis :
icosanoyl-CoA + 2 a ferrocytochrome b5 + oxygen + 2 H+ = (5Z)-icosenoyl-CoA + 2 a ferricytochrome b5 + 2 H2O

γ-linolenate biosynthesis III (cyanobacteria) :
a 1-linoleoyl 2-acyl-sn-glycerol 3-phosphate + 2 a reduced ferredoxin + oxygen + 2 H+ = a 1-γ-linolenoyl 2-acyl-sn-glycerol 3-phosphate + 2 an oxidized ferredoxin + 2 H2O

plumbagin biosynthesis :
acetyl-CoA + 5 malonyl-CoA + 2 NADPH + 6 H+ + oxygen = hexaketide pyrone + 5 CO2 + 6 coenzyme A + 2 NADP+ + 3 H2O

poly-hydroxy fatty acids biosynthesis :
oleate + NADPH + oxygen + H+ = 9,10-epoxystearate + NADP+ + H2O

stearidonate biosynthesis (cyanobacteria) :
a 1-γ-linolenoyl 2-acyl-sn-glycerol 3-phosphate + 2 a reduced ferredoxin + oxygen + 2 H+ = a 1-stearidonoyl 2-acyl-sn-glycerol 3-phosphate + 2 an oxidized ferredoxin + 2 H2O

Not in pathways:
2 emodin + oxygen + 2 H2O = hypericin + 4 H2O + oxygen
a (4E)-sphing-4-enine ceramide + 2 a ferrocytochrome b5 + oxygen + 2 H+ = a (4E)-4-sphinga-4,8-dienine ceramide + 2 a ferricytochrome b5 + 2 H2O
a (4E)-4-sphinga-4,8-dienine ceramide + 2 a ferrocytochrome b5 + oxygen + 2 H+ = a sphinga-4,8,10-trienine ceramide + 2 a ferricytochrome b5 + 2 H2O
1-(hexacosanoyl)-2-acyl-[glycerolipid] + 2 a ferrocytochrome b5 + oxygen + 2 H+ = 1-(17Z-hexacosenoyl)-2-acyl-[glycerolipid] + 2 a ferricytochrome b5 + 2 H2O
1-(tetracosanoyl)-2-acyl-[glycerolipid] + 2 a ferrocytochrome b5 + oxygen + 2 H+ = 1-(15Z-tetracosenoyl)-2-acyl-[glycerolipid] + 2 a ferricytochrome b5 + 2 H2O
a long-chain acyl-[acp] + a reduced flavodoxin + oxygen = a 7-hydroxy-long-chain acyl-[acp] + an oxidized flavodoxin + H2O
propanoate-3-nitronate + oxygen = 3-oxopropanoate + nitrite + [unspecified degradation products]
2-hydroxyspirilloxanthin + 2 a reduced ferredoxin + oxygen + 2 H+ = 2,2-dihydroxyspirilloxanthin + 2 an oxidized ferredoxin + H2O
spirilloxanthin + 2 a reduced ferredoxin + oxygen + 2 H+ = 2-hydroxyspirilloxanthin + 2 an oxidized ferredoxin + H2O
2-oxo-2'-hydroxyspirilloxanthin + 2 a reduced ferredoxin + oxygen + 2 H+ = 2-oxo-2',2'-dihydroxyspirilloxanthin + 2 an oxidized ferredoxin + H2O
2-oxospirilloxanthin + 2 a reduced ferredoxin + oxygen + 2 H+ = 2-oxo-2'-hydroxyspirilloxanthin + 2 an oxidized ferredoxin + H2O
spheroiden-2-ol + 2 a reduced ferredoxin + oxygen + 2 H+ = 2,2-dihydroxyspheroidene + 2 an oxidized ferredoxin + H2O
spheroidene + 2 a reduced ferredoxin + oxygen + 2 H+ = spheroiden-2-ol + 2 an oxidized ferredoxin + H2O
nitroxyl + 2 a reduced c-type cytochrome + oxygen + H+ = nitrite + 2 an oxidized c-type cytochrome + H2O
syringaldazine + oxygen = oxidized syringaldazine + 2 H2O
[4,5-dihydroxy-10-oxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate + oxygen = [4,5-dihydroxy-9,10-dioxo-3-(3-oxobutanoyl)-9,10-dihydroanthracen-2-yl]acetate + H2O
(3,5-dihydroxyphenyl)acetyl-CoA + oxygen = (3,5-dihydroxyphenyl)glyoxylate + coenzyme A + H+

In Transport reactions:
oxygen[periplasmic space]oxygen[cytosol]

In Redox half-reactions:
ammonia[in] + oxygen[in] + 2 H+[in] + 2 e-[membrane] → hydroxylamine[in] + H2O[in] ,
oxygen[out] + 2 H+[out] + 2 e-[membrane] → hydrogen peroxide[out] ,
oxygen[in] + 4 H+[in] + 4 e-[membrane] → 2 H2O[in] ,
ammonium[membrane] + oxygen[membrane] + H+[membrane] + 2 e-[membrane] → hydroxylamine[membrane] + H2O[membrane]

