Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
Metabolic Modeling Tutorial
early discounted registration
ends Feb 21th, 2015
twitter

MetaCyc Compound: oxygen

Systematic Name: O2

Abbrev Name: O2

Synonyms: oxygen molecule

Superclasses: a non-metabolic compound

Chemical Formula: O2

Molecular Weight: 31.999 Daltons

Monoisotopic Molecular Weight: 31.9898292442 Daltons

SMILES: O=O

InChI: InChI=1S/O2/c1-2

InChIKey: InChIKey=MYMOFIZGZYHOMD-UHFFFAOYSA-N

Unification Links: CAS:7782-44-7 , ChEBI:15379 , ChemSpider:952 , HMDB:HMDB01377 , IAF1260:33493 , KEGG:C00007 , MetaboLights:MTBLC15379 , PubChem:977

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 3.92 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(+)-camphor degradation :
(+)-bornane-2,5-dione + NADH + H+ + oxygen → (+)-5-oxo-1,2-campholide + NAD+ + H2O
[(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA + NADPH + H+ + oxygen → [(2R)-3,3,4-trimethyl-6-oxo-3,6-dihydro-1H-pyran-2-yl]acetyl-CoA + NADP+ + H2O
(+)-camphor + a reduced putidaredoxin + oxygen → (+)-5-exo-hydroxycamphor + an oxidized putidaredoxin + H2O

(-)-camphor degradation :
[(1R)-2,2,3-trimethyl-5-oxocyclopent-3-enyl]acetyl-CoA + NADPH + H+ + oxygen → [(2R)-3,3,4-trimethyl-6-oxo-3,6-dihydro-1H-pyran-2-yl]acetyl-CoA + NADP+ + H2O
(-)-camphor + a reduced putidaredoxin + oxygen → (-)-3-exo-hydroxycamphor + an oxidized putidaredoxin + H2O
3,6-diketocamphane + NADH + H+ + oxygen → (-)-5-oxo-1,2-campholide + NAD+ + H2O

(1'S,5'S)-averufin biosynthesis :
(1'S)-averantin + NADPH + H+ + oxygen → (1'S,5'R)-hydroxyaverantin + NADP+ + H2O
(1'S)-averantin + NADPH + H+ + oxygen → (1'S,5'S)-hydroxyaverantin + NADP+ + H2O
norsolorinate anthrone + oxygen → norsolorinate + H2O

(3E)-4,8-dimethylnona-1,3,7-triene biosynthesis :
(3S,6E)-nerolidol + NADPH + H+ + oxygen → (3E)-4,8-dimethylnona-1,3,7-triene + but-1-en-3-one + NADP+ + 2 H2O
(3R,6E)-nerolidol + NADPH + H+ + oxygen → (3E)-4,8-dimethylnona-1,3,7-triene + but-1-en-3-one + NADP+ + 2 H2O

(4R)-carveol and (4R)-dihydrocarveol degradation :
(+)-isodihydrocarvone + NADPH + oxygen + H+ → (3S,6R)-6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O
(+)-dihydrocarvone + NADPH + H+ + oxygen → (4R,7R)-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O

(4R)-carvone biosynthesis :
(4S)-limonene + NADPH + oxygen + H+ → (-)-trans-carveol + NADP+ + H2O

(4S)-carveol and (4S)-dihydrocarveol degradation :
(-)-dihydrocarvone + NADPH + oxygen + H+ → (3S,6S)-6-isopropenyl-3-methyloxepan-2-one + NADP+ + H2O
(-)-isodihydrocarvone + NADPH + H+ + oxygen → (4S,7R)-4-isopropenyl-7-methyloxepan-2-one + NADP+ + H2O

(4S)-carvone biosynthesis :
(4R)-limonene + NADPH + H+ + oxygen → (+)-trans-carveol + NADP+ + H2O

(5R)-carbapenem carboxylate biosynthesis :
(3S,5S)-carbapenam-3-carboxylate + 2-oxoglutarate + oxygen → (5R)-carbapen-2-em-3-carboxylate + succinate + CO2 + H2O

(E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene biosynthesis :
(E,E)-geranyllinalool + NADPH + H+ + oxygen → 4,8,12-trimethyl-1,3,7,11-tridecatetraene + but-1-en-3-one + NADP+ + 2 H2O

(S)-reticuline biosynthesis I :
(S)-N-methylcoclaurine + NADPH + oxygen + H+ → 3'-hydroxy-N-methyl-(S)-coclaurine + NADP+ + H2O
L-tyrosine + 0.5 oxygen → L-dopa

(S)-reticuline biosynthesis II :
L-tyrosine + 0.5 oxygen → L-dopa

(Z)-9-tricosene biosynthesis :
(15Z)-tetracos-15-enal + NADPH + oxygen + H+ → (Z)-9-tricosene + CO2 + NADP+ + H2O

