Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: pyruvate

Synonyms: alpha-ketopropionic acid, BTS, α-ketopropionic acid, acetylformic acid, pyroracemic acid, 2-oxopropanoic acid, pyruvic acid, 2-oxopropanoate, 2-oxo-propionic acid

Superclasses: an acid all carboxy acids a carboxylate a 2-oxo acid a 2-oxo carboxylate
an acid all carboxy acids a carboxylate a 2-oxo carboxylate

Component of: sodium pyruvate

Chemical Formula: C3H3O3

Molecular Weight: 87.055 Daltons

Monoisotopic Molecular Weight: 88.0160439947 Daltons

SMILES: CC(=O)C(=O)[O-]

InChI: InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6)/p-1

InChIKey: InChIKey=LCTONWCANYUPML-UHFFFAOYSA-M

Unification Links: CAS:127-17-3 , ChEBI:15361 , ChemSpider:96901 , HMDB:HMDB00243 , IAF1260:33546 , KEGG:C00022 , KNApSAcK:C00001200 , MetaboLights:MTBLC15361 , PubChem:107735 , UMBBD-Compounds:c0159

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -82.398705 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

7-(3-amino-3-carboxypropyl)-wyosine biosynthesis , methylwyosine biosynthesis :
N1-methylguanine37 in tRNAPhe + pyruvate + S-adenosyl-L-methionine → 4-demethylwyosine37 in tRNAPhe + L-methionine + 5'-deoxyadenosine + CO2 + H2O

acetaldehyde biosynthesis I , acetaldehyde biosynthesis II , chitin degradation to ethanol , long chain fatty acid ester synthesis for microdiesel production , pyruvate fermentation to acetate VIII , pyruvate fermentation to ethanol II :
pyruvate + H+ → acetaldehyde + CO2

acetoin biosynthesis III :
pyruvate + acetaldehyde + H+ → acetoin + CO2
pyruvate + H+ → acetaldehyde + CO2

alanine degradation II (to D-lactate) , heterolactic fermentation , mixed acid fermentation , superpathway of fermentation (Chlamydomonas reinhardtii) , superpathway of glucose and xylose degradation , vancomycin resistance I :
(R)-lactate + NAD+pyruvate + NADH + H+

ammonia oxidation III :
pyruvate + hydroxylamine → pyruvic oxime + H2O

C4 photosynthetic carbon assimilation cycle, NAD-ME type , C4 photosynthetic carbon assimilation cycle, NADP-ME type , C4 photosynthetic carbon assimilation cycle, PEPCK type , glutamine biosynthesis III :
pyruvate + ATP + phosphate → phosphoenolpyruvate + AMP + diphosphate + H+

ephedrine biosynthesis :
benzoate + pyruvate → 1-phenylpropane-1,2-dione + CO2

gluconeogenesis I , glycolysis I (from glucose 6-phosphate) , glycolysis II (from fructose 6-phosphate) , reductive TCA cycle I :
pyruvate + ATP + H2O → phosphoenolpyruvate + AMP + phosphate + 2 H+

gluconeogenesis II (Methanobacterium thermoautotrophicum) , gluconeogenesis III , incomplete reductive TCA cycle , itaconate biosynthesis , Methanobacterium thermoautotrophicum biosynthetic metabolism :
pyruvate + hydrogen carbonate + ATP → oxaloacetate + ADP + phosphate + H+

isoleucine biosynthesis I (from threonine) , isoleucine biosynthesis III , isoleucine biosynthesis IV :
pyruvate + 2-oxobutanoate + H+ → (S)-2-aceto-2-hydroxybutanoate + CO2

isoleucine biosynthesis II :
acetyl-CoA + pyruvate + H2O → (R)-citramalate + coenzyme A + H+
pyruvate + 2-oxobutanoate + H+ → (S)-2-aceto-2-hydroxybutanoate + CO2

lupanine biosynthesis :
3 cadaverine + 4 pyruvate → 17-oxosparteine + 4 L-alanine + H+ + 3 H2O

lysine biosynthesis I , lysine biosynthesis II , lysine biosynthesis III , lysine biosynthesis VI :
pyruvate + L-aspartate-semialdehyde → (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate + H2O + H+

methylerythritol phosphate pathway I , methylerythritol phosphate pathway II , pyridoxal 5'-phosphate biosynthesis I , thiazole biosynthesis I (E. coli) , thiazole biosynthesis II (Bacillus) :
pyruvate + D-glyceraldehyde 3-phosphate + H+ → 1-deoxy-D-xylulose 5-phosphate + CO2

prodigiosin biosynthesis :
pyruvate + trans-2-octenal + H+ → (S)-3-acetyloctanal + CO2

pyruvate fermentation to opines :
strombine + NAD+ + H2O ← pyruvate + glycine + NADH + H+
tauropine + NAD+ + H2O ← pyruvate + taurine + NADH + H+
β-alanopine + NAD+ + H2O ← pyruvate + β-alanine + NADH + H+
alanopine + NAD+ + H2O ← pyruvate + L-alanine + NADH + H+
D-octopine + NAD+ + H2O ← L-arginine + pyruvate + NADH + H+

pyruvate oxidation pathway , pyruvate to cytochrome bd terminal oxidase electron transfer , pyruvate to cytochrome bo oxidase electron transfer :
pyruvate + an ubiquinone[inner membrane] + H2O → CO2 + acetate + an ubiquinol[inner membrane]

Not in pathways:
D-lysopine + NADP+ + H2O ← pyruvate + L-lysine + NADPH + H+
pyruvate + coenzyme A + H+ + oxygen → CO2 + hydrogen peroxide + acetyl-CoA
pyruvate + phosphate + H+ + oxygen → acetyl phosphate + CO2 + hydrogen peroxide

dimethylsulfoniopropionate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

methyl ketone biosynthesis :
a carboxylate + ATP + coenzyme A → an acyl-CoA + AMP + diphosphate


an acyl-protein synthetase + a carboxylate + ATP → an acyl-protein thioester + AMP + diphosphate
a carboxylate + GTP + coenzyme A → an acyl-CoA + GDP + phosphate

