Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
Updated BioCyc iOS App now
available in iTunes store
twitter

MetaCyc Compound: L-tryptophan

Abbrev Name: trp

Synonyms: trp, W, tryptacin, trofan, tryptophan, 2-amino-3-indolylpropanic acid, L-trp

Superclasses: an acidall carboxy acidsa carboxylatean amino acida non-polar amino acid
an acidall carboxy acidsa carboxylatean amino acidan alpha amino acida standard alpha amino acid
an acidall carboxy acidsa carboxylatean amino acidan aromatic amino acidan aromatic L-amino acid
an acidall carboxy acidsa carboxylatean amino acidan L-amino acidan aromatic L-amino acid
an acidall carboxy acidsa carboxylatean amino acidan L-amino acid
an amino acid or its derivativean amino acida non-polar amino acid
an amino acid or its derivativean amino acidan alpha amino acida standard alpha amino acid
an amino acid or its derivativean amino acidan aromatic amino acidan aromatic L-amino acid
an amino acid or its derivativean amino acidan L-amino acidan aromatic L-amino acid
an amino acid or its derivativean amino acidan L-amino acid

Chemical Formula: C11H12N2O2

Molecular Weight: 204.23 Daltons

Monoisotopic Molecular Weight: 205.0977026719 Daltons

L-tryptophan compound structure

SMILES: C2(NC1(C=CC=CC=1C(CC([N+])C(=O)[O-])=2))

InChI: InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)/t9-/m0/s1

InChIKey: InChIKey=QIVBCDIJIAJPQS-VIFPVBQESA-N

Unification Links: CAS:73-22-3, ChEBI:57912, HMDB:HMDB00929, IAF1260:33772, KEGG:C00078, MetaboLights:MTBLC57912, PubChem:6923516

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 95.843445Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

3-hydroxy-4-methyl-anthranilate biosynthesis , L-tryptophan degradation I (via anthranilate) , L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde , L-tryptophan degradation XI (mammalian, via kynurenine) :
L-tryptophan + oxygen → N-formylkynurenine

3-hydroxyquinaldate biosynthesis , quinoxaline-2-carboxylate biosynthesis :
a holo-[tryptophanyl-carrier protein] + L-tryptophan + ATP → an L-tryptophanyl-[tryptophanyl-carrier protein] + AMP + diphosphate

5-N-acetylardeemin biosynthesis :
anthranilate + L-alanine + L-tryptophan + 3 ATP → ardeemin FQ + 3 AMP + 3 diphosphate + H2O + 2 H+

acetylaszonalenin biosynthesis :
L-tryptophan + anthranilate + 2 ATP → (R)-benzodiazepinedione + 2 ADP + 2 phosphate + H+

α-cyclopiazonate biosynthesis :
an acetoacetyl-[acp] + L-tryptophan + ATP → cyclo-acetoacetyl-L-tryptophan + AMP + a holo-[acyl-carrier protein] + diphosphate + 2 H+

apicidin biosynthesis , apicidin F biosynthesis :
L-tryptophan + NADPH + oxygen + H+ → 9-N-hydroxy-L-tryptophan + NADP+ + H2O

asperlicin E biosynthesis :
2 anthranilate + L-tryptophan + 3 ATP → asperlicin D + 3 AMP + 3 diphosphate + H2O + H+
2 anthranilate + L-tryptophan + 3 ATP → asperlicin C + 3 AMP + 3 diphosphate + H2O + H+

beta-carboline biosynthesis , camptothecin biosynthesis , hydroxycinnamic acid serotonin amides biosynthesis , L-tryptophan degradation VI (via tryptamine) , L-tryptophan degradation X (mammalian, via tryptamine) , secologanin and strictosidine biosynthesis :
L-tryptophan + H+ → CO2 + tryptamine

camalexin biosynthesis , glucosinolate biosynthesis from tryptophan :
L-tryptophan + NADPH + oxygen → N-hydroxy-L-tryptophan + NADP+ + H2O

chaetoglobosin A biosynthesis :
8,10,16-trimethyl-3-oxooctadeca-4,8,12,14,16-pentaenoyl-[acp] + L-tryptophan + ATP + NADPH → prochaetoglobosin I + a holo-[acyl-carrier protein] + AMP + NADP+ + diphosphate + H2O