1,2,4,5-tetrachlorobenzene degradation :
1,2,4,5-tetrachlorobenzene + NADH + oxygen + H+ → 1,3,4,6-tetrachloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+

1,2,4-trichlorobenzene degradation :
1,2,4-trichlorobenzene + NADH + oxygen + H+ → 3,4,6-trichloro-cis-1,2-dihydroxy-1,2-dihydrocyclohexa-3,5-diene + NAD+

1,2-dichlorobenzene degradation :
1,2-dichlorobenzene + NADH + oxygen + H+ → 1,2-dichlorobenzene dihydrodiol + NAD+

1,3-dichlorobenzene degradation :
1,3-dichlorobenzene + NADH + oxygen + H+ → 3,5-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+

1,4-dichlorobenzene degradation :
1,4-dichlorobenzene + NADH + oxygen + H+ → 3,6-dichloro-cis-1,2-dihydroxycyclohexa-3,5-diene + NAD+

1,5-anhydrofructose degradation :
1,5-anhydro-D-mannitol + a reduced flavoprotein + oxygen → D-mannose + an oxidized flavoprotein + H2O

1,8-cineole degradation :
6-oxocineole + NADPH + oxygen + H+ → 1,6,6-trimethyl-2,7-dioxobicyclo-(3,2,2)nonan-3-one + NADP+ + H2O
1,8-cineole + 2 H+ + oxygen → 6-endo-hydroxycineole + H2O

10-cis-heptadecenoyl-CoA degradation (yeast) :
3-hydroxy-heptanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-pentanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-nonanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-heptanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-undecanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-nonanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
4-cis-undecenoyl-CoA + oxygen → 2-trans, 4-cis-undecadienoyl-CoA + hydrogen peroxide
6-cis-tridecenoyl-CoA + oxygen → 6-cis, 2-trans-tridecadienoyl-CoA + hydrogen peroxide
10-cis-heptadecenoyl-CoA + 2 coenzyme A + 2 NAD+ + 2 H2O + 2 oxygen → 6-cis-tridecenoyl-CoA + 2 acetyl-CoA + 2 hydrogen peroxide + 2 NADH + 2 H+

10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) :
3-hydroxy-heptanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-pentanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-nonanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-heptanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+

10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) :
4-trans-undecenoyl-CoA + oxygen → 2-trans, 4-trans-undecadienoyl-CoA + hydrogen peroxide
6-trans-tridecenoyl-CoA + oxygen → 2-trans-6-trans-tridecadienoyl-CoA + hydrogen peroxide
10-trans-heptadecenoyl-CoA + 2 coenzyme A + 2 NAD+ + 2 H2O + 2 oxygen → 6-trans-tridecenoyl-CoA + 2 acetyl-CoA + 2 hydrogen peroxide + 2 NADH + 2 H+
3-hydroxy-heptanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-pentanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-nonanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-heptanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+
3-hydroxy-undecanoyl-CoA + coenzyme A + NAD+ + H2O + oxygen → 3-hydroxy-nonanoyl-CoA + acetyl-CoA + hydrogen peroxide + NADH + H+

11-cis-3-hydroxyretinal biosynthesis :
zeaxanthin + oxygen → (3R)-11-cis-3-hydroxyretinal + (3R)-all-trans-3-hydroxyretinal

2,2'-dihydroxybiphenyl degradation :
pyrogallol + oxygen → (2Z,4E)-2-hydroxyhexa-2,4-dienedioate + 2 H+
2,3-dihydroxybenzoate + NADH + oxygen + 2 H+ → pyrogallol + CO2 + NAD+ + H2O
2,2',3,3'-tetrahydroxybiphenyl + oxygen → 2-hydroxy-6-oxo-6-(2,3-dihydroxyphenyl)-hexa-2,4-dienoate + H+
2,2',3-trihydroxybiphenyl + NADH + oxygen + H+ → 2,2',3,3'-tetrahydroxybiphenyl + NAD+ + H2O
2,2',3-trihydroxybiphenyl + oxygen → 2-hydroxy-6-oxo-6-(2-hydroxyphenyl)-hexa-2,4-dienoate + H+
2,2'-dihydroxybiphenyl + NADH + oxygen + H+ → 2,2',3-trihydroxybiphenyl + NAD+ + H2O

2,3-dihydroxybenzoate degradation :
2,3-dihydroxybenzoate + oxygen → 3-carboxy-2-hydroxymuconate semialdehyde + H+

2,4,5-trichlorophenoxyacetate degradation :
2,4,5-trichlorophenol + FADH2 + oxygen → 2,5-dichloro-p-quinone + chloride + FAD + H2O + H+
2,5-dichloro-p-quinol + FADH2 + oxygen → 5-chlorohydroxyquinone + chloride + FAD + H2O + 3 H+
1,2,4-benzenetriol + oxygen → 2-maleylacetate + 2 H+
2,4,5-trichloro-phenoxyacetate + NADH + oxygen → 2,4,5-trichlorophenol + glyoxylate + NAD+ + H2O