Reactions known to produce the compound:

(R)-cysteate degradation , sulfolactate degradation I :
(2R)-3-sulfolactate → pyruvate + bisulfite

(Z)-butanethiol-S-oxide biosynthesis :
homoisoalliin + H2O → 1-butenesulfenate + pyruvate + ammonium

1,4-dihydroxy-2-naphthoate biosynthesis I , 1,4-dihydroxy-2-naphthoate biosynthesis II (plants) :
2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate → (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate + pyruvate

2,3-dihydroxybenzoate biosynthesis :
isochorismate + H2O → pyruvate + (2S,3S)-2,3-dihydroxy-2,3-dihydrobenzoate

2,4-dinitrotoluene degradation :
2,4-dihydroxy-5-methyl-6-oxohexa-2,4-dienoate + H2O → methylmalonate semialdehyde + pyruvate + H+

2-chloroacrylate degradation I , D-lactate to cytochrome bo oxidase electron transport , methylglyoxal degradation I , methylglyoxal degradation II :
(R)-lactate + an ubiquinone[inner membrane]pyruvate + an ubiquinol[inner membrane]

2-chloroacrylate degradation II :
2-chloro-2-hydroxypropanoate → pyruvate + chloride + H+

4-hydroxybenzoate biosynthesis II (microbes) , tetrahydromethanopterin biosynthesis , ubiquinol-8 biosynthesis (eukaryotic) :
chorismate → 4-hydroxybenzoate + pyruvate

4-hydroxyphenylacetate degradation :
2-keto-4-hydroxypimelate → succinate semialdehyde + pyruvate

5-dehydro-4-deoxy-D-glucuronate degradation , D-fructuronate degradation , D-glucosaminate degradation , Entner-Doudoroff pathway I , Entner-Doudoroff pathway III (semi-phosphorylative) :
2-dehydro-3-deoxy-D-gluconate 6-phosphate → D-glyceraldehyde 3-phosphate + pyruvate

5-nitroanthranilate degradation , gentisate degradation I :
3-fumarylpyruvate + H2O → fumarate + pyruvate + H+

alanine degradation I :
D-alanine + an electron-transfer-related quinone[inner membrane] + H2O → ammonium + pyruvate + an electron-transfer-related quinol[inner membrane]

alliin degradation :
2-aminoprop-2-enoate + H+ + H2O → pyruvate + ammonium

ammonia oxidation III :
pyruvic oxime + oxygen → pyruvate + nitrite + H+

anaerobic energy metabolism (invertebrates, mitochondrial) , C4 photosynthetic carbon assimilation cycle, NAD-ME type , chitin degradation to ethanol , L-carnitine degradation III :
(S)-malate + NAD+pyruvate + CO2 + NADH

C4 photosynthetic carbon assimilation cycle, NADP-ME type , C4 photosynthetic carbon assimilation cycle, PEPCK type :
(S)-malate + NADP+ → CO2 + pyruvate + NADPH

coenzyme M biosynthesis I , coenzyme M biosynthesis II :
sulfoethylcysteine + H2O → ammonium + coenzyme M + pyruvate

D-malate degradation :
(R)-malate + NAD+pyruvate + CO2 + NADH

D-serine degradation , glycine betaine degradation I , L-cysteine degradation II , L-serine degradation , purine nucleobases degradation II (anaerobic) , tryptophan degradation II (via pyruvate) :
2-iminopropanoate + H+ + H2O → pyruvate + ammonium

ergothioneine biosynthesis I (bacteria) , ergothioneine biosynthesis II (fungi) :
hercynylcysteine S-oxide + a reduced electron acceptor → ergothioneine + pyruvate + ammonium + an oxidized electron acceptor

ethiin degradation :
ethiin + H2O → ethylsulfenate + pyruvate + ammonium

gentisate degradation II :
maleylpyruvate + H2O → maleate + pyruvate + H+

gliotoxin biosynthesis :
3-benzyl-3,6 -bis(cysteinyl)- 6-(hydroxymethyl)-diketopiperazine + 2 H2O → 3-benzyl-3,6 -dithio-6-(hydroxymethyl)-diketopiperazine + 2 ammonia + 2 pyruvate + 2 H+

gluconeogenesis I :
(S)-malate + NADP+ → CO2 + pyruvate + NADPH
(S)-malate + NAD+pyruvate + CO2 + NADH

glutathione-mediated detoxification I , glutathione-mediated detoxification II :
an L-cysteine-S-conjugate + H2O → a thiol + pyruvate + ammonium

glycerol degradation V :
dihydroxyacetone + phosphoenolpyruvate → dihydroxyacetone phosphate + pyruvate

glyoxylate assimilation , itaconate degradation :
(3S)-citramalyl-CoA → pyruvate + acetyl-CoA

hydrogen sulfide biosynthesis I :
3-mercaptopyruvate → pyruvate + hydrogen sulfide

isoalliin degradation :
isoalliin + H2O → 1-propenylsulfenate + pyruvate + ammonium

L-cysteine degradation I :
3-sulfinopyruvate + H2O → sulfite + pyruvate + H+

L-cysteine degradation III :
3-mercaptopyruvate + hydrogen cyanide → thiocyanate + pyruvate + H+

L-lactaldehyde degradation (aerobic) :
(S)-lactate + an oxidized electron acceptor → pyruvate + a reduced electron acceptor

