Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Compound: L-tryptophan

Abbrev Name: trp

Synonyms: trp, W, tryptacin, trofan, tryptophan, 2-amino-3-indolylpropanic acid, L-trp

Superclasses: an amino acid or its derivative an amino acid a non-polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an aromatic amino acid an aromatic L-amino acid
an amino acid or its derivative an amino acid an L-amino acid
an amino acid or its derivative an amino acid an L-amino acid an aromatic L-amino acid

Chemical Formula: C11H12N2O2

Molecular Weight: 204.23 Daltons

Monoisotopic Molecular Weight: 204.0898776398 Daltons

SMILES: C2(NC1(C=CC=CC=1C(CC([N+])C(=O)[O-])=2))

InChI: InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)/t9-/m0/s1

InChIKey: InChIKey=QIVBCDIJIAJPQS-VIFPVBQESA-N

Unification Links: CAS:73-22-3 , ChEBI:57912 , HMDB:HMDB00929 , IAF1260:33772 , KEGG:C00078 , MetaboLights:MTBLC57912 , PubChem:6923516

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 95.843445 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

5-N-acetylardeemin biosynthesis :
anthranilate + L-alanine + L-tryptophan + 3 ATP → ardeemin FQ + 3 AMP + 3 diphosphate + H2O + 2 H+

acetylaszonalenin biosynthesis :
L-tryptophan + anthranilate + 2 ATP → (R)-benzodiazepinedione + 2 ADP + 2 phosphate + H+

α-cyclopiazonate biosynthesis :
acetoacetyl-ACP + L-tryptophan + ATP → cyclo-acetoacetyl-L-tryptophan + AMP + a holo-[acyl-carrier protein] + diphosphate + 2 H+

asperlicin E biosynthesis :
2 anthranilate + L-tryptophan + 3 ATP → asperlicin D + 3 AMP + 3 diphosphate + H2O + H+
2 anthranilate + L-tryptophan + 3 ATP → asperlicin C + 3 AMP + 3 diphosphate + H2O + H+

beta-carboline biosynthesis , camptothecin biosynthesis , hydroxycinnamic acid serotonin amides biosynthesis , secologanin and strictosidine biosynthesis , tryptophan degradation VI (via tryptamine) , tryptophan degradation X (mammalian, via tryptamine) :
L-tryptophan + H+ → CO2 + tryptamine

camalexin biosynthesis , glucosinolate biosynthesis from tryptophan :
L-tryptophan + NADPH + oxygen → N-hydroxy-L-tryptophan + NADP+ + H2O

chanoclavine I aldehyde biosynthesis :
dimethylallyl diphosphate + L-tryptophan → 4-(3-methylbut-2-enyl)-L-tryptophan + diphosphate

fumiquinazoline D biosynthesis :
anthranilate + L-tryptophan + L-alanine + 3 ATP → fumiquinazoline F + 3 AMP + 3 diphosphate + H2O + 2 H+

fumitremorgin C biosynthesis :
L-tryptophan + L-proline + 2 ATP → brevianamide F + 2 ADP + 2 phosphate + 2 H+

gramine biosynthesis :
L-tryptophan → 3-aminomethylindole

indole-3-acetate biosynthesis II :
L-tryptophan + NADPH + oxygen → N-hydroxy-L-tryptophan + NADP+ + H2O
L-tryptophan + H+ → CO2 + tryptamine

indole-3-acetate biosynthesis III (bacteria) :
L-tryptophan + oxygen → indole-3-acetamide + CO2 + H2O