2,4,6-trichlorophenol degradation :
2,6-dichloro-p-hydroquinone + FADH2 + oxygen + H+ → 6-chlorohydroxyquinol + chloride + FAD + H2O
2,4,6-trichlorophenol + FADH2 + oxygen → 2,6-dichloro-p-hydroquinone + chloride + FAD + H2O
6-chlorohydroxyquinol + oxygen → 2-chloromaleylacetate + 2 H+

2,4-dichlorophenoxyacetate degradation :
2,4-dichlorophenol + NADPH + oxygen + H+ → 3,5-dichlorocatechol + NADP+ + H2O
2,4-dichlorophenoxyacetate + 2-oxoglutarate + oxygen → 2,4-dichlorophenol + glyoxylate + succinate + CO2

2,4-dichlorotoluene degradation :
2,4-dichlorotoluene + NADH + oxygen + H+ → 4,6-dichloro-3-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+
4,6-dichloro-3-methylcatechol + oxygen → 3,5-dichloro-2-methyl-muconate + 2 H+

2,4-dinitrotoluene degradation :
2,4,5-trihydroxytoluene + oxygen → 2,4-dihydroxy-5-methyl-6-oxohexa-2,4-dienoate + H+
4-methyl-5-nitrocatechol + NADPH + oxygen → 2-hydroxy-5-methylquinone + nitrite + NADP+ + H+ + H2O
2,4-dinitrotoluene + NADH + oxygen → 4-methyl-5-nitrocatechol + nitrite + NAD+

2,5-dichlorotoluene degradation :
2,5-dichlorotoluene + NADH + oxygen + H+ → 3,6-dichloro-4-methyl-cis-1,2-dihydro-1,2-dihydroxycyclohexa-3,5-diene + NAD+
3,6-dichloro-4-methylcatechol + oxygen → 2,5-dichloro-3-methyl-muconate + 2 H+

2,6-dinitrotoluene degradation :
3-methyl-4-nitrocatechol + oxygen → 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoate + H+
2,6-dinitrotoluene + NADH + oxygen → 3-methyl-4-nitrocatechol + nitrite + NAD+

2-aminoethylphosphonate degradation III :
(2-amino-1-hydroxyethyl)phosphonate + oxygen → glycine + phosphate + 2 H+
(2-aminoethyl)phosphonate + 2-oxoglutarate + oxygen → (2-amino-1-hydroxyethyl)phosphonate + succinate + CO2

2-aminophenol degradation :
2-aminophenol + oxygen → 2-aminomuconate 6-semialdehyde + H+

2-chlorobenzoate degradation :
2-chlorobenzoate + NADH + oxygen + H+ → catechol + chloride + CO2 + NAD+

2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis :
2-heptyl-4(1H)-quinolone + NADH + oxygen + H+ → 2-heptyl-3-hydroxy-4(1H)-quinolone + NAD+ + H2O

2-hydroxybiphenyl degradation :
biphenyl-2, 3-diol + oxygen → 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate + H+
2-hydroxybiphenyl + NADH + H+ + oxygen → biphenyl-2, 3-diol + NAD+ + H2O

2-hydroxyphenazine biosynthesis :
phenazine-1-carboxylate + NAD(P)H + oxygen + H+ → 2-hydroxyphenazine-1-carboxylate + NAD(P)+ + H2O

2-isopropylphenol degradation :
3-isopropylcatechol + oxygen → 2-hydroxy-6-oxo-7-methyl-octa-2,4-dienoate + H+
2-isopropylphenol + NADH + oxygen + H+ → 3-isopropylcatechol + NAD+ + H2O

2-nitrobenzoate degradation I , tryptophan degradation XII (Geobacillus) :
3-hydroxyanthranilate + oxygen → aminocarboxymuconate semialdehyde + H+

2-nitrobenzoate degradation II , anthranilate degradation I (aerobic) :
anthranilate + NAD(P)H + oxygen + 3 H+ → catechol + CO2 + ammonium + NAD(P)+

2-nitrophenol degradation :
2-nitrophenol + NADPH + oxygen + 3 H+ → catechol + nitrite + NADP+ + H2O

2-nitrotoluene degradation :
3-methylcatechol + oxygencis,cis-2-hydroxy-6-oxohepta-2,4-dienoate + H+
2-nitrotoluene + H+ + oxygen → 3-methylcatechol + nitrite

2-propylphenol degradation :
2-propylphenol + NADH + oxygen + H+ → 3-propylcatechol + NAD+ + H2O
3-propylcatechol + oxygen → 2-hydroxy-6-oxo-nona-2,4-dienoate + H+