L-rhamnose degradation III :
L-2,4-diketo-3-deoxyrhamnonate + H2O → pyruvate + (S)-lactate + H+

methylgallate degradation , protocatechuate degradation I (meta-cleavage pathway) , syringate degradation :
oxaloacetate + H+pyruvate + CO2

methylglyoxal degradation V :
(S)-lactate + 2 an oxidized c-type cytochrome → pyruvate + 2 a reduced c-type cytochrome + 2 H+

methylglyoxal degradation VI :
(R)-lactate + 2 an oxidized c-type cytochrome → pyruvate + 2 a reduced c-type cytochrome + 2 H+

methylglyoxal degradation VII :
methylglyoxal + NAD+ + H2O → pyruvate + NADH + 2 H+

methylglyoxal degradation VIII :
methylglyoxal + NADP+ + H2O → pyruvate + NADPH + 2 H+

naphthalene degradation (aerobic) :
trans-O-hydroxybenzylidenepyruvate + H2O → salicylaldehyde + pyruvate

nicotinate degradation III :
(2R,3S)-2,3-dimethylmalate → propanoate + pyruvate

octopine degradation :
D-octopine + an oxidized electron acceptor + H2O → pyruvate + L-arginine + a reduced electron acceptor

orcinol degradation :
acetylpyruvate + H2O → pyruvate + acetate + H+

petivericin biosynthesis :
petiveriin + H2O → phenylmethanesulfenate + ammonium + pyruvate

phenazine-1-carboxylate biosynthesis :
2-amino-4-deoxy-chorismate + H2O → (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate + pyruvate

salicylate biosynthesis I :
isochorismate → salicylate + pyruvate

seleno-amino acid biosynthesis :
L-selenocystathionine + H2O → ammonium + pyruvate + seleno-L-homocysteine

sulfolactate degradation III :
L-cysteate + H2O → bisulfite + pyruvate + ammonium

trans-4-hydroxy-L-proline degradation I :
4-hydroxy-2-oxoglutarate → glyoxylate + pyruvate

Not in pathways:
phosphoenolpyruvate[periplasmic space] + H2O[periplasmic space]pyruvate[periplasmic space] + phosphate[periplasmic space]
(S)-mecoprop + 2-oxoglutarate + oxygen → 2-methyl-4-chlorophenol + pyruvate + succinate + CO2
(R)-mecoprop + 2-oxoglutarate + oxygen → 2-methyl-4-chlorophenol + pyruvate + succinate + CO2
(S)-dichlorprop + 2-oxoglutarate + oxygen → 2,4-dichlorophenol + pyruvate + succinate + CO2
(R)-dichlorprop + 2-oxoglutarate + oxygen → 2,4-dichlorophenol + pyruvate + succinate + CO2
2,3-diaminopropanoate + H+ + H2O → 2 ammonium + pyruvate
D-alanine + H2O + oxygen → pyruvate + ammonium + hydrogen peroxide
L-cystathionine + H2O → ammonium + pyruvate + L-homocysteine
L-cystine + H2O → thiocysteine + pyruvate + ammonium
L-serine → pyruvate + ammonium
D-cysteine + H2O → ammonium + pyruvate + hydrogen sulfide
phosphoenolpyruvate + a [PTS enzyme I]-L-histidine → pyruvate + a [PTS enzyme I]-Nπ-phospho-L-histidine
L-cysteine + H2O → pyruvate + hydrogen sulfide + ammonium

methanofuran biosynthesis :
2-furaldehyde phosphate + a standard α amino acid → 2-methylamine-furan phosphate + a 2-oxo carboxylate

rhizocticin A and B biosynthesis :
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acid → L-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate


an (S)-2-hydroxyacid + oxygen → hydrogen peroxide + a 2-oxo carboxylate
a D-amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate
a standard α amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate
a D-amino acid[in] + an electron-transfer-related quinone[CCO-OUT-CCO-IN] + H2O[in]a 2-oxo carboxylate[in] + ammonium[in] + an electron-transfer-related quinol[CCO-OUT-CCO-IN]

prodigiosin biosynthesis :
(S)-3-acetyloctanal + an L-amino acid → 2-methyl-3-n-amyl-dihydropyrrole + a 2-oxo acid + H2O

3,3'-thiodipropionate degradation :
3-sulfinopropionate + an acyl-CoA → 3-sulfinopropanoyl-CoA + a carboxylate

dimethylsulfoniopropionate degradation II (cleavage) :
dimethylsulfoniopropanoate + an acyl-CoA → dimethylsulfoniopropioyl-CoA + a carboxylate

NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast) :
an aldehyde + NADP+ + H2O → a carboxylate + NADPH + 2 H+
an aldehyde + NAD+ + H2O → a carboxylate + NADH + 2 H+

phosphatidylcholine resynthesis via glycerophosphocholine :
a phosphatidylcholine + 2 H2O → sn-glycero-3-phosphocholine + 2 a carboxylate + 2 H+


an acyl-CoA + H2O → a carboxylate + coenzyme A + H+
an L-1-phosphatidyl-inositol + H2O → 1-acyl-sn-glycero-3-phospho-D-myo-inositol + a carboxylate + H+
a carboxylic ester + H2O → an alcohol + a carboxylate + H+
an aldehyde + oxygen + H2O → a carboxylate + hydrogen peroxide + H+
a 1-lysophosphatidylcholine[periplasmic space] + H2O[periplasmic space]a carboxylate[periplasmic space] + sn-glycero-3-phosphocholine[periplasmic space] + H+[periplasmic space]
an aldehyde + FMNH2 + oxygen → hν + a carboxylate + FMN + H2O + 2 H+
an acylcholine + H2O → choline + a carboxylate + H+
a 1,2-diacyl-3-β-D-galactosyl-sn-glycerol + 2 H2O → 2 a carboxylate + 3-β-D-galactosyl-sn-glycerol + 2 H+
an acyl phosphate + H2O → a carboxylate + phosphate + H+
an S-acylglutathione + H2O → a carboxylate + glutathione
an N-acyl-L-aspartate + H2O → L-aspartate + a carboxylate

Reactions known to both consume and produce the compound:

(R)-acetoin biosynthesis I , (R)-acetoin biosynthesis II , (S)-acetoin biosynthesis , pyruvate fermentation to isobutanol (engineered) , valine biosynthesis :
2 pyruvate + H+ ↔ (S)-2-acetolactate + CO2

1-butanol autotrophic biosynthesis :
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+
pyruvate + coenzyme A + NAD+ ↔ acetyl-CoA + CO2 + NADH

