Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: L-tryptophan

Abbrev Name: trp

Synonyms: trp, W, tryptacin, trofan, tryptophan, 2-amino-3-indolylpropanic acid, L-trp

Superclasses: an amino acid or its derivative an amino acid a non-polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an aromatic amino acid an aromatic L-amino acid
an amino acid or its derivative an amino acid an L-amino acid
an amino acid or its derivative an amino acid an L-amino acid an aromatic L-amino acid

Chemical Formula: C11H12N2O2

Molecular Weight: 204.23 Daltons

Monoisotopic Molecular Weight: 204.0898776398 Daltons

SMILES: C2(NC1(C=CC=CC=1C(CC([N+])C(=O)[O-])=2))

InChI: InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)/t9-/m0/s1

InChIKey: InChIKey=QIVBCDIJIAJPQS-VIFPVBQESA-N

Unification Links: CAS:73-22-3 , ChEBI:57912 , HMDB:HMDB00929 , IAF1260:33772 , KEGG:C00078 , MetaboLights:MTBLC57912 , PubChem:6923516

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 95.843445 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

5-N-acetylardeemin biosynthesis :
anthranilate + L-alanine + L-tryptophan + 3 ATP → ardeemin FQ + 3 AMP + 3 diphosphate + H2O + 2 H+

acetylaszonalenin biosynthesis :
L-tryptophan + anthranilate + 2 ATP → (R)-benzodiazepinedione + 2 ADP + 2 phosphate + H+

α-cyclopiazonate biosynthesis :
acetoacetyl-ACP + L-tryptophan + ATP → cyclo-acetoacetyl-L-tryptophan + AMP + a holo-[acyl-carrier protein] + diphosphate + 2 H+

asperlicin E biosynthesis :
2 anthranilate + L-tryptophan + 3 ATP → asperlicin D + 3 AMP + 3 diphosphate + H2O + H+
2 anthranilate + L-tryptophan + 3 ATP → asperlicin C + 3 AMP + 3 diphosphate + H2O + H+

beta-carboline biosynthesis , camptothecin biosynthesis , hydroxycinnamic acid serotonin amides biosynthesis , secologanin and strictosidine biosynthesis , tryptophan degradation VI (via tryptamine) , tryptophan degradation X (mammalian, via tryptamine) :
L-tryptophan + H+ → CO2 + tryptamine

camalexin biosynthesis , glucosinolate biosynthesis from tryptophan :
L-tryptophan + NADPH + oxygen → N-hydroxy-L-tryptophan + NADP+ + H2O

chanoclavine I aldehyde biosynthesis :
dimethylallyl diphosphate + L-tryptophan → 4-(3-methylbut-2-enyl)-L-tryptophan + diphosphate

fumiquinazoline D biosynthesis :
anthranilate + L-tryptophan + L-alanine + 3 ATP → fumiquinazoline F + 3 AMP + 3 diphosphate + H2O + 2 H+

fumitremorgin C biosynthesis :
L-tryptophan + L-proline + 2 ATP → brevianamide F + 2 ADP + 2 phosphate + 2 H+

gramine biosynthesis :
L-tryptophan → 3-aminomethylindole

indole-3-acetate biosynthesis II :
L-tryptophan + NADPH + oxygen → N-hydroxy-L-tryptophan + NADP+ + H2O
L-tryptophan + H+ → CO2 + tryptamine

indole-3-acetate biosynthesis III (bacteria) :
L-tryptophan + oxygen → indole-3-acetamide + CO2 + H2O