2α,7β-dihydroxylation of taxusin :
2α-hydroxytaxusin + NADPH + oxygen + H+ → 2α, 7β-dihydroxytaxusin + NADP+ + H2O
7β-hydroxytaxusin + NADPH + oxygen + H+ → 2α, 7β-dihydroxytaxusin + NADP+ + H2O
taxusin + NADPH + oxygen + H+ → 2α-hydroxytaxusin + NADP+ + H2O
taxusin + NADPH + oxygen + H+ → 7β-hydroxytaxusin + NADP+ + H2O

3,3'-dithiodipropionate degradation , 3,3'-thiodipropionate degradation :
3-mercaptopropionate + oxygen → 3-sulfinopropionate + H+

3,4,6-trichlorocatechol degradation :
3,4,6-trichlorocatechol + oxygen → 2,3,5-trichloro-cis,cis-muconate + H+

3,4-dichlorobenzoate degradation :
3,4-dichlorobenzoate + a reduced electron acceptor + oxygen → 3,4-dichlorobenzoate-cis-4,5-diol + an oxidized electron acceptor
5-chloroprotocatechuate + oxygen → 6-chloro-2-hydroxy-4-carboxymuconate-6-semialdehyde + H+

3,4-dichlorotoluene degradation :
3,4-dichloro-6-methylcatechol + oxygen → 2,3-dichloro-5-methyl-muconate + 2 H+
3,4-dichlorotoluene + NADH + oxygen + H+ → 3,4-dichlorotoluene dihydrodiol + NAD+

3,5,6-trichloro-2-pyridinol degradation :
3,5,6-trichloro-2-pyridinol + FADH2 + oxygen + 2 H2O → 3,6-dihydroxypyridine-2,5-dione + 3 chloride + FAD + H2O + 4 H+

3,5-dichlorocatechol degradation :
3,5-dichlorocatechol + oxygen → 2,4-dichloro-cis,cis-muconate + 2 H+

3-(4-sulfophenyl)butyrate degradation :
4-sulfoacetophenone + NADPH + H+ + oxygen → 4-sulfophenyl acetate + NADP+ + H2O

Reactions known to produce the compound:

capsaicin biosynthesis , capsiconiate biosynthesis :
2 a malonyl-[acp] + isobutanoyl-CoA + 3 H2O → 8-methyl-6-nonenoate + 2 a holo-[acyl-carrier protein] + coenzyme A + 4 oxygen

ethylene biosynthesis III (microbes) :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen

hydrogen production VIII , photosynthesis light reactions :
4 hν + 2 a plastoquinone + 2 H2O ↔ 2 a plastoquinol + oxygen

intra-aerobic nitrite reduction :
2 nitric oxide → N2 + oxygen

methanol oxidation to formaldehyde IV :
2 hydrogen peroxide → 2 H2O + oxygen

reactive oxygen species degradation (mammalian) :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen
2 hydrogen peroxide → 2 H2O + oxygen

superoxide radicals degradation :
2 superoxide + 2 H+ → hydrogen peroxide + oxygen
2 hydrogen peroxide → 2 H2O + oxygen

Not in pathways:
2 a plastoquinol[chloroplast thylakoid membrane] + oxygen[chloroplast thylakoid lumen] + 4 H+[chloroplast thylakoid lumen] ← hν + 2 a plastoquinone[chloroplast thylakoid membrane] + 2 H2O[chloroplast thylakoid lumen] + 4 H+[chloroplast stroma]

Reactions known to both consume and produce the compound:

1,4-dichlorobenzene degradation :
3,6-dichlorocatechol + oxygen ↔ 2,5-dichloro-cis,cis-muconate + 2 H+

chlorate reduction , perchlorate reduction :
chloride + oxygen ↔ chlorite

γ-hexachlorocyclohexane degradation :
chlorohydroquinone + oxygen ↔ 5-chlorocarbonyl-4-hydroxy-penta-2,4-dienate + 2 H+

pentachlorophenol degradation :
2,6-dichloro-p-hydroquinone + oxygen + H2O ↔ 2-chloromaleylacetate + chloride + 2 H+

photorespiration :
2-phosphoglycolate + 3-phospho-D-glycerate + 2 H+ ↔ D-ribulose-1,5-bisphosphate + oxygen

In Reactions of unknown directionality:

plumbagin biosynthesis :
acetyl-CoA + 5 malonyl-CoA + 2 NADPH + 6 H+ + oxygen = hexaketide pyrone + 5 CO2 + 6 coenzyme A + 2 NADP+ + 3 H2O

poly-hydroxy fatty acids biosynthesis :
oleate + 2 NADPH + oxygen = 9,10-epoxystearate + 2 NADP+ + H2O