2-aminoethylphosphonate degradation I , 2-aminoethylphosphonate degradation II :
pyruvate + (2-aminoethyl)phosphonate ↔ L-alanine + phosphonoacetaldehyde

2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis , 4-hydroxy-2(1H)-quinolone biosynthesis , acridone alkaloid biosynthesis , tryptophan biosynthesis :
chorismate + L-glutamine ↔ anthranilate + L-glutamate + pyruvate + H+

2-methylcitrate cycle I , 2-methylcitrate cycle II :
(2R,3S)-2-methylisocitrate ↔ succinate + pyruvate

2-oxopentenoate degradation :
4-hydroxy-2-oxopentanoate ↔ acetaldehyde + pyruvate

4-aminobenzoate biosynthesis , candicidin biosynthesis :
4-amino-4-deoxychorismate ↔ 4-aminobenzoate + pyruvate + H+

4-aminobutyrate degradation IV , glutamate degradation IV :
4-aminobutanoate + pyruvate ↔ succinate semialdehyde + L-alanine

4-nitrotoluene degradation II , androstenedione degradation :
(S)-4-hydroxy-2-oxohexanoate ↔ pyruvate + propanal

acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase) :
pyruvate + coenzyme A + NADP+ ↔ acetyl-CoA + CO2 + NADPH

alanine biosynthesis I :
pyruvate + L-valine ↔ L-alanine + 3-methyl-2-oxobutanoate

alanine biosynthesis II , alanine degradation II (to D-lactate) , alanine degradation III :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

alanine degradation IV :
L-alanine + NAD+ + H2O ↔ ammonium + pyruvate + NADH + H+

anaerobic energy metabolism (invertebrates, cytosol) :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+

anaerobic energy metabolism (invertebrates, mitochondrial) , pyruvate fermentation to acetate II , pyruvate fermentation to acetate V , superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass :
pyruvate + coenzyme A + NAD+ ↔ acetyl-CoA + CO2 + NADH

arginine degradation IX (arginine:pyruvate transaminase pathway) :
L-arginine + pyruvate ↔ 2-ketoarginine + L-alanine

β-alanine biosynthesis II , β-alanine degradation II :
malonate semialdehyde + L-alanine ↔ β-alanine + pyruvate

Bifidobacterium shunt :
(S)-lactate + NAD+pyruvate + NADH + H+
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+

C4 photosynthetic carbon assimilation cycle, NAD-ME type :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

C4 photosynthetic carbon assimilation cycle, PEPCK type :
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate
2-oxoglutarate + L-alanine ↔ L-glutamate + pyruvate

D-galactarate degradation I , D-glucarate degradation I :
5-dehydro-4-deoxy-D-glucarate ↔ pyruvate + tartronate semialdehyde

D-galactonate degradation , L-glucose degradation :
2-dehydro-3-deoxy-D-galactonate 6-phosphate ↔ D-glyceraldehyde 3-phosphate + pyruvate

D-galacturonate degradation III :
2-dehydro-3-deoxy-L-galactonate ↔ L-glyceraldehyde + pyruvate

Entner-Doudoroff pathway II (non-phosphorylative) :
2-dehydro-3-deoxy-D-gluconate ↔ D-glyceraldehyde + pyruvate
pyruvate + 2 an oxidized ferredoxin + coenzyme A ↔ acetyl-CoA + CO2 + 2 a reduced ferredoxin + H+
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+

Entner-Doudoroff pathway III (semi-phosphorylative) , glycolysis I (from glucose 6-phosphate) , glycolysis II (from fructose 6-phosphate) , glycolysis III (from glucose) , glycolysis IV (plant cytosol) , glycolysis V (Pyrococcus) , glycolysis VI (metazoan) , Rubisco shunt :
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+

ethylene glycol biosynthesis , xylose degradation IV :
2-dehydro-3-deoxy-D-arabinonate ↔ glycolaldehyde + pyruvate

gallate degradation I , gallate degradation II , methylgallate degradation , protocatechuate degradation I (meta-cleavage pathway) :
2-hydroxy-4-oxobutane-1,2,4-tricarboxylate ↔ pyruvate + oxaloacetate

γ-coniciene and coniine biosynthesis :
L-alanine + 5-oxooctanal ↔ 8-aminooctan-4-one + pyruvate

gluconeogenesis II (Methanobacterium thermoautotrophicum) :
pyruvate + 2 an oxidized ferredoxin + coenzyme A ↔ acetyl-CoA + CO2 + 2 a reduced ferredoxin + H+
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+

glutamate degradation VI (to pyruvate) :
(S)-citramalate ↔ pyruvate + acetate

glutamate degradation VII (to butanoate) , incomplete reductive TCA cycle , isopropanol biosynthesis , purine nucleobases degradation II (anaerobic) , pyruvate fermentation to acetate I , pyruvate fermentation to acetate III , pyruvate fermentation to acetate VI , pyruvate fermentation to acetate VII , pyruvate fermentation to acetone , pyruvate fermentation to butanoate , pyruvate fermentation to butanol I , pyruvate fermentation to ethanol III , pyruvate fermentation to hexanol , reductive TCA cycle I , reductive TCA cycle II :
pyruvate + 2 an oxidized ferredoxin + coenzyme A ↔ acetyl-CoA + CO2 + 2 a reduced ferredoxin + H+

glycerol degradation to butanol :
pyruvate + 2 an oxidized ferredoxin + coenzyme A ↔ acetyl-CoA + CO2 + 2 a reduced ferredoxin + H+
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+

glycine biosynthesis III :
glyoxylate + L-alanine ↔ glycine + pyruvate

heterolactic fermentation :
(S)-lactate + NAD+pyruvate + NADH + H+
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+

histidine degradation V :
L-histidine + pyruvate ↔ imidazole-pyruvate + L-alanine

hypoglycin biosynthesis :
beta-methylenecyclopropyl pyruvate + L-alanine ↔ hypoglycin A + pyruvate

hypotaurine degradation :
pyruvate + hypotaurine ↔ L-alanine + 2-sulfinoacetaldehyde

indole-3-acetate biosynthesis I , indole-3-acetate biosynthesis II :
L-tryptophan + pyruvate ↔ L-alanine + indole-3-pyruvate