K-252 biosynthesis , staurosporine biosynthesis , violacein biosynthesis :
L-tryptophan + oxygen → 2-imino-3-(indol-3-yl)propanoate + hydrogen peroxide + H+

pyrrolnitrin biosynthesis , rebeccamycin biosynthesis :
L-tryptophan + chloride + FADH2 + oxygen → 7-chloro-L-tryptophan + FAD + 2 H2O

serotonin and melatonin biosynthesis :
tetrahydrobiopterin + L-tryptophan + oxygen → 5-hydroxy-L-tryptophan + 4α-hydroxy-tetrahydrobiopterin

tRNA charging :
L-tryptophan + tRNAtrp + ATP + H+ → AMP + L-tryptophanyl-tRNAtrp + diphosphate

tryptophan degradation I (via anthranilate) , tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde , tryptophan degradation XI (mammalian, via kynurenine) :
L-tryptophan + oxygen → N-formylkynurenine

tryptophan degradation V (side chain pathway) :
L-tryptophan + 3 H+ + oxygen → indole acetaldehyde + ammonium + CO2 + H2O

Not in pathways:
L-tryptophan + H+ + oxygen → indole-3-glycol aldehyde + ammonium + CO2
L-tryptophan + 2 NADPH + 2 oxygen + 2 H+ → (E)-indol-3-ylacetaldoxime + CO2 + 2 NADP+ + 3 H2O
indole-3-acetate + L-tryptophan + ATP → indole-3-acetyl-tryptophan + AMP + diphosphate + H+
L-tryptophan + oxygen → hydrogen peroxide + α,β-didehydrotryptophan + H+
L-tryptophan + S-adenosyl-L-methionine → S-adenosyl-L-homocysteine + 2-methyl-L-tryptophan + H+

γ-glutamyl cycle :
glutathione + a standard α amino acid → L-cysteinyl-glycine + an (γ-L-glutamyl)-L-amino acid

leukotriene biosynthesis :
leukotriene-C4 + a standard α amino acid → an (γ-L-glutamyl)-L-amino acid + leukotriene-D4

methanofuran biosynthesis :
2-furaldehyde phosphate + a standard α amino acid → 2-methylamine-furan phosphate + a 2-oxo carboxylate


a standard α amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

prodigiosin biosynthesis :
(S)-3-acetyloctanal + an L-amino acid → 2-methyl-3-n-amyl-dihydropyrrole + a 2-oxo acid + H2O

rhizocticin A and B biosynthesis :
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acidL-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate


ATP + 2 an L-amino acid → ADP + a dipeptide + phosphate + H+

Reactions known to produce the compound:

tryptophan biosynthesis :
L-serine + indole → L-tryptophan + H2O

Not in pathways:
N-methyl-L-tryptophan + oxygen + H2O → hydrogen peroxide + formaldehyde + L-tryptophan
a protein with N-terminal L-tryptophan + H2O → a peptide + L-tryptophan
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate + L-serine → L-tryptophan + D-glyceraldehyde 3-phosphate + H2O

dimethylsulfoniopropionate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

seed germination protein turnover , wound-induced proteolysis I :
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)


a dipeptide + H2O → 2 amino acids
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
β-aspartyl dipeptide + H2O → L-aspartate + a standard α amino acid
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → 2 a standard α amino acid
a peptide + H2O → a standard α amino acid + a peptide
a peptide + H2O → a peptide + a standard α amino acid
a peptide + H2O → a peptide + a standard α amino acid
an oligopeptide + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a standard α amino acid + a peptide
a peptide + H2O → a standard α amino acid + a peptide
a protein + H2O → a standard α amino acid + a peptide
a tripeptide + H2O → a dipeptide + a standard α amino acid
a dipetide with L-aspartate at the N-terminal + H2O → L-aspartate + a standard α amino acid
a dipetide with L-histidine at the C-terminal + H2O → a standard α amino acid + L-histidine
a dipeptide with L-methionine at the N-terminal + H2O → a standard α amino acid + L-methionine
a dipeptide with proline at the C-terminal + H2O → L-proline + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)


an ester of hydrophobic-amino acids + H2O → a non-polar amino acid + a non-polar amino acid