Not in pathways:
2 emodin + oxygen + 2 H2O = hypericin + 4 H2O + oxygen
vitamin K 2,3-epoxide + a [protein] 4-carboxy-L-glutamate + H2O = a [protein]-α-L-glutamate + CO2 + phylloquinone + oxygen + H+
2,5-bis-hydroxymethylfuran + oxygen = 5-hydroxymethylfurfural + hydrogen peroxide
5-hydroxymethylfurfural + 3 oxygen + 2 H2O = 2,5-dicarboxyfuran + 3 hydrogen peroxide + 2 H+
L-histidine + L-cysteine + oxygen = L-alanin-3-yl L-histidin-5-yl S-oxide + H2O
xanthine + 2-oxoglutarate + oxygen = urate + succinate + CO2
hercynine + L-selenocysteine + oxygen = hercynylselenocysteine + H2O
paspaline + NADPH + oxygen + H+ = terpendole E + NADP+ + H2O
2-hydroxy-5-methyl-1-naphthoate + a reduced electron acceptor + oxygen = 2,7-dihydroxy-5-methyl-1-naphthoate + an oxidized electron acceptor + H2O
(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoate + NADPH + H+ + oxygen = 22-hydroxydocosahexaenoate + NADP+ + H2O
dihydromonacolin L acid + NADPH + oxygen + H+ = monacolin L acid + NADP+ + 2 H2O
2-oxo-2'-hydroxyspirilloxanthin + a reduced ferredoxin + oxygen + 2 H+ = 2-oxo-2',2'-dihydroxyspirilloxanthin + an oxidized ferredoxin + H2O
2-oxospirilloxanthin + a reduced ferredoxin + oxygen + 2 H+ = 2-oxo-2'-hydroxyspirilloxanthin + an oxidized ferredoxin + H2O
2-hydroxyspirilloxanthin + a reduced ferredoxin + oxygen + 2 H+ = 2,2-dihydroxyspirilloxanthin + an oxidized ferredoxin + H2O
spirilloxanthin + a reduced ferredoxin + oxygen + 2 H+ = 2-hydroxyspirilloxanthin + an oxidized ferredoxin + H2O
spheroiden-2-ol + a reduced ferredoxin + oxygen + 2 H+ = 2,2-dihydroxyspheroidene + an oxidized ferredoxin + H2O
spheroidene + a reduced ferredoxin + oxygen + 2 H+ = spheroiden-2-ol + an oxidized ferredoxin + H2O
simazine + a reduced electron acceptor + oxygen = deethylsimazine + acetaldehyde + an oxidized electron acceptor + H2O
3,5,6-trichloro-2-pyridinol + FADH2 + oxygen = 3,6-dichloropyridine-2,5-dione + chloride + FAD + H2O + 2 H+
luteolin + NADPH + oxygen + H+ = 8-hydroxy-luteolin + NADP+ + H2O
2 3-amino-4-hydroxybenzaldehyde + N-acetyl-L-cysteine + 2 oxygen = grixazone A + formate + 3 H2O + H+
2 3-amino-4-hydroxybenzoate + N-acetyl-L-cysteine + 2 oxygen + H+ = grixazone B + CO2 + 4 H2O
(S)-3-chloro-β-tyrosyl-[SgcC2] + FADH2 + oxygen = (S)-3-chloro-5-hydroxy-β-tyrosyl-[SgcC2] + FAD + H2O + H+
(S)-β-tyrosyl-[SgcC2] + chloride + FADH2 + oxygen = (S)-3-chloro-β-tyrosyl-[SgcC2] + FAD + 2 H2O
NADPH + phylloquinone + H+ + oxygen = NADP+ + ω-hydroxyphylloquinone + H2O
4-mercaptobutanoate + oxygen = 4-oxo-4-sulfanylbutanoate + H2O
menadiol + oxygen + 2 H+ = menadione + 2 H2O
miltiradiene + 2 NADPH + 2 H+ + 2 oxygen = ferruginol + 2 NADP+ + 3 H2O
5-methyl-1-naphthoate + NADPH + H+ + oxygen = 3-hydroxy-5-methyl-1-naphthoate + NADP+ + H2O
(S)-4-hydroxymandelate + oxygen = 2-(4-hydroxyphenyl)-2-oxoacetate + hydrogen peroxide
4 Fe2+ + oxygen + 6 H2O = 4 [FeO(OH)] monomer + 8 H+
2 Fe2+ + oxygen + 4 H2O = 2 [FeO(OH)] monomer + hydrogen peroxide + 4 H+
(1R,4S)-1-hydroxymenth-8-en-2-one + NADPH + oxygen = (3R)-3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
(1S,4R)-1-hydroxymenth-8-en-2-one + NADPH + oxygen = (3S)-3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
