Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store

MetaCyc Compound: sulfate

Systematic Name: tetraoxosulfate(2-)

Synonyms: sulfuric acid, H2SO4, sulphate, SO4-2, SO42-, SO4--

Superclasses: an ionan anionan inorganic anion
an ionan inorganic ionan inorganic anion

Component of:
manganese sulfate pentahydrate
copper sulfate pentahydrate
sodium sulfate
nickel sulphate
silver sulfate(aq)
zinc sulfate heptahydrate
ferrous sulfate heptahydrate
zinc sulfate
potassium sulfate
magnesium sulfate heptahydrate
magnesium sulfate
iron sulfate
copper sulfate
ammonium sulfate

Chemical Formula: O4S

Molecular Weight: 96.058 Daltons

Monoisotopic Molecular Weight: 97.96737924259999 Daltons

sulfate compound structure

SMILES: O=S(=O)([O-])[O-]

InChI: InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)/p-2


Unification Links: CAS:14808-79-8, ChEBI:16189, ChemSpider:1085, HMDB:HMDB01448, KEGG:C00059, MetaboLights:MTBLC16189, PubChem:1117

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -179.24825Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

galena oxidation :
sulfate + galena + 2 H+ → anglesite + hydrogen sulfide

Reactions known to produce the compound:

carrageenan biosynthesis :
ν-carrageenan → ι-carrageenose + 2 sulfate
μ-carrageenan + oxygen → κ-carrageenose + 2 sulfate + 2 H+

choline-O-sulfate degradation :
choline sulfate + H2O → sulfate + choline + H+

chondroitin sulfate degradation I (bacterial) :
4-deoxy-β-D-gluc-4-enuronosyl-(1,3)-N-acetyl--D-galactosamine 6-sulfate + H2O → 4-deoxy-β-D-gluc-4-enuronosyl-(1,3)-N-acetyl-D-galactosamine + sulfate + H+
4-deoxy-β-D-gluc-4-enuronosyl-(1,3)-N-acetyl-D-galactosamine 4-sulfate + H2O → 4-deoxy-β-D-gluc-4-enuronosyl-(1,3)-N-acetyl-D-galactosamine + sulfate + H+

dermatan sulfate degradation (metazoa) :
dermatan sulfate → N-acetyl-β-D-galactosamine + α-L-iduronate + sulfate

dermatan sulfate degradation I (bacterial) :
4-deoxy-β-D-gluc-4-enuronosyl-(1,3)-N-acetyl-D-galactosamine 4-sulfate + H2O → 4-deoxy-β-D-gluc-4-enuronosyl-(1,3)-N-acetyl-D-galactosamine + sulfate + H+

glucosinolate breakdown :
a thiohydroximate-O-sulfate with a terminal alkene → an epithionitrile + sulfate
a thiohydroximate-O-sulfate without a terminal alkene → a nitrile + sulfate

glucosinolate breakdown (via thiocyanate-forming protein) :
benzylglucosinolate aglycone → S0 + phenylacetonitrile + sulfate
benzylglucosinolate aglycone → benzyl thiocyanate + sulfate
benzylglucosinolate aglycone → benzylisothiocyanate + sulfate

heparan sulfate degradation :
N-sulfo-D-glucosamine + H2O → D-glucosamine + sulfate

heparin degradation :
N,6-O-disulfo-D-glucosamine + H2O → N-sulfo-D-glucosamine + sulfate + H+
N-sulfo-D-glucosamine + H2O → D-glucosamine + sulfate
4-deoxy-2-O-sulfo-β-L-erythro-hex-4-enopyranuronosyl-(1,4)-D-N-sulfoglucosamine 6-O-sulfate + H2O → 4-deoxy-β-L-erythro-hex-4-enopyranuronosyl-(1,4)-D-N-sulfoglucosamine 6-O-sulfate + sulfate + H+

indole glucosinolate breakdown (active in intact plant cell) :
indolylmethyl glucosinolate aglycone → indolylmethylisothiocyanate + sulfate
4-methoxy-3-indolylmethyl glucosinolate aglycone → 4-methoxy-3-indolylmethylisothiocyanate + sulfate

indole glucosinolate breakdown (insect chewing induced) :
indolylmethyl glucosinolate aglycone → indolylmethylisothiocyanate + sulfate

κ-carrageenan degradation :
neocarratetraose 4-O-disulfate + H2O → neocarratetraose 4-O-sulfate + sulfate + H+
neocarrabiose sulfate + H2O → neocarrabiose + sulfate + H+

sulfite oxidation I (sulfite oxidoreductase) :
sulfite + 2 an oxidized c-type cytochrome + H2O → sulfate + 2 a reduced c-type cytochrome + 2 H+

sulfite oxidation II :
sulfate + ADP + H+ ← adenosine 5'-phosphosulfate + phosphate

sulfite oxidation IV :
sulfite + oxygen + H2O → hydrogen peroxide + sulfate

sulfite oxidation V (SoeABC) :
sulfite + a menaquinone + H2O → sulfate + a menaquinol

Reactions known to both consume and produce the compound:

sulfate activation for sulfonation , sulfate reduction II (assimilatory) , sulfate reduction III (assimilatory) , sulfate reduction IV (dissimilatory) , sulfate reduction V (dissimilatory) , sulfite oxidation III :
sulfate + ATP + H+ ↔ adenosine 5'-phosphosulfate + diphosphate

sulfur oxidation II (Fe+3-dependent) :
sulfite + 2 Fe3+ + H2O ↔ sulfate + 2 Fe2+ + 2 H+