chanoclavine I aldehyde biosynthesis :
dimethylallyl diphosphate + L-tryptophan → 4-(3-methylbut-2-enyl)-L-tryptophan + diphosphate

fumiquinazoline D biosynthesis :
anthranilate + L-tryptophan + L-alanine + 3 ATP → fumiquinazoline F + 3 AMP + 3 diphosphate + H2O + 2 H+

fumitremorgin C biosynthesis :
L-tryptophan + L-proline + 2 ATP → brevianamide F + 2 ADP + 2 phosphate + 2 H+

gramine biosynthesis :
L-tryptophan → 3-aminomethylindole

indole-3-acetate biosynthesis II :
L-tryptophan + NADPH + oxygen → N-hydroxy-L-tryptophan + NADP+ + H2O
L-tryptophan + H+ → CO2 + tryptamine

indole-3-acetate biosynthesis III (bacteria) :
L-tryptophan + oxygen → indole-3-acetamide + CO2 + H2O

K-252 biosynthesis , staurosporine biosynthesis , violacein biosynthesis :
L-tryptophan + oxygen → 2-imino-3-(indol-3-yl)propanoate + hydrogen peroxide + H+

L-tryptophan degradation V (side chain pathway) :
L-tryptophan + an reduced unknown electron acceptor + H+ + oxygen → indole acetaldehyde + ammonium + CO2 + an oxidized unknown electron acceptor + H2O

lyngbyatoxin biosynthesis :
L-valine + L-tryptophan + L-methionine + 2 NADPH + 2 H+N-methyl-L-valyl-L-tryptophanol + L-homocysteine + 2 NADP+ + 2 H2O

pyrrolnitrin biosynthesis , rebeccamycin biosynthesis :
L-tryptophan + chloride + FADH2 + oxygen → 7-chloro-L-tryptophan + FAD + 2 H2O

roquefortine C biosynthesis , superpathway of roquefortine, meleagrin and neoxaline biosynthesis :
L-tryptophan + L-histidine + 2 ATP → histidyltryptophanyldiketopiperazine + 2 AMP + 2 diphosphate + 2 H+

serotonin and melatonin biosynthesis :
tetrahydrobiopterin + L-tryptophan + oxygen → 5-hydroxy-L-tryptophan + 4α-hydroxy-tetrahydrobiopterin

tRNA charging :
L-tryptophan + a tRNAtrp + ATP + H+ → AMP + an L-tryptophanyl-[tRNAtrp] + diphosphate

Reactions known to produce the compound:

L-tryptophan biosynthesis :
L-serine + indole → L-tryptophan + H2O

Not in pathways:
N-methyl-L-tryptophan + oxygen + H2O → hydrogen peroxide + formaldehyde + L-tryptophan
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate + L-serine → L-tryptophan + D-glyceraldehyde 3-phosphate + H2O
a protein with an N-terminal L-tryptophan + H2O → a peptide + L-tryptophan + H+

dimethylsulfoniopropanoate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

Not in pathways:
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
a dipetide with L-histidine at the C-terminal + H2O → a standard α amino acid + L-histidine
a peptide with an N-terminal X-L-proline + H2O → a standard α amino acid + a peptide with an N-terminal L-proline + H+
a dipeptide + H2O → 2 amino acids
β-aspartyl dipeptide + H2O → L-aspartate + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → 2 a standard α amino acid
a peptide + H2O → a standard α amino acid + a peptide
a peptide + H2O → a peptide + a standard α amino acid
a peptide + H2O → a peptide + a standard α amino acid
an oligopeptide + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a standard α amino acid + a peptide
a peptide + H2O → a standard α amino acid + a peptide
a protein + H2O → a standard α amino acid + a peptide
a tripeptide + H2O → a dipeptide + a standard α amino acid

Reactions known to both consume and produce the compound:

indole-3-acetate biosynthesis I :
L-tryptophan + pyruvate ↔ L-alanine + indole-3-pyruvate

indole-3-acetate biosynthesis II :
L-tryptophan + pyruvate ↔ L-alanine + indole-3-pyruvate
2-oxoglutarate + L-tryptophan ↔ L-glutamate + indole-3-pyruvate

L-tryptophan degradation II (via pyruvate) :
L-tryptophan ↔ indole + 2-aminoprop-2-enoate + H+

L-tryptophan degradation IV (via indole-3-lactate) , L-tryptophan degradation VII (via indole-3-pyruvate) :
2-oxoglutarate + L-tryptophan ↔ L-glutamate + indole-3-pyruvate