a 1-hydroxymenth-8-en-2-one + NADPH + oxygen = a 3-isopropenyl-6-oxoheptanoate + NADP+ + H2O
3-chloro-4-(3-chloro-2-nitrosophenyl)-1H-pyrrole + NAD(P)H + oxygen + H+ = pyrrolnitrin + NAD(P)+ + H2O
aminopyrrolnitrin + NAD(P)H + oxygen + H+ = N-[2-chloro-6-(4-chloro-1H-pyrrol-3-yl)phenyl]hydroxylamine + NAD(P)+ + H2O
L-tyrosine + H2O + oxygen = 4-hydroxyphenylpyruvate + ammonium + hydrogen peroxide
a 3' hydroxy flavanone + NADPH + oxygen + H+ = a 3',5'-dihydroxy isoflavanone + NADP+ + H2O
a flavanone + NADPH + oxygen + H+ = a 3' hydroxy flavanone + NADP+ + H2O
15-demethoxyaclacinomycin T + a reduced electron acceptor + H+ + oxygen = 10-decarboxymethylaclacinomycin T + CO2 + an oxidized electron acceptor + H2O
15-demethoxy-aclacinomycin A + a reduced electron acceptor + H+ + oxygen = 10-decarboxymethyl, 10-hydroxyaclacinomycin A + CO2 + an oxidized electron acceptor + H2O
15-demethoxy-ε-rhodomycinone + a reduced electron acceptor + oxygen + H+ = β-rhodomycinone + CO2 + an oxidized electron acceptor + H2O
20-hydroxyecdysone-26-aldehyde + a reduced flavoprotein + oxygen = 20-hydroxyecdysonate + an oxidized flavoprotein + H2O + H+
20,26-dihydroxyecdysone + a reduced flavoprotein + oxygen = 20-hydroxyecdysone-26-aldehyde + an oxidized flavoprotein + 2 H2O
20-hydroxyecdysone + a reduced flavoprotein + oxygen = 20,26-dihydroxyecdysone + an oxidized flavoprotein + H2O
methylsulfonyl + FMNH2 + oxygen = methanesulfonate + FMN + H2O + H+
gibberellin A37 (closed lactone form) + 2 H+ + oxygen = gibberellin A38 + H2O
cyclo[(Z)-α,β-didehydrophenylalanyl-L-leucyl] + oxygen = albonoursin + hydrogen peroxide
cyclo(L-leucyl-L-phenylalanyl) + oxygen = cyclo[(Z)-α,β-didehydrophenylalanyl-L-leucyl] + hydrogen peroxide
a 7-hydroxy-long-chain acyl-[acp] + a reduced flavodoxin + oxygen = a 7,8-dihydroxy-long-chain acyl-[acp] + an oxidized flavodoxin + H2O
a long-chain acyl-[acp] + a reduced flavodoxin + oxygen = a 7-hydroxy-long-chain acyl-[acp] + an oxidized flavodoxin + H2O
a 7,8-dihydroxy-long-chain acyl-[acp] + a reduced flavodoxin + oxygen = 7-oxoheptanoyl-[acyl-carrier-protein] + an n-alkanal + an oxidized flavodoxin + 2 H2O
benzoate + NADPH + H+ + oxygen = salicylate + NADP+ + H2O
2 5'-dehydroinosine + oxygen = 2 9-riburonosylhypoxanthine + 2 H+
2 inosine + oxygen = 2 5'-dehydroinosine + 2 H2O
cannabinerolate + oxygen = cannabidiolate + hydrogen peroxide
2 L-arginine + 2 NADPH + 2 H+ + 2 oxygen = 2 Nω-hydroxy-L-arginine + 2 NADP+ + 2 H2O
2 Nω-hydroxy-L-arginine + NAD(P)H + 2 oxygen = 2 L-citrulline + 2 nitric oxide + NAD(P)+ + 2 H2O + H+
2 Nω-hydroxy-L-arginine + NADPH + 2 oxygen = 2 L-citrulline + 2 nitric oxide + NADP+ + 2 H2O + H+
2 L-arginine + 2 NAD(P)H + 2 H+ + 2 oxygen = 2 Nω-hydroxy-L-arginine + 2 NAD(P)+ + 2 H2O
all-trans-β-carotene + a reduced electron acceptor + oxygen = β-carotene 15,15' epoxide + an oxidized electron acceptor + H2O
3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carbaldehyde + NAD(P)H + oxygen = 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carboxylate + NAD(P)+ + H2O
4β-hydroxymethyl-4α-methyl-5α-cholest-7-en-3β-ol + NAD(P)H + H+ + oxygen = 3β-hydroxy-4β-methyl-5α-cholest-7-ene-4α-carbaldehyde + NAD(P)+ + 2 H2O