γ-glutamyl cycle :
an (γ-L-glutamyl)-L-amino acid → an L-amino acid + 5-oxoproline


a peptide + H2O → an L-amino acid + a peptide
a peptide + H2O → a peptide + an L-amino acid
a N-methyl L-amino acid + oxygen + H2O → an L-amino acid + formaldehyde + hydrogen peroxide
a polypeptide + H2O → a polypeptide + an L-amino acid


an ester of aromatic amino acids + H2O → an aromatic amino acid + an aromatic amino acid
a peptide + H2O → a peptide + an aromatic amino acid


amino acids(n) + H2O → amino acids(n-1) + an α amino acid
an α amino acid ester + H2O → an alcohol + an α amino acid + H+
a protein + H2O → a protein + an α amino acid

Reactions known to both consume and produce the compound:

indole-3-acetate biosynthesis I :
L-tryptophan + pyruvate ↔ L-alanine + indole-3-pyruvate

indole-3-acetate biosynthesis II :
L-tryptophan + pyruvate ↔ L-alanine + indole-3-pyruvate
2-oxoglutarate + L-tryptophan ↔ L-glutamate + indole-3-pyruvate

terrequinone A biosynthesis :
L-tryptophan + 2-oxo-3-phenylpropanoate ↔ indole-3-pyruvate + L-phenylalanine

tryptophan degradation II (via pyruvate) :
L-tryptophan ↔ indole + 2-aminoprop-2-enoate + H+

tryptophan degradation IV (via indole-3-lactate) , tryptophan degradation VII (via indole-3-pyruvate) :
2-oxoglutarate + L-tryptophan ↔ L-glutamate + indole-3-pyruvate

tryptophan degradation VIII (to tryptophol) :
L-tryptophan + 2-oxo-3-phenylpropanoate ↔ indole-3-pyruvate + L-phenylalanine
2-oxoglutarate + L-tryptophan ↔ L-glutamate + indole-3-pyruvate

asparagine degradation II :
a 2-oxo carboxylate + L-asparagine ↔ 2-oxosuccinamate + a standard α amino acid

dimethylsulfoniopropionate biosynthesis III (algae) , ethylene biosynthesis III (microbes) :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

glucosinolate biosynthesis from dihomomethionine :
2-oxo-6-methylthiohexanoate + a standard α amino acid ↔ L-dihomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from hexahomomethionine :
2-oxo-10-methylthiodecanoate + a standard α amino acid ↔ hexahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from pentahomomethionine :
2-oxo-9-methylthiononanoate + a standard α amino acid ↔ pentahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from tetrahomomethionine :
2-oxo-8-methylthiooctanoate + a standard α amino acid ↔ tetrahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from trihomomethionine :
2-oxo-7-methylthioheptanoate + a standard α amino acid ↔ trihomomethionine + a 2-oxo carboxylate

homomethionine biosynthesis :
2-oxo-5-methylthiopentanoate + a standard α amino acid ↔ L-homomethionine + a 2-oxo carboxylate
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

Not in pathways:
L-ornithine + a 2-oxo carboxylate ↔ a standard α amino acid + L-glutamate-5-semialdehyde


L-alanine + a 2-oxo carboxylate ↔ pyruvate + an L-amino acid


an aromatic amino acid + 2-oxoglutarate ↔ an aromatic oxo-acid + L-glutamate
glyoxylate + an aromatic amino acid ↔ glycine + an aromatic oxo-acid

In Reactions of unknown directionality:

Not in pathways:
L-methionine + indole-3-pyruvate = L-tryptophan + 2-oxo-4-methylthiobutanoate
L-Tryptophanamide + H2O = ammonium + L-tryptophan
L-tryptophan + H2O = indole + pyruvate + ammonium
L-tryptophan + NAD(P)+ + H2O = indole-3-pyruvate + ammonium + NAD(P)H + H+
dimethylallyl diphosphate + L-tryptophan = 7-(3-methylbut-2-enyl)-L-tryptophan + diphosphate
L-tryptophan + chloride + FAD + 2 H+ = 5-chloro-L-tryptophan + FADH2


an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid


an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid


a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

In Transport reactions:
L-tryptophan[out]L-tryptophan[in] ,
L-tryptophan[periplasmic space] + H+[periplasmic space]L-tryptophan[cytosol] + H+[cytosol] ,
a non-polar amino acid[extracellular space] + ATP + H2O ↔ a non-polar amino acid[cytosol] + ADP + phosphate ,
an L-amino acid[cytosol]an L-amino acid[periplasmic space] ,
an aromatic amino acid[cytosol]an aromatic amino acid[periplasmic space]