L-tryptophan degradation VIII (to tryptophol) :
L-tryptophan + 2-oxo-3-phenylpropanoate ↔ indole-3-pyruvate + L-phenylalanine
2-oxoglutarate + L-tryptophan ↔ L-glutamate + indole-3-pyruvate

terrequinone A biosynthesis :
L-tryptophan + 2-oxo-3-phenylpropanoate ↔ indole-3-pyruvate + L-phenylalanine

dimethylsulfoniopropanoate biosynthesis III (algae) , ethylene biosynthesis III (microbes) :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

glucosinolate biosynthesis from dihomomethionine :
2-oxo-6-methylthiohexanoate + a standard α amino acid ↔ L-dihomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from hexahomomethionine :
2-oxo-10-methylthiodecanoate + a standard α amino acid ↔ hexahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from pentahomomethionine :
2-oxo-9-methylthiononanoate + a standard α amino acid ↔ pentahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from tetrahomomethionine :
2-oxo-8-methylthiooctanoate + a standard α amino acid ↔ tetrahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from trihomomethionine :
2-oxo-7-methylthioheptanoate + a standard α amino acid ↔ trihomomethionine + a 2-oxo carboxylate

L-asparagine degradation II :
a 2-oxo carboxylate + L-asparagine ↔ 2-oxosuccinamate + a standard α amino acid

L-homomethionine biosynthesis :
2-oxo-5-methylthiopentanoate + a standard α amino acid ↔ L-homomethionine + a 2-oxo carboxylate
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

Not in pathways:
L-ornithine + a 2-oxo carboxylate ↔ a standard α amino acid + L-glutamate-5-semialdehyde

Not in pathways:
an aromatic amino acid + 2-oxoglutarate ↔ an aromatic oxo-acid + L-glutamate
glyoxylate + an aromatic amino acid ↔ glycine + an aromatic oxo-acid

Not in pathways:
L-alanine + a 2-oxo carboxylate ↔ pyruvate + an L-amino acid

sphingolipid recycling and degradation (yeast) :
a dihydroceramide + H2O ↔ D-erythro-sphinganine + a carboxylate

In Reactions of unknown directionality:

Not in pathways:
L-methionine + indole-3-pyruvate = L-tryptophan + 2-oxo-4-methylthiobutanoate
L-Tryptophanamide + H2O = ammonium + L-tryptophan
L-tryptophan + H2O = indole + pyruvate + ammonium
L-tryptophan + NAD(P)+ + H2O = indole-3-pyruvate + ammonium + NAD(P)H + H+
dimethylallyl diphosphate + L-tryptophan = 7-(3-methylbut-2-enyl)-L-tryptophan + diphosphate
L-tryptophan + chloride + FAD + 2 H+ = 5-chloro-L-tryptophan + FADH2

Not in pathways:
L-arginine + a standard α amino acid + ATP = a dipeptide with N-terminal L-arginine + ADP + phosphate + H+

Not in pathways:
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid

Not in pathways:
an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid

Not in pathways:
a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

Not in pathways:
eugenol + a carboxylate + NADP+ = a coniferyl ester + NADPH
a 2-acyl 1-lyso-phosphatidylcholine[periplasm] + H2O[periplasm] = a carboxylate[periplasm] + sn-glycero-3-phosphocholine[periplasm] + H+[periplasm]
an aldehyde + an electron-transfer quinone + H2O = a carboxylate + an electron-transfer quinol + H+
a triacyl-sn-glycerol + H2O = a 1,2-diacyl-sn-glycerol + a carboxylate + H+
a penicillin + H2O = 6-aminopenicillanate + a carboxylate
an aldehyde[periplasm] + FAD[periplasm] + H2O[periplasm] = a carboxylate[periplasm] + FADH2[periplasm]
a nitrile + 2 H2O = a carboxylate + ammonium
an aliphatic nitrile + 2 H2O = a carboxylate + ammonium
an N-acyl-L-homoserine lactone + H2O = L-homoserine lactone + a carboxylate
an aldehyde + an oxidized unknown electron acceptor + H2O = a carboxylate + an reduced unknown electron acceptor + H+
an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid
an N-acylated-D-amino acid + H2O = a D-amino acid + a carboxylate