4,4-dimethyl-5α-cholest-7-en-3β-ol + NAD(P)H + oxygen + H+ = 4β-hydroxymethyl-4α-methyl-5α-cholest-7-en-3β-ol + NAD(P)+ + H2O
a [protein] N6,N6-dimethyl-L-lysine + 2-oxoglutarate + oxygen = a [protein] N6-methyl-L-lysine + succinate + formaldehyde + CO2
2 2-aminophenol + oxygen = 2 1,2-benzoquinone monoimine + 2 H2O
1-[4,5,7,10-tetrahydroxy-3-(3-oxobutanoyl)anthracen-2-yl]pentane-1,2,4-trione + oxygen = premithramycinone G + H2O
5'-dehydroadenosine + oxygen + H2O = adenin-9-yl riburonosate + hydrogen peroxide + H+
adenosine + oxygen = 5'-dehydroadenosine + hydrogen peroxide
phenanthrene + NADH + H+ + oxygen = (+)-cis-3,4-dihydrophenanthrene-3,4-diol + NAD+
phenylacetate + NADH + oxygen + H+ = 2-hydroxyphenylacetate + NAD+ + H2O
4-hydroxylaminobenzoate + oxygen = 4-nitrobenzoate + H2O
4-aminobenzoate + NADPH + oxygen + H+ = 4-hydroxylaminobenzoate + NADP+ + H2O
9'-cis-neurosporene + a reduced electron acceptor + oxygen = 7',9'-cis-lycopene + an oxidized electron acceptor + 2 H2O
a ferrohemoglobin + oxygen = an oxyhemoglobin
9-methylthiononanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-9-methylthiononylhydroximoyl-L-cysteine + NADP+ + 2 H2O
8-methylthiooctanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-8-methylthiooctylhydroximoyl-L-cysteine + NADP+ + 2 H2O
7-methylthioheptanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-7-methylthioheptylhydroximoyl-L-cysteine + NADP+ + 2 H2O
6-methylthiohexanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-6-methylthiohexylhydroximoyl-L-cysteine + NADP+ + 2 H2O
5-methylthiopentanaldoxime + L-cysteine + NADPH + H+ + oxygen = S-5-methylthiopentylhydroximoyl-L-cysteine + NADP+ + 2 H2O
(Z)-phenylacetaldehyde oxime + L-cysteine + 2 NADPH + oxygen = S-(phenylacetothiohydroximoyl)-L-cysteine + 2 NADP+ + 2 H2O
4-methylthiobutanaldoxime + L-cysteine + 2 NADPH + oxygen = S-(4-methylthiobutylhydroximoyl)-L-cysteine + 2 NADP+ + 2 H2O
(E)-indol-3-ylacetaldoxime + L-cysteine + 2 NADPH + oxygen = S-(indolylmethylthiohydroximoyl)-L-cysteine + 2 NADP+ + 2 H2O
5-chloro-3-fluorocatechol + oxygen = 4-chloro-2-fluoromuconate + 2 H+
3-chloro-6-fluorocatechol + oxygen = 4-chloro-2-fluoromuconate + H+
3-chloro-5-fluorocatechol + oxygen = 2-chloro-4-fluoromuconate + 2 H+
3-fluorocatechol + oxygen = 2-fluoromuconate + 2 H+
urate + 2 H2O + oxygen = (S)-(+)-allantoin + CO2 + hydrogen peroxide
3-chloro-5-methylcatechol + oxygen = 2-chloro-4-methyl-cis,cis-muconate + 2 H+
1,2,3-trichlorobenzene + NADH + oxygen + H+ = 1,2,3-trichlorobenzene dihydrodiol + NAD+
S-methyl-L-cysteine + oxygen + H2O = methiin + hydrogen peroxide
3-nitrotoluene + NADH + oxygen = 4-methylcatechol + nitrite + NAD+
cyclohexane + NADPH + H+ + oxygen = cyclohexanol + NADP+ + H2O
acetol + NADPH + oxygen = acetate + formaldehyde + NADP+ + H2O
2 trans-4-hydroxy-L-proline + oxygen = 2 pyrroline-hydroxy-carboxylate + 2 H+ + 2 H2O
(3E)-3-nonenal + oxygen = 4-hydroperoxyoctadeca-t-2-nonenal
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + 3 oxygen = (+)-7-iso-jasmonate + 3 acetate + 3 H+
coniferyl alcohol + NADPH + H+ + oxygen = 5-hydroxy-coniferyl-alcohol + NADP+ + H2O
L-aspartate + dihydroxyacetone phosphate + oxygen = quinolinate + hydrogen peroxide + phosphate + H+ + 2 H2O