K-252 biosynthesis , staurosporine biosynthesis , violacein biosynthesis :
L-tryptophan + oxygen → 2-imino-3-(indol-3-yl)propanoate + hydrogen peroxide + H+

pyrrolnitrin biosynthesis , rebeccamycin biosynthesis :
L-tryptophan + chloride + FADH2 + oxygen → 7-chloro-L-tryptophan + FAD + 2 H2O

serotonin and melatonin biosynthesis :
tetrahydrobiopterin + L-tryptophan + oxygen → 5-hydroxy-L-tryptophan + 4α-hydroxy-tetrahydrobiopterin

tRNA charging :
L-tryptophan + tRNAtrp + ATP + H+ → AMP + L-tryptophanyl-tRNAtrp + diphosphate

tryptophan degradation I (via anthranilate) , tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde , tryptophan degradation XI (mammalian, via kynurenine) :
L-tryptophan + oxygen → N-formylkynurenine

tryptophan degradation V (side chain pathway) :
L-tryptophan + 3 H+ + oxygen → indole acetaldehyde + ammonium + CO2 + H2O

Not in pathways:
L-tryptophan + H+ + oxygen → indole-3-glycol aldehyde + ammonium + CO2
L-tryptophan + 2 NADPH + 2 oxygen + 2 H+ → (E)-indol-3-ylacetaldoxime + CO2 + 2 NADP+ + 3 H2O
indole-3-acetate + L-tryptophan + ATP → indole-3-acetyl-tryptophan + AMP + diphosphate + H+
L-tryptophan + oxygen → hydrogen peroxide + α,β-didehydrotryptophan + H+
L-tryptophan + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + 2-methyl-L-tryptophan + H+

γ-glutamyl cycle :
glutathione + a standard α amino acid → L-cysteinyl-glycine + an (γ-L-glutamyl)-L-amino acid

leukotriene biosynthesis :
leukotriene-C4 + a standard α amino acid → an (γ-L-glutamyl)-L-amino acid + leukotriene-D4

methanofuran biosynthesis :
2-furaldehyde phosphate + a standard α amino acid → 2-methylamine-furan phosphate + a 2-oxo carboxylate


a standard α amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

prodigiosin biosynthesis :
(S)-3-acetyloctanal + an L-amino acid → 2-methyl-3-n-amyl-dihydropyrrole + a 2-oxo acid + H2O

rhizocticin A and B biosynthesis :
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acidL-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate


ATP + 2 an L-amino acid → ADP + a dipeptide + phosphate + H+

Reactions known to produce the compound:

tryptophan biosynthesis :
L-serine + indole → L-tryptophan + H2O

Not in pathways:
N-methyl-L-tryptophan + oxygen + H2O → hydrogen peroxide + formaldehyde + L-tryptophan
a protein with N-terminal L-tryptophan + H2O → a peptide + L-tryptophan
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate + L-serine → L-tryptophan + D-glyceraldehyde 3-phosphate + H2O

dimethylsulfoniopropionate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

seed germination protein turnover , wound-induced proteolysis I :
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)


a dipeptide + H2O → 2 amino acids
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
β-aspartyl dipeptide + H2O → L-aspartate + a standard α amino acid
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → 2 a standard α amino acid
a peptide + H2O → a standard α amino acid + a peptide
a peptide + H2O → a peptide + a standard α amino acid
a peptide + H2O → a peptide + a standard α amino acid
an oligopeptide + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a standard α amino acid + a peptide
a peptide + H2O → a standard α amino acid + a peptide
a protein + H2O → a standard α amino acid + a peptide
a tripeptide + H2O → a dipeptide + a standard α amino acid
a dipetide with L-aspartate at the N-terminal + H2O → L-aspartate + a standard α amino acid
a dipetide with L-histidine at the C-terminal + H2O → a standard α amino acid + L-histidine
a dipeptide with L-methionine at the N-terminal + H2O → a standard α amino acid + L-methionine
a dipeptide with proline at the C-terminal + H2O → L-proline + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)


an ester of hydrophobic-amino acids + H2O → a non-polar amino acid + a non-polar amino acid