In Transport reactions:
L-tryptophan[out]L-tryptophan[in],
L-tryptophan[periplasm] + H+[periplasm]L-tryptophan[cytosol] + H+[cytosol],
a non-polar amino acid[extracellular space] + ATP + H2O ↔ a non-polar amino acid[cytosol] + ADP + phosphate,
an aromatic amino acid[cytosol]an aromatic amino acid[periplasm]

Enzymes activated by L-tryptophan, sorted by the type of activation, are:

Activator (Allosteric) of: chorismate mutase [Mobley99], chorismate mutase [Mobley99] Activator (Mechanism unknown) of: pyruvate kinase [Singh98], glutamate dehydrogenase (NAD-dependent) [Bonete96]

Enzymes inhibited by L-tryptophan, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: anthranilate synthase [Baker66, Comment 1], anthranilate synthase [Tutino97], prephenate dehydratase [Comment 2] Inhibitor (Noncompetitive) of: anthranilate synthase [Baker66, Comment 3] Inhibitor (Mechanism unknown) of: glutamine synthetase [Woolfolk67, Comment 4], 2-dehydro-3-deoxyphosphoheptonate aldolase [Ray91a], kynurenine aminotransferase [Han09]

This compound has been characterized as an alternative substrate of the following enzymes: methionine-oxo-acid transaminase, 3,4-dihydroxyphenylalanine oxidative deaminase, tyrosine aminotransferase, aspartate aminotransferase, L-phenylalanine:2-oxoglutarate aminotransferase, 3-hydroxy-D-kynurenine methyltransferase, aspartate transaminase, jasmonyl-isoleucine synthetase, L-phenylalanine:2-oxoglutarate aminotransferase, tyrosine/phenylalanine aminotransferase, L-phenylalanine decarboxylase, dopa decarboxylase, aspartate aminotransferase


References

Baker66: Baker TI, Crawford IP (1966). "Anthranilate synthetase. Partial purification and some kinetic studies on the enzyme from Escherichia coli." J Biol Chem 241(23);5577-84. PMID: 5333199

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Fischer87: Fischer R, Jensen R (1987). "Prephenate dehydratase (monofunctional)." Methods Enzymol 1987;142;507-12. PMID: 3110557

Han09: Han Q, Robinson H, Cai T, Tagle DA, Li J (2009). "Structural insight into the inhibition of human kynurenine aminotransferase I/glutamine transaminase K." J Med Chem 52(9);2786-93. PMID: 19338303

Ito69: Ito J, Cox EC, Yanofsky C (1969). "Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: purification and characterization of component I." J Bacteriol 97(2);725-33. PMID: 4886289

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Mobley99: Mobley EM, Kunkel BN, Keith B (1999). "Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana." Gene 240(1);115-23. PMID: 10564818

Ray91a: Ray JM, Bauerle R (1991). "Purification and properties of tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli." J Bacteriol 173(6);1894-901. PMID: 1672127

Rebello70: Rebello JL, Jensen RA (1970). "Metabolic interlock. The multi-metabolite control of prephenate dehydratase activity in Bacillus subtilis." J Biol Chem 1970;245(15);3738-44. PMID: 4992710

Riepl78: Riepl RG, Glover GI (1978). "Purification of Prephenate dehydratase from Bacillus subtilis." Arch Biochem Biophys 1978;191(1);192-7. PMID: 104661

Riepl79: Riepl RG, Glover GI (1979). "Regulation and state of aggregation of Bacillus subtilis prephenate dehydratase in the presence of allosteric effectors." J Biol Chem 1979;254(20);10321-8. PMID: 114523

Singh98: Singh DK, Malhotra SP, Singh R (1998). "Purification and characterizaton of plastidic pyruvate kinase from developing seeds of Brassica campestris L." Indian J Biochem Biophys 35(6);346-52. PMID: 10412228

Tutino97: Tutino ML, Tosco A, Marino G, Sannia G (1997). "Expression of Sulfolobus solfataricus trpE and trpG genes in E. coli." Biochem Biophys Res Commun 230(2);306-10. PMID: 9016772

Woolfolk67: Woolfolk CA, Stadtman ER (1967). "Regulation of glutamine synthetase. 3. Cumulative feedback inhibition of glutamine synthetase from Escherichia coli." Arch Biochem Biophys 118(3);736-55. PMID: 4860415


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Sat Feb 6, 2016, biocyc11.