L-arabinose degradation IV :
2-dehydro-3-deoxy-L-arabinonate ↔ glycolaldehyde + pyruvate

L-homophenylalanine biosynthesis :
L-homophenylalanine + pyruvate ↔ 2-oxo-4-phenylbutanoate + L-alanine
L-phenylalanine + pyruvate ↔ 2-oxo-3-phenylpropanoate + L-alanine

L-rhamnose degradation II :
2-dehydro-3-deoxy-L-rhamnonate ↔ pyruvate + (S)-lactaldehyde

lysine degradation IX :
pyruvate + L-lysine ↔ L-alanine + (S)-2-amino-6-oxohexanoate

mixed acid fermentation :
formate + acetyl-CoA ↔ pyruvate + coenzyme A
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+

N-acetylneuraminate and N-acetylmannosamine degradation :
N-acetylneuraminate ↔ N-acetyl-D-mannosamine + pyruvate

phenylalanine degradation III :
L-phenylalanine + pyruvate ↔ 2-oxo-3-phenylpropanoate + L-alanine

photosynthetic 3-hydroxybutyrate biosynthesis (engineered) :
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+
pyruvate + coenzyme A + NAD+ ↔ acetyl-CoA + CO2 + NADH

putrescine degradation V :
putrescine + pyruvate ↔ 4-aminobutanal + L-alanine

pyruvate decarboxylation to acetyl CoA :
pyruvate + a [pyruvate dehydrogenase E2 protein] N6-lipoyl-L-lysine + H+ ↔ a [pyruvate dehydrogenase E2 protein] N6-S-acetyldihydrolipoyl-L-lysine + CO2

pyruvate fermentation to acetate IV , pyruvate fermentation to ethanol I , superpathway of fermentation (Chlamydomonas reinhardtii) :
formate + acetyl-CoA ↔ pyruvate + coenzyme A

pyruvate fermentation to lactate :
(S)-lactate + NAD+pyruvate + NADH + H+

pyruvate fermentation to propionate I :
pyruvate + (S)-methylmalonyl-CoA ↔ oxaloacetate + propanoyl-CoA

reductive monocarboxylic acid cycle :
formate + acetyl-CoA ↔ pyruvate + coenzyme A
pyruvate + 2 an oxidized ferredoxin + coenzyme A ↔ acetyl-CoA + CO2 + 2 a reduced ferredoxin + H+

serinol biosynthesis :
L-alanine + dihydroxyacetone phosphate ↔ serinol phosphate + pyruvate

streptomycin biosynthesis :
pyruvate + D-1-guanidino-3-amino-1,3-dideoxy-scyllo-inositol ↔ L-alanine + D-1-guanidino-1-deoxy-3-dehydro-scyllo-inositol

superpathway of glucose and xylose degradation :
(S)-lactate + NAD+pyruvate + NADH + H+
pyruvate + ATP ↔ phosphoenolpyruvate + ADP + H+

taurine degradation I :
pyruvate + taurine ↔ L-alanine + sulfoacetaldehyde

tyrosine degradation III :
L-tyrosine + pyruvate ↔ 4-hydroxyphenylpyruvate + L-alanine

vitamin B6 degradation :
pyruvate + pyridoxamine ↔ L-alanine + pyridoxal

Not in pathways:
2-oxoglutarate + D-alanine ↔ D-glutamate + pyruvate
L-alanine + a 2-oxo carboxylatepyruvate + an L-amino acid
oxomalonate + L-alanine ↔ aminomalonate + pyruvate
D-alanine + pyridoxal 5'-phosphate ↔ pyruvate + pyridoxamine 5'-phosphate
isobutanal + L-alanine ↔ 2-methylpropanamine + pyruvate
(S)-methylmalonate-semialdehyde + L-alanine ↔ (S)-3-amino-2-methylpropanoate + pyruvate
pyruvate + an oxidized flavodoxin + coenzyme A + H+ ↔ acetyl-CoA + CO2 + a reduced flavodoxin
L-glutamine + pyruvate ↔ 2-oxoglutaramate + L-alanine
pyruvate + L-serine ↔ L-alanine + hydroxypyruvate
pyruvate + (R)-3-amino-2-methylpropanoate ↔ L-alanine + (S)-methylmalonate-semialdehyde
pyruvate + D-methionine ↔ L-alanine + 2-oxo-4-methylthiobutanoate
pyruvate + L-2,4-diaminobutanoate ↔ L-aspartate-semialdehyde + L-alanine
pyruvate + 5-aminolevulinate ↔ L-alanine + 4,5-dioxopentanoate

asparagine degradation II :
a 2-oxo carboxylate + L-asparagine ↔ 2-oxosuccinamate + a standard α amino acid

dimethylsulfoniopropionate biosynthesis III (algae) , ethylene biosynthesis III (microbes) :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

glucosinolate biosynthesis from dihomomethionine :
2-oxo-6-methylthiohexanoate + a standard α amino acid ↔ L-dihomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from hexahomomethionine :
2-oxo-10-methylthiodecanoate + a standard α amino acid ↔ hexahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from pentahomomethionine :
2-oxo-9-methylthiononanoate + a standard α amino acid ↔ pentahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from tetrahomomethionine :
2-oxo-8-methylthiooctanoate + a standard α amino acid ↔ tetrahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from trihomomethionine :
2-oxo-7-methylthioheptanoate + a standard α amino acid ↔ trihomomethionine + a 2-oxo carboxylate

homomethionine biosynthesis :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid
2-oxo-5-methylthiopentanoate + a standard α amino acid ↔ L-homomethionine + a 2-oxo carboxylate


L-ornithine + a 2-oxo carboxylate ↔ a standard α amino acid + L-glutamate-5-semialdehyde

sphingolipid recycling and degradation (yeast) :
a dihydroceramide + H2O ↔ sphinganine + a carboxylate

In Reactions of unknown directionality:

Not in pathways:
acetone + pyruvic oxime = acetone-oxime + pyruvate
N5-(L-1-carboxyethyl)-L-ornithine + NADP+ + H2O = pyruvate + L-ornithine + NADPH + H+
(2S)-2-{[1-(R)-carboxyethyl]amino}pentanoate + NAD+ + H2O = pyruvate + L-norvaline + NADH + H+
acetylenedicarboxylate + H+ + H2O = CO2 + pyruvate
2-dehydro-3-deoxy-D-glucarate = pyruvate + tartronate semialdehyde
3-phosphonopyruvate + H2O = pyruvate + phosphate + H+
(R)-4-hydroxy-4-methyl-2-oxoglutarate = 2 pyruvate
a 3-acylpyruvate + H2O = a carboxylate + pyruvate + H+
(3E)-4-(2-carboxyphenyl)-2-oxobut-3-enoate + H2O = 2-formylbenzoate + pyruvate
maleylpyruvate + H2O = fumarate + pyruvate + H+
(R)-lactate + an oxidized electron acceptor = pyruvate + a reduced electron acceptor
(S)-lactate + oxaloacetate = pyruvate + (S)-malate
(R)-lactate + 2 an oxidized cytochrome c-553 = pyruvate + 2 a reduced cytochrome c-553 + 2 H+
(S)-2-acetolactate + thiamin diphosphate = 2-(α-hydroxyethyl)thiamine diphosphate + pyruvate
4-hydroxy-4-methyl-2-oxoglutarate = 2 pyruvate
(4S)-4-hydroxy-2-oxoglutarate = glyoxylate + pyruvate
2,4-dihydroxyhept-2-enedioate = succinate semialdehyde + pyruvate
3-deoxy-D-manno-octulosonate = aldehydo-D-arabinose + pyruvate
L-serine O-sulfate + H2O = ammonium + sulfate + pyruvate + H+
S-(4-methylthiobutylhydroximoyl)-L-cysteine + H2O = 4-methylthiobutylhydroximate + pyruvate + ammonium
S-(indolylmethylthiohydroximoyl)-L-cysteine + H2O = indolylmethylthiohydroximate + pyruvate + ammonium + H+
S-(phenylacetothiohydroximoyl)-L-cysteine + H2O = phenylacetothiohydroximate + pyruvate + ammonium + H+
S-5-methylthiopentylhydroximoyl-L-cysteine + H2O = 5-methylthiopentylhydroximate + pyruvate + ammonium
S-6-methylthiohexylhydroximoyl-L-cysteine + H2O = 6-methylthiohexylhydroximate + pyruvate + ammonium
S-7-methylthioheptylhydroximoyl-L-cysteine + H2O = 7-methylthioheptylhydroximate + pyruvate + ammonium
S-8-methylthiooctylhydroximoyl-L-cysteine + H2O = 8-methylthiooctylhydroximate + pyruvate + ammonium
S-9-methylthiononylhydroximoyl-L-cysteine + H2O = 9-methylthiononylhydroximate + pyruvate + ammonium
chorismate + H2O = (3R,4R)-3,4-dihydroxy-3,4-dihydrobenzoate + pyruvate
(3R)-citramalyl-CoA = pyruvate + acetyl-CoA
chorismate = 3-hydroxybenzoate + pyruvate
N-methyl-L-alanine + NADP+ + H2O = methylamine + pyruvate + NADPH + H+
N-acetyl-β-neuraminate = N-acetyl-β-D-mannosamine + pyruvate
an S-alkyl-L-cysteine + H2O = an alkyl-thiol + pyruvate + ammonium
L-tryptophan + H2O = indole + pyruvate + ammonium
L-tyrosine + H2O = phenol + pyruvate + ammonium
O-carbamoyl-L-serine + H2O + H+ = pyruvate + CO2 + 2 ammonium
D-serine = pyruvate + ammonium
3-chloro-D-alanine + H2O = pyruvate + ammonium + chloride + H+
L-alanin-3-yl L-histidin-5-yl S-oxide = mercaptohistidine + pyruvate + H2O
pyruvate + trans-chalcone + H+ = (R)-1,3-diphenyl-pentane-1,4-dione + CO2
pyruvate + an (E)-2-oxo-alk-3-ene + H+ = CO2 + an (4S)-4-acetyl-2-oxo compound
pyruvate + an α,β-unsaturated carbonyl compound + H+ = CO2 + an n-acetyl-(n-2)-oxo-compound
pyruvate + an α,β-unsaturated aldehyde + H+ = a (3R,4E)-3-hydroxy-2-keto-alk-4-ene + CO2
pyruvate + 2-hydroxychalcone + H+ = 3-(2-hydroxyphenyl)-1-phenylpentane-1,4-dione + CO2
pyruvate + (E)-4-phenylbut-3-en-2-one + H+ = (R)-phenylhexane-2,5-dione + CO2
pyruvate + (E)-dec-3-en-2-one + H+ = (S)-3-hexanylhexane-2,5-dione + CO2
pyruvate + (E)-non-3-en-2-one + H+ = (S)-3-pentanylhexane-2,5-dione + CO2
S-methyl-L-methionine + pyruvate + NADPH + H+ = sulfonopine + NADP+ + H2O
pyruvate + dGTP = phosphoenolpyruvate + dGDP + H+
pyruvate + dATP = phosphoenolpyruvate + dADP + H+
pyruvate + GTP = phosphoenolpyruvate + GDP + H+
pyruvate + thiamin diphosphate + H+ = 2-(α-hydroxyethyl)thiamine diphosphate + CO2
aminopentol + pyruvate = (3S,5R,10S,12R,14R,15S,16S)-3,5,10,14,15-pentahydroxy-12,16-dimethylicosan-2-one + L-alanine
pyruvate + formaldehyde + H+ = acetol + CO2
2,2-dialkylglycine + pyruvate + H+ = dialkyl ketone + L-alanine + CO2