γ-glutamyl cycle :
an (γ-L-glutamyl)-L-amino acid → an L-amino acid + 5-oxoproline


a peptide + H2O → an L-amino acid + a peptide
a peptide + H2O → a peptide + an L-amino acid
a N-methyl L-amino acid + oxygen + H2O → an L-amino acid + formaldehyde + hydrogen peroxide
a polypeptide + H2O → a polypeptide + an L-amino acid


an ester of aromatic amino acids + H2O → an aromatic amino acid + an aromatic amino acid
a peptide + H2O → a peptide + an aromatic amino acid


amino acids(n) + H2O → amino acids(n-1) + an α amino acid
an α amino acid ester + H2O → an alcohol + an α amino acid + H+
a protein + H2O → a protein + an α amino acid

Reactions known to both consume and produce the compound:

indole-3-acetate biosynthesis I :
L-tryptophan + pyruvate ↔ L-alanine + indole-3-pyruvate

indole-3-acetate biosynthesis II :
L-tryptophan + pyruvate ↔ L-alanine + indole-3-pyruvate
2-oxoglutarate + L-tryptophan ↔ L-glutamate + indole-3-pyruvate

terrequinone A biosynthesis :
L-tryptophan + 2-oxo-3-phenylpropanoate ↔ indole-3-pyruvate + L-phenylalanine

tryptophan degradation II (via pyruvate) :
L-tryptophan ↔ indole + 2-aminoprop-2-enoate + H+

tryptophan degradation IV (via indole-3-lactate) , tryptophan degradation VII (via indole-3-pyruvate) :
2-oxoglutarate + L-tryptophan ↔ L-glutamate + indole-3-pyruvate

tryptophan degradation VIII (to tryptophol) :
L-tryptophan + 2-oxo-3-phenylpropanoate ↔ indole-3-pyruvate + L-phenylalanine
2-oxoglutarate + L-tryptophan ↔ L-glutamate + indole-3-pyruvate

asparagine degradation II :
a 2-oxo carboxylate + L-asparagine ↔ 2-oxosuccinamate + a standard α amino acid

dimethylsulfoniopropionate biosynthesis III (algae) , ethylene biosynthesis III (microbes) :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

glucosinolate biosynthesis from dihomomethionine :
2-oxo-6-methylthiohexanoate + a standard α amino acid ↔ L-dihomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from hexahomomethionine :
2-oxo-10-methylthiodecanoate + a standard α amino acid ↔ hexahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from pentahomomethionine :
2-oxo-9-methylthiononanoate + a standard α amino acid ↔ pentahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from tetrahomomethionine :
2-oxo-8-methylthiooctanoate + a standard α amino acid ↔ tetrahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from trihomomethionine :
2-oxo-7-methylthioheptanoate + a standard α amino acid ↔ trihomomethionine + a 2-oxo carboxylate

homomethionine biosynthesis :
2-oxo-5-methylthiopentanoate + a standard α amino acid ↔ L-homomethionine + a 2-oxo carboxylate
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

Not in pathways:
L-ornithine + a 2-oxo carboxylate ↔ a standard α amino acid + L-glutamate-5-semialdehyde


L-alanine + a 2-oxo carboxylate ↔ pyruvate + an L-amino acid


an aromatic amino acid + 2-oxoglutarate ↔ an aromatic oxo-acid + L-glutamate
glyoxylate + an aromatic amino acid ↔ glycine + an aromatic oxo-acid

In Reactions of unknown directionality:

Not in pathways:
L-methionine + indole-3-pyruvate = L-tryptophan + 2-oxo-4-methylthiobutanoate
L-Tryptophanamide + H2O = ammonium + L-tryptophan
L-tryptophan + H2O = indole + pyruvate + ammonium
L-tryptophan + NAD(P)+ + H2O = indole-3-pyruvate + ammonium + NAD(P)H + H+
dimethylallyl diphosphate + L-tryptophan = 7-(3-methylbut-2-enyl)-L-tryptophan + diphosphate
L-tryptophan + chloride + FAD + 2 H+ = 5-chloro-L-tryptophan + FADH2


an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid


an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid


a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

In Transport reactions:
L-tryptophan[out]L-tryptophan[in] ,
L-tryptophan[periplasmic space] + H+[periplasmic space]L-tryptophan[cytosol] + H+[cytosol] ,
a non-polar amino acid[extracellular space] + ATP + H2O ↔ a non-polar amino acid[cytosol] + ADP + phosphate ,
an L-amino acid[cytosol]an L-amino acid[periplasmic space] ,
an aromatic amino acid[cytosol]an aromatic amino acid[periplasmic space]