Enzymes activated by L-tryptophan, sorted by the type of activation, are:

Activator (Allosteric) of: chorismate mutase [Mobley99] , chorismate mutase [Mobley99]

Activator (Mechanism unknown) of: pyruvate kinase [Singh98] , glutamate dehydrogenase (NAD-dependent) [Bonete96]

Enzymes inhibited by L-tryptophan, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: anthranilate synthase [Baker66, Comment 1] , anthranilate synthase [Tutino97] , prephenate dehydratase [Comment 2]

Inhibitor (Noncompetitive) of: anthranilate synthase [Baker66, Comment 3]

Inhibitor (Mechanism unknown) of: glutamine synthetase [Woolfolk67, Comment 4] , 2-dehydro-3-deoxyphosphoheptonate aldolase [Ray91] , kynurenine aminotransferase [Han09]


References

Baker66: Baker TI, Crawford IP (1966). "Anthranilate synthetase. Partial purification and some kinetic studies on the enzyme from Escherichia coli." J Biol Chem 241(23);5577-84. PMID: 5333199

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Fischer87: Fischer R, Jensen R (1987). "Prephenate dehydratase (monofunctional)." Methods Enzymol 1987;142;507-12. PMID: 3110557

Han09: Han Q, Robinson H, Cai T, Tagle DA, Li J (2009). "Structural insight into the inhibition of human kynurenine aminotransferase I/glutamine transaminase K." J Med Chem 52(9);2786-93. PMID: 19338303

Ito69: Ito J, Cox EC, Yanofsky C (1969). "Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: purification and characterization of component I." J Bacteriol 97(2);725-33. PMID: 4886289

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Mobley99: Mobley EM, Kunkel BN, Keith B (1999). "Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana." Gene 240(1);115-23. PMID: 10564818

Ray91: Ray JM, Bauerle R (1991). "Purification and properties of tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli." J Bacteriol 173(6);1894-901. PMID: 1672127

Rebello70: Rebello JL, Jensen RA (1970). "Metabolic interlock. The multi-metabolite control of prephenate dehydratase activity in Bacillus subtilis." J Biol Chem 1970;245(15);3738-44. PMID: 4992710

Riepl78: Riepl RG, Glover GI (1978). "Purification of Prephenate dehydratase from Bacillus subtilis." Arch Biochem Biophys 1978;191(1);192-7. PMID: 104661

Riepl79: Riepl RG, Glover GI (1979). "Regulation and state of aggregation of Bacillus subtilis prephenate dehydratase in the presence of allosteric effectors." J Biol Chem 1979;254(20);10321-8. PMID: 114523

Singh98: Singh DK, Malhotra SP, Singh R (1998). "Purification and characterizaton of plastidic pyruvate kinase from developing seeds of Brassica campestris L." Indian J Biochem Biophys 35(6);346-52. PMID: 10412228

Tutino97: Tutino ML, Tosco A, Marino G, Sannia G (1997). "Expression of Sulfolobus solfataricus trpE and trpG genes in E. coli." Biochem Biophys Res Commun 230(2);306-10. PMID: 9016772

Woolfolk67: Woolfolk CA, Stadtman ER (1967). "Regulation of glutamine synthetase. 3. Cumulative feedback inhibition of glutamine synthetase from Escherichia coli." Arch Biochem Biophys 118(3);736-55. PMID: 4860415


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sat Dec 20, 2014, biocyc14.