S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid
a 2-oxo carboxylate + H+ = an aldehyde + CO2
a 2-oxo carboxylate + 2 an oxidized ferredoxin + coenzyme A = an acyl-CoA + CO2 + 2 a reduced ferredoxin + H+
a (2S)-2-hydroxycarboxylate + NAD(P)+ = a 2-oxo carboxylate + NAD(P)H + H+
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an (R)-2-hydroxycarboxylate + NAD+ = a 2-oxo carboxylate + NADH + H+
a (2R)-hydroxy-carboxylate + an oxidized electron acceptor = a 2-oxo carboxylate + a reduced electron acceptor
a (2S)-2-hydroxycarboxylate + NAD+ = a 2-oxo carboxylate + NADH + H+
an (R)-2-hydroxycarboxylate + NADP+ = a 2-oxo carboxylate + NADPH + H+
2-oxoaldehyde + NAD+ + H2O = a 2-oxo carboxylate + NADH + 2 H+
2-oxoaldehyde + NADP+ + H2O = a 2-oxo carboxylate + NADPH + 2 H+


an (R)-2-hydroxyacid + an electron-transfer-related quinone = a 2-oxo acid + an electron-transfer-related quinol


eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasmic space] + FAD[periplasmic space] + H2O[periplasmic space] = a carboxylate[periplasmic space] + FADH2[periplasmic space]
an aldehyde + pyrroloquinoline quinone + H2O = a carboxylate + pyrroloquinoline quinol + H+
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an oxidized electron acceptor + H2O = a carboxylate + a reduced electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate
an N-acylated aliphatic-L-amino acid + H2O = a carboxylate + an aliphatic L-amino acid
a D-hexose + an acyl phosphate = a D-hexose-phosphate + a carboxylate
an aldehyde + 2 an oxidized ferredoxin + H2O = a carboxylate + 2 a reduced ferredoxin + 3 H+
an aldehyde + NAD(P)+ + H2O = a carboxylate + NAD(P)H + 2 H+
an N-acyl-D-glutamate + H2O = a carboxylate + D-glutamate
an anilide + H2O = aniline + a carboxylate + H+
a 5'-acylphosphoadenosine + H2O = a carboxylate + AMP + 2 H+
an N6acyl-L-lysine + H2O = a carboxylate + L-lysine
an N-acyl-D-aspartate + H2O = a carboxylate + D-aspartate

In Transport reactions:
pyruvate[periplasmic space]pyruvate[cytosol] ,
pyruvate[cytosol]pyruvate[periplasmic space]

In Redox half-reactions:
acetate[in] + CO2[in] + 2 H+[in] + 2 e-pyruvate[in] + H2O[in] ,
pyruvate[in] + ammonium[in] + 2 H+[in] + 2 e- → D-alanine[in] + H2O[in] ,
pyruvate[in] + 2 H+[in] + 2 e- → (S)-lactate[in] ,
pyruvate[in] + 2 H+[in] + 2 e- → (R)-lactate[in] ,
a 2-oxo carboxylate[in] + ammonium[in] + 2 H+[in] + 2 e- → a D-amino acid[in] + H2O[in]

Enzymes activated by pyruvate, sorted by the type of activation, are:

Activator (Allosteric) of: D-lactate dehydrogenase [Tarmy68, Tarmy68a] , ubiquinol:oxygen oxidoreductase [Kumar92, Crichton05]

Activator (Mechanism unknown) of: phosphate acetyltransferase [Suzuki69, CamposBermudez10] , phosphate acetyltransferase [Bologna10] , cysteine sulfinate desulfinase [Mihara00, Comment 1] , isocitrate dehydrogenase phosphatase [Nimmo84, Miller00, Comment 2]

Enzymes inhibited by pyruvate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: proline dehydrogenase [Scarpulla78] , N-acetylneuraminate lyase [Aisaka91, Uchida84] , N-acetyl-β-neuraminate lyase [Aisaka91, Uchida84] , 2-keto-4-hydroxyglutarate aldolase , Δ1-pyrroline-4-hydroxy-2-carboxylate deaminase [Watanabe12] , L-alanine:5-ketooctanal aminotransferase A , indolepyruvate decarboxylase [Koga92] , acetylpyruvate hydrolase [Davey75] , R(+)-3,4-dihydroxyphenyllactate:NADP+ oxidoreductase [Hausler91] , (R+)-3-(4-hydroxyphenyl)lactate:NADP+ oxidoreductase [Hausler91] , 4-hydroxy-2-ketoglutarate aldolase [Anderson85]

Inhibitor (Mechanism unknown) of: malate synthase G [Anstrom03] , phosphate acetyltransferase [CamposBermudez10] , 3-phosphoshikimate-1-carboxyvinyltransferase [Huynh92] , 3-methyl-2-oxobutanoate hydroxymethyltransferase [Powers76, Comment 3] , pyruvate dehydrogenase [Helmward89, Williams90] , threonine dehydratase [Park79] , isocitrate dehydrogenase kinase [Nimmo84, Miller00] , D-octopine synthase [Schrimsher84] , isopenicillin N synthase [Castro88] , 2,4-diaminopentanoate dehydrogenase [Tsuda70]

This compound has been characterized as a cofactor or prosthetic group of the following enzymes: phosphatidylserine decarboxylase , adenosylmethionine decarboxylase , D-proline reductase


References

Aisaka91: Aisaka K, Igarashi A, Yamaguchi K, Uwajima T (1991). "Purification, crystallization and characterization of N-acetylneuraminate lyase from Escherichia coli." Biochem J 1991;276 ( Pt 2);541-6. PMID: 1646603

Anderson85: Anderson M, Scholtz JM, Schuster SM (1985). "Rat liver 4-hydroxy-2-ketoglutarate aldolase: purification and kinetic characterization." Arch Biochem Biophys 236(1);82-97. PMID: 3966804

Anstrom03: Anstrom DM, Kallio K, Remington SJ (2003). "Structure of the Escherichia coli malate synthase G:pyruvate:acetyl-coenzyme A abortive ternary complex at 1.95 A resolution." Protein Sci 12(9);1822-32. PMID: 12930982