Enzymes inhibited by oxygen, sorted by the type of inhibition, are:

Inhibitor (Irreversible) of: pyruvate formate-lyase [Knappe84] , 4-hydroxyphenylacetate decarboxylase [Selmer01]

Inhibitor (Allosteric) of: L-lactate dehydrogenase

Inhibitor (Mechanism unknown) of: quinolinate synthase [DraczynskaLusia92, Gardner91] , formate dehydrogenase-N [Enoch75] , hydroxylamine reductase [Wolfe02] , formate dehydrogenase [Axley90] , aldehyde decarbonylase [SchneiderBelhad00] , methyl-H4MPT:coenzyme M methyltransferase [Gartner93] , D-ornithine aminomutase [Somack73] , 2,3-dihydroxy-isovalerate dehydratase [Xing91] , 2,3-dihydroxy-3-methylvalerate hydro-lyase [Xing91] , arginine 2-monooxygenase [Van62] , ornithine cyclodeaminase [Muth74] , tyrosinase [Steiner99]

Inhibitor (Other types) of: carbon-monoxide dehydrogenase [Bonam89] , 4-hydroxybutyrate dehydrogenase [Wolff95] , 2,3-dihydroxy-3-methylvalerate hydro-lyase [Xing91] , NAD-dependent formate dehydrogenase [Kearny72]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: deacetoxycephalosporin C hydroxylase , deacetoxycephalosporin C synthase , deacetoxycephalosporin C hydroxylase , deacetoxycephalosporin C synthase

This compound has been characterized as an alternative substrate of the following enzymes: L-aspartate oxidase , hydrogenase


References

Axley90: Axley MJ, Grahame DA, Stadtman TC (1990). "Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component." J Biol Chem 1990;265(30);18213-8. PMID: 2211698

Bonam89: Bonam D, Lehman L, Roberts GP, Ludden PW (1989). "Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity." J Bacteriol 171(6);3102-7. PMID: 2498285

DraczynskaLusia92: Draczynska-Lusiak B, Brown OR (1992). "Protein A of quinolinate synthetase is the site of oxygen poisoning of pyridine nucleotide coenzyme synthesis in Escherichia coli." Free Radic Biol Med 13(6);689-93. PMID: 1459486

Enoch75: Enoch HG, Lester RL (1975). "The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli." J Biol Chem 1975;250(17);6693-705. PMID: 1099093

Gardner91: Gardner PR, Fridovich I (1991). "Quinolinate synthetase: the oxygen-sensitive site of de novo NAD(P)+ biosynthesis." Arch Biochem Biophys 284(1);106-11. PMID: 1846509

Gartner93: Gartner P, Ecker A, Fischer R, Linder D, Fuchs G, Thauer RK (1993). "Purification and properties of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum." Eur J Biochem 1993;213(1);537-45. PMID: 8477726

Kearny72: Kearny JJ, Sagers RD (1972). "Formate dehydrogenase from Clostridium acidiurici." J Bacteriol 109(1);152-61. PMID: 4333376

Knappe84: Knappe J, Neugebauer FA, Blaschkowski HP, Ganzler M (1984). "Post-translational activation introduces a free radical into pyruvate formate-lyase." Proc Natl Acad Sci U S A 81(5);1332-5. PMID: 6369325

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Muth74: Muth WL, Costilow RN (1974). "Ornithine cyclase (deaminating). II. Properties of the homogeneous enzyme." J Biol Chem 249(23);7457-62. PMID: 4373469

SchneiderBelhad00: Schneider-Belhaddad F, Kolattukudy P (2000). "Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum." Arch Biochem Biophys 377(2);341-9. PMID: 10845712

Selmer01: Selmer T, Andrei PI (2001). "p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol." Eur J Biochem 268(5);1363-72. PMID: 11231288

Somack73: Somack R, Costilow RN (1973). "Purification and properties of a pyridoxal phosphate and coenzyme B 12 dependent D- -ornithine 5,4-aminomutase." Biochemistry 1973;12(14);2597-604. PMID: 4711468

Steiner99: Steiner U, Schliemann W, Boehm H, Strack D (1999). "Tyrosinase involved in betalain biosynthesis of higher plants." Planta, 208, 114-124.

Van62: Van Thoai, N., Olomucki, A. (1962). "Arginine decarboxy-oxydase I. Caracteres et nature de l'enzyme." Biochimica Biophysica Acta 59:533-544.

Wolfe02: Wolfe MT, Heo J, Garavelli JS, Ludden PW (2002). "Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli." J Bacteriol 184(21);5898-902. PMID: 12374823

Wolff95: Wolff RA, Kenealy WR (1995). "Purification and characterization of the oxygen-sensitive 4-hydroxybutanoate dehydrogenase from Clostridium kluyveri." Protein Expr Purif 6(2);206-12. PMID: 7606170

Xing91: Xing RY, Whitman WB (1991). "Characterization of enzymes of the branched-chain amino acid biosynthetic pathway in Methanococcus spp." J Bacteriol 173(6);2086-92. PMID: 2002010


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 19.0 on Mon Apr 27, 2015, BIOCYC13A.