In Transport reactions:
oxygen[periplasmic space]oxygen[cytosol]

In Redox half-reactions:
ammonia[in] + oxygen[in] + 2 H+[in] + 2 e- → hydroxylamine[in] + H2O[in] ,
oxygen[out] + 2 H+[out] + 2 e- → hydrogen peroxide[out] ,
oxygen[in] + 4 H+[in] + 4 e- → 2 H2O[in] ,
ammonium + oxygen + H+ + 2 e- → hydroxylamine + H2O

Enzymes inhibited by oxygen, sorted by the type of inhibition, are:

Inhibitor (Irreversible) of: pyruvate formate-lyase [Knappe84] , 4-hydroxyphenylacetate decarboxylase [Selmer01]

Inhibitor (Allosteric) of: L-lactate dehydrogenase

Inhibitor (Mechanism unknown) of: quinolinate synthase [DraczynskaLusia92, Gardner91] , formate dehydrogenase-N [Enoch75] , hydroxylamine reductase [Wolfe02] , formate dehydrogenase [Axley90] , aldehyde decarbonylase [SchneiderBelhad00] , methyl-H4MPT:coenzyme M methyltransferase [Gartner93] , D-ornithine aminomutase [Somack73] , 2,3-dihydroxy-isovalerate dehydratase [Xing91] , 2,3-dihydroxy-3-methylvalerate hydro-lyase [Xing91] , arginine 2-monooxygenase [Van62] , ornithine cyclodeaminase [Muth74] , tyrosinase [Steiner99]

Inhibitor (Other types) of: carbon-monoxide dehydrogenase [Bonam89] , 4-hydroxybutyrate dehydrogenase [Wolff95] , 2,3-dihydroxy-3-methylvalerate hydro-lyase [Xing91] , NAD-dependent formate dehydrogenase [Kearny72]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: deacetoxycephalosporin C hydroxylase , deacetoxycephalosporin C synthase , deacetoxycephalosporin C hydroxylase , deacetoxycephalosporin C synthase


References

Axley90: Axley MJ, Grahame DA, Stadtman TC (1990). "Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component." J Biol Chem 1990;265(30);18213-8. PMID: 2211698

Bonam89: Bonam D, Lehman L, Roberts GP, Ludden PW (1989). "Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity." J Bacteriol 171(6);3102-7. PMID: 2498285

DraczynskaLusia92: Draczynska-Lusiak B, Brown OR (1992). "Protein A of quinolinate synthetase is the site of oxygen poisoning of pyridine nucleotide coenzyme synthesis in Escherichia coli." Free Radic Biol Med 13(6);689-93. PMID: 1459486

Enoch75: Enoch HG, Lester RL (1975). "The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli." J Biol Chem 1975;250(17);6693-705. PMID: 1099093

Gardner91: Gardner PR, Fridovich I (1991). "Quinolinate synthetase: the oxygen-sensitive site of de novo NAD(P)+ biosynthesis." Arch Biochem Biophys 284(1);106-11. PMID: 1846509

Gartner93: Gartner P, Ecker A, Fischer R, Linder D, Fuchs G, Thauer RK (1993). "Purification and properties of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum." Eur J Biochem 1993;213(1);537-45. PMID: 8477726

Kearny72: Kearny JJ, Sagers RD (1972). "Formate dehydrogenase from Clostridium acidiurici." J Bacteriol 109(1);152-61. PMID: 4333376

Knappe84: Knappe J, Neugebauer FA, Blaschkowski HP, Ganzler M (1984). "Post-translational activation introduces a free radical into pyruvate formate-lyase." Proc Natl Acad Sci U S A 81(5);1332-5. PMID: 6369325

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Muth74: Muth WL, Costilow RN (1974). "Ornithine cyclase (deaminating). II. Properties of the homogeneous enzyme." J Biol Chem 249(23);7457-62. PMID: 4373469

SchneiderBelhad00: Schneider-Belhaddad F, Kolattukudy P (2000). "Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum." Arch Biochem Biophys 377(2);341-9. PMID: 10845712

Selmer01: Selmer T, Andrei PI (2001). "p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol." Eur J Biochem 268(5);1363-72. PMID: 11231288

Somack73: Somack R, Costilow RN (1973). "Purification and properties of a pyridoxal phosphate and coenzyme B 12 dependent D- -ornithine 5,4-aminomutase." Biochemistry 1973;12(14);2597-604. PMID: 4711468

Steiner99: Steiner U, Schliemann W, Boehm H, Strack D (1999). "Tyrosinase involved in betalain biosynthesis of higher plants." Planta, 208, 114-124.

Van62: Van Thoai, N., Olomucki, A. (1962). "Arginine decarboxy-oxydase I. Caracteres et nature de l'enzyme." Biochimica Biophysica Acta 59:533-544.

Wolfe02: Wolfe MT, Heo J, Garavelli JS, Ludden PW (2002). "Hydroxylamine reductase activity of the hybrid cluster protein from Escherichia coli." J Bacteriol 184(21);5898-902. PMID: 12374823

Wolff95: Wolff RA, Kenealy WR (1995). "Purification and characterization of the oxygen-sensitive 4-hydroxybutanoate dehydrogenase from Clostridium kluyveri." Protein Expr Purif 6(2);206-12. PMID: 7606170

Xing91: Xing RY, Whitman WB (1991). "Characterization of enzymes of the branched-chain amino acid biosynthetic pathway in Methanococcus spp." J Bacteriol 173(6);2086-92. PMID: 2002010


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sun Feb 1, 2015, biocyc13.