Bologna10: Bologna FP, Campos-Bermudez VA, Saavedra DD, Andreo CS, Drincovich MF (2010). "Characterization of Escherichia coli EutD: a phosphotransacetylase of the ethanolamine operon." J Microbiol 48(5);629-36. PMID: 21046341

CamposBermudez10: Campos-Bermudez VA, Bologna FP, Andreo CS, Drincovich MF (2010). "Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation." FEBS J 277(8);1957-66. PMID: 20236319

Castro88: Castro JM, Liras P, Laiz L, Cortes J, Martin JF (1988). "Purification and characterization of the isopenicillin N synthase of Streptomyces lactamdurans." J Gen Microbiol 134(1);133-41. PMID: 3183613

Crichton05: Crichton PG, Affourtit C, Albury MS, Carre JE, Moore AL (2005). "Constitutive activity of Sauromatum guttatum alternative oxidase in Schizosaccharomyces pombe implicates residues in addition to conserved cysteines in alpha-keto acid activation." FEBS Lett 579(2);331-6. PMID: 15642340

Davey75: Davey JF, Ribbons DW (1975). "Metabolism of resorcinylic compounds by bacteria. Purification and properties of acetylpyruvate hydrolase from Pseudomonas putida 01." J Biol Chem 1975;250(10);3826-30. PMID: 236305

Hausler91: Hausler E, Petersen M, Alfermann AW (1991). "Hydroxyphenylpyruvate reductase from cell suspension cultures of Coleus blumei Benth." Z. Naturforsch. 46c, 371-376.

Helmward89: Helmward Z "Handbook of Enzyme Inhibitors. 2nd, revised and enlarged edition." Weinheim, Federal Republic of Germany ; New York, NY, USA , 1989.

Huynh92: Huynh QK (1992). "Inactivation of 5-enolpyruvylshikimate 3-phosphate synthase by its substrate analogue pyruvate in the presence of sodium cyanoborohydride." Biochem Biophys Res Commun 185(1);317-22. PMID: 1599467

Koga92: Koga J, Adachi T, Hidaka H (1992). "Purification and characterization of indolepyruvate decarboxylase. A novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae." J Biol Chem 267(22);15823-8. PMID: 1639814

Kumar92: Kumar AM, Soll D (1992). "Arabidopsis alternative oxidase sustains Escherichia coli respiration." Proc Natl Acad Sci U S A 89(22);10842-6. PMID: 1438286

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Mihara00: Mihara H, Kurihara T, Yoshimura T, Esaki N (2000). "Kinetic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reactions." J Biochem (Tokyo) 127(4);559-67. PMID: 10739946

Miller00: Miller SP, Chen R, Karschnia EJ, Romfo C, Dean A, LaPorte DC (2000). "Locations of the regulatory sites for isocitrate dehydrogenase kinase/phosphatase." J Biol Chem 275(2);833-9. PMID: 10625615

Nimmo84: Nimmo GA, Nimmo HG (1984). "The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase." Eur J Biochem 1984;141(2);409-14. PMID: 6329757

Park79: Park LS, Datta P (1979). "Inhibition of Escherichia coli biodegradative threonine dehydratase by pyruvate." J Bacteriol 138(3);1026-8. PMID: 378926

Powers76: Powers SG, Snell EE (1976). "Ketopantoate hydroxymethyltransferase. II. Physical, catalytic, and regulatory properties." J Biol Chem 1976;251(12);3786-93. PMID: 6463

Scarpulla78: Scarpulla RC, Soffer RL (1978). "Membrane-bound proline dehydrogenase from Escherichia coli. Solubilization, purification, and characterization." J Biol Chem 1978;253(17);5997-6001. PMID: 355248

Schrimsher84: Schrimsher JL, Taylor KB (1984). "Octopine dehydrogenase from Pecten maximus: steady-state mechanism." Biochemistry 23(7);1348-53. PMID: 6722094

Suzuki69: Suzuki T (1969). "Phosphotransacetylase of Escherichia coli B, activation by pyruvate and inhibition by NADH and certain nucleotides." Biochim Biophys Acta 1969;191(3);559-69. PMID: 4312205

Tarmy68: Tarmy EM, Kaplan NO (1968). "Chemical characterization of D-lactate dehydrogenase from Escherichia coli B." J Biol Chem 1968;243(10);2579-86. PMID: 4297265

Tarmy68a: Tarmy EM, Kaplan NO (1968). "Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate-controlled change in conformation." J Biol Chem 1968;243(10);2587-96. PMID: 4297266

Tsuda70: Tsuda Y, Friedmann HC (1970). "Ornithine metabolism by Clostridium sticklandii. Oxidation of ornithine to 2-amino-4-ketopentanoic acid via 2,4-diaminopentanoic acid; participation of B12 coenzyme, pyridoxal phosphate, and pyridine nucleotide." J Biol Chem 1970;245(22);5914-26. PMID: 4394942

Uchida84: Uchida Y, Tsukada Y, Sugimori T (1984). "Purification and properties of N-acetylneuraminate lyase from Escherichia coli." J Biochem 96(2);507-22. PMID: 6389524

Watanabe12: Watanabe S, Morimoto D, Fukumori F, Shinomiya H, Nishiwaki H, Kawano-Kawada M, Sasai Y, Tozawa Y, Watanabe Y (2012). "Identification and characterization of D-hydroxyproline dehydrogenase and Delta1-pyrroline-4-hydroxy-2-carboxylate deaminase involved in novel L-hydroxyproline metabolism of bacteria: metabolic convergent evolution." J Biol Chem 287(39);32674-88. PMID: 22833679

Williams90: Williams KP, Leadlay PF, Lowe PN (1990). "Inhibition of pyruvate:ferredoxin oxidoreductase from Trichomonas vaginalis by pyruvate and its analogues. Comparison with the pyruvate decarboxylase component of the pyruvate dehydrogenase complex." Biochem J 1990;268(1);69-75. PMID: 2188649


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sun Nov 23, 2014, BIOCYC14B.