Enzymes activated by L-tryptophan, sorted by the type of activation, are:

Activator (Allosteric) of: chorismate mutase [Mobley99] , chorismate mutase [Mobley99]

Activator (Mechanism unknown) of: pyruvate kinase [Singh98] , glutamate dehydrogenase (NAD-dependent) [Bonete96]

Enzymes inhibited by L-tryptophan, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: anthranilate synthase [Baker66, Comment 1] , anthranilate synthase [Tutino97] , prephenate dehydratase [Comment 2]

Inhibitor (Noncompetitive) of: anthranilate synthase [Baker66, Comment 3]

Inhibitor (Mechanism unknown) of: glutamine synthetase [Woolfolk67, Comment 4] , 2-dehydro-3-deoxyphosphoheptonate aldolase [Ray91] , kynurenine aminotransferase [Han09]


References

Baker66: Baker TI, Crawford IP (1966). "Anthranilate synthetase. Partial purification and some kinetic studies on the enzyme from Escherichia coli." J Biol Chem 241(23);5577-84. PMID: 5333199

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Fischer87: Fischer R, Jensen R (1987). "Prephenate dehydratase (monofunctional)." Methods Enzymol 1987;142;507-12. PMID: 3110557

Han09: Han Q, Robinson H, Cai T, Tagle DA, Li J (2009). "Structural insight into the inhibition of human kynurenine aminotransferase I/glutamine transaminase K." J Med Chem 52(9);2786-93. PMID: 19338303

Ito69: Ito J, Cox EC, Yanofsky C (1969). "Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: purification and characterization of component I." J Bacteriol 97(2);725-33. PMID: 4886289

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Mobley99: Mobley EM, Kunkel BN, Keith B (1999). "Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana." Gene 240(1);115-23. PMID: 10564818

Ray91: Ray JM, Bauerle R (1991). "Purification and properties of tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli." J Bacteriol 173(6);1894-901. PMID: 1672127

Rebello70: Rebello JL, Jensen RA (1970). "Metabolic interlock. The multi-metabolite control of prephenate dehydratase activity in Bacillus subtilis." J Biol Chem 1970;245(15);3738-44. PMID: 4992710

Riepl78: Riepl RG, Glover GI (1978). "Purification of Prephenate dehydratase from Bacillus subtilis." Arch Biochem Biophys 1978;191(1);192-7. PMID: 104661

Riepl79: Riepl RG, Glover GI (1979). "Regulation and state of aggregation of Bacillus subtilis prephenate dehydratase in the presence of allosteric effectors." J Biol Chem 1979;254(20);10321-8. PMID: 114523

Singh98: Singh DK, Malhotra SP, Singh R (1998). "Purification and characterizaton of plastidic pyruvate kinase from developing seeds of Brassica campestris L." Indian J Biochem Biophys 35(6);346-52. PMID: 10412228

Tutino97: Tutino ML, Tosco A, Marino G, Sannia G (1997). "Expression of Sulfolobus solfataricus trpE and trpG genes in E. coli." Biochem Biophys Res Commun 230(2);306-10. PMID: 9016772

Woolfolk67: Woolfolk CA, Stadtman ER (1967). "Regulation of glutamine synthetase. 3. Cumulative feedback inhibition of glutamine synthetase from Escherichia coli." Arch Biochem Biophys 118(3);736-55. PMID: 4860415


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sat Nov 22, 2014, biocyc14.