Not in pathways:
trithionate + H2O ↔ sulfate + thiosulfate + H+

In Reactions of unknown directionality:

adenosine 5'-phosphoramidate biosynthesis :
adenosine 5'-phosphosulfate + ammonium = adenosine 5'-phosphoramidate + sulfate + 2 H+

Not in pathways:
cyclohexylsulfamate + H2O = sulfate + cyclohexylamine
L-serine O-sulfate + H2O = ammonium + sulfate + pyruvate + H+
S-sulfo-L-cysteine + glutathione + an oxidized unknown electron acceptor + H2O = S-glutathionyl-L-cysteine + sulfate + an reduced unknown electron acceptor + H+

In Transport reactions:
sulfate[periplasm] + ATP + H2O → sulfate[cytosol] + ADP + phosphate + H+,
sulfate[extracellular space] + ATP + H2O → sulfate[cytosol] + ADP + phosphate + H+

In Redox half-reactions:
2 sulfate[in] + 11 H+[in] + 8 e-[membrane] ↔ thiosulfate[in] + 5 H2O[in],
sulfate[in] + intracellular S0n+1[in] + 3 H+[in] + 2 e-[membrane] → thiosulfate[in] + intracellular S0n[in] + H2O[in]

Enzymes activated by sulfate, sorted by the type of activation, are:

Activator (Allosteric) of: nicotinamide mononucleotide adenylyltransferase [Raffaelli97] Activator (Mechanism unknown) of: fructose-1,6-bisphosphatase [Hines06], glutaminase [Klein02]

Enzymes inhibited by sulfate, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: porphyran galactose-6-sulfurylase, thioglucoside glucohydrolase [Shikita99], molybdopterin molybdotransferase [Llamas06] Inhibitor (Noncompetitive) of: sulfite:cytochrome c oxidoreductase [Kappler00], sulfite:cytochrome c oxidoreductase [Suzuki94] Inhibitor (Mechanism unknown) of: deoxyribose 1,5-phosphomutase [HammerJespersen70], thiosulfate sulfurtransferase [Alexander87, Cheng08], glutamine synthetase adenylyltransferase [Ebner70, Helmward89, Comment 1], phosphotransacetylase [Lundie89]


Alexander87: Alexander K, Volini M (1987). "Properties of an Escherichia coli rhodanese." J Biol Chem 262(14);6595-604. PMID: 3553189

Cheng08: Cheng H, Donahue JL, Battle SE, Ray WK, Larson TJ (2008). "Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli." Open Microbiol J 2;18-28. PMID: 19088907

Ebner70: Ebner E, Gancedo C, Holzer H "ATP:Glutamine synthetase adenylyltransferase (Escherichia coli B)." Methods in Enzymology 1970; 17A:922-927.

Ebner70a: Ebner E, Wolf D, Gancedo C, Elsasser S, Holzer H (1970). "ATP: glutamine synthetase adenylyltransferase from Escherichia coli B. Purification and properties." Eur J Biochem 1970;14(3);535-44. PMID: 4920894

HammerJespersen70: Hammer-Jespersen K, Munch-Petersen A (1970). "Phosphodeoxyribomutase from Escherichia coli. Purification and some properties." Eur J Biochem 1970;17(3);397-407. PMID: 4992818

Helmward89: Helmward Z "Handbook of Enzyme Inhibitors. 2nd, revised and enlarged edition." Weinheim, Federal Republic of Germany ; New York, NY, USA , 1989.

Hines06: Hines JK, Fromm HJ, Honzatko RB (2006). "Novel allosteric activation site in Escherichia coli fructose-1,6-bisphosphatase." J Biol Chem 281(27);18386-93. PMID: 16670087

Kappler00: Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan AG, Dahl C (2000). "Sulfite:Cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family." J Biol Chem 275(18);13202-12. PMID: 10788424

Klein02: Klein M, Kaltwasser H, Jahns T (2002). "Isolation of a novel, phosphate-activated glutaminase from Bacillus pasteurii." FEMS Microbiol Lett 206(1);63-7. PMID: 11786258

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Llamas06: Llamas A, Otte T, Multhaup G, Mendel RR, Schwarz G (2006). "The Mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly." J Biol Chem 281(27);18343-50. PMID: 16636046

Lundie89: Lundie LL, Ferry JG (1989). "Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase." J Biol Chem 1989;264(31);18392-6. PMID: 2808380

Raffaelli97: Raffaelli N, Pisani FM, Lorenzi T, Emanuelli M, Amici A, Ruggieri S, Magni G (1997). "Characterization of nicotinamide mononucleotide adenylyltransferase from thermophilic archaea." J Bacteriol 179(24);7718-23. PMID: 9401030

Shikita99: Shikita M, Fahey JW, Golden TR, Holtzclaw WD, Talalay P (1999). "An unusual case of 'uncompetitive activation' by ascorbic acid: purification and kinetic properties of a myrosinase from Raphanus sativus seedlings." Biochem J 341 ( Pt 3);725-32. PMID: 10417337

Suzuki94: Suzuki, I. (1994). "Sulfite:cytochrome c oxidoreductase of Thiobacilli." Methods Enzymol. 243(32):447-454.

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Sat Feb 6, 2016, biocyc14.