Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Compound: L-tyrosine

Abbrev Name: tyr

Synonyms: Y, tyr, tyrosine, L-tyr

Superclasses: an amino acid or its derivative an amino acid a polar amino acid an uncharged polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an aromatic amino acid an aromatic L-amino acid
an amino acid or its derivative an amino acid an L-amino acid
an amino acid or its derivative an amino acid an L-amino acid an aromatic L-amino acid

Chemical Formula: C9H11NO3

Molecular Weight: 181.19 Daltons

Monoisotopic Molecular Weight: 181.0738932246 Daltons

SMILES: C(C(CC1(C=CC(O)=CC=1))[N+])(=O)[O-]

InChI: InChI=1S/C9H11NO3/c10-8(9(12)13)5-6-1-3-7(11)4-2-6/h1-4,8,11H,5,10H2,(H,12,13)/t8-/m0/s1

InChIKey: InChIKey=OUYCCCASQSFEME-QMMMGPOBSA-N

Unification Links: CAS:60-18-4 , ChEBI:58315 , HMDB:HMDB00158 , IAF1260:33785 , KEGG:C00082 , MetaboLights:MTBLC58315 , PubChem:6942100

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 24.382322 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(S)-reticuline biosynthesis I :
L-tyrosine + 0.5 oxygen → L-dopa
L-tyrosine + H+ → CO2 + tyramine

(S)-reticuline biosynthesis II :
L-tyrosine + 0.5 oxygen → L-dopa
L-tyrosine + H+ → CO2 + tyramine

3-amino-4,7-dihydroxy-coumarin biosynthesis :
a NovH peptidyl-carrier protein + L-tyrosine + ATP → L-tyrosine-S-[NovH protein] + AMP + diphosphate

betacyanin biosynthesis , L-dopachrome biosynthesis :
L-tyrosine + oxygen → dopaquinone + H2O

betalamic acid biosynthesis , catecholamine biosynthesis , rosmarinic acid biosynthesis II :
tetrahydrobiopterin + L-tyrosine + oxygen → L-dopa + 4α-hydroxy-tetrahydrobiopterin

betaxanthin biosynthesis (via dopaxanthin) :
L-tyrosine + betalamate → portulacaxanthin II + H+ + H2O

coumarins biosynthesis (engineered) :
L-tyrosine + FADH2 + oxygen → L-dopa + FAD + H2O + H+
L-tyrosine → 4-coumarate + ammonium

dhurrin biosynthesis , taxiphyllin biosynthesis :
L-tyrosine + NADPH + oxygen → N-hydroxy-L-tyrosine + NADP+ + H2O

hydroxycinnamic acid tyramine amides biosynthesis , methanofuran biosynthesis , octopamine biosynthesis , salidroside biosynthesis :
L-tyrosine + H+ → CO2 + tyramine

lincomycin biosynthesis :
L-tyrosine + 0.5 oxygen → L-dopa

naringenin biosynthesis (engineered) :
L-tyrosine → 4-coumarate + ammonium

puromycin biosynthesis :
3'-amino-3'-deoxyadenosine + L-tyrosineN6,N6,O-tridemethylpuromycin + H2O

pyoverdine I biosynthesis :
L-glutamate + L-tyrosine + L-2,4-diaminobutanoate + 2 L-serine + L-arginine + 2 N5-formyl-N5-hydroxy-L-ornithine + L-lysine + 2 L-threonine → ferribactin + 2 H+ + 12 H2O

thiazole biosynthesis I (E. coli) :
L-tyrosine + S-adenosyl-L-methionine + NADPH → 2-iminoacetate + 4-methylphenol + 5'-deoxyadenosine + L-methionine + NADP+ + H+

tRNA charging :
tRNAtyr + L-tyrosine + ATP + H+ → L-tyrosyl-tRNAtyr + AMP + diphosphate

Not in pathways:
S-adenosyl-L-methionine + L-tyrosineS-adenosyl-L-homocysteine + 3-methyl-L-tyrosine + H+
L-tyrosine + 2 NADPH + 2 oxygen + 2 H+ → (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] + CO2 + 2 NADP+ + 3 H2O
indole-3-acetate + L-tyrosine + ATP → indole-3-acetyl-tyrosine + AMP + diphosphate + H+
ATP + detyrosinated α-tubulin + L-tyrosine → α-tubulin + ADP + phosphate
L-tyrosine + L-arginine + ATP → L-tyrosyl-L-arginine + AMP + diphosphate + H+

γ-glutamyl cycle :
glutathione + a standard α amino acid → L-cysteinyl-glycine + an (γ-L-glutamyl)-L-amino acid

leukotriene biosynthesis :
leukotriene-C4 + a standard α amino acid → an (γ-L-glutamyl)-L-amino acid + leukotriene-D4

methanofuran biosynthesis :
2-furaldehyde phosphate + a standard α amino acid → 2-methylamine-furan phosphate + a 2-oxo carboxylate


a standard α amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

prodigiosin biosynthesis :
(S)-3-acetyloctanal + an L-amino acid → 2-methyl-3-n-amyl-dihydropyrrole + a 2-oxo acid + H2O

rhizocticin A and B biosynthesis :
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acidL-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate


ATP + 2 an L-amino acid → ADP + a dipeptide + phosphate + H+

Reactions known to produce the compound:

phenylalanine degradation I (aerobic) , tyrosine biosynthesis IV :
tetrahydrobiopterin + L-phenylalanine + oxygen → L-tyrosine + 4α-hydroxy-tetrahydrobiopterin

phenylalanine degradation V :
L-phenylalanine + an N10-formyl-tetrahydrofolate + oxygen → a 10-formyltetrahydrofolate-4a-carbinolamine + L-tyrosine

tyrosine biosynthesis II :
L-arogenate + NADP+L-tyrosine + CO2 + NADPH

tyrosine biosynthesis III :
L-arogenate + NAD+L-tyrosine + CO2 + NADH

Not in pathways:
tyrosinated tubulin + H2O → a tubulin + L-tyrosine
O-phospho-L-tyrosine[periplasmic space] + H2O[periplasmic space]L-tyrosine[periplasmic space] + phosphate[periplasmic space]
tetrahydrobiopterin + L-phenylalanine + oxygen → 6,7-dihydrobiopterin + L-tyrosine + H2O
L-tyrosine + 2 iodide + 2 NADP+ ← 3,5-diiodo-L-tyrosine + 2 NADPH + H+
L-tyrosine + iodide + NADP+ ← 3-iodo-L-tyrosine + NADPH

dimethylsulfoniopropionate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

seed germination protein turnover , wound-induced proteolysis I :
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)


a dipeptide + H2O → 2 amino acids
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
β-aspartyl dipeptide + H2O → L-aspartate + a standard α amino acid
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → 2 a standard α amino acid
a peptide + H2O → a standard α amino acid + a peptide
a peptide + H2O → a peptide + a standard α amino acid
a peptide + H2O → a peptide + a standard α amino acid
an oligopeptide + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a standard α amino acid + a peptide
a peptide + H2O → a standard α amino acid + a peptide
a protein + H2O → a standard α amino acid + a peptide
a tripeptide + H2O → a dipeptide + a standard α amino acid
a dipetide with L-aspartate at the N-terminal + H2O → L-aspartate + a standard α amino acid
a dipetide with L-histidine at the C-terminal + H2O → a standard α amino acid + L-histidine
a dipeptide with L-methionine at the N-terminal + H2O → a standard α amino acid + L-methionine
a dipeptide with proline at the C-terminal + H2O → L-proline + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)

γ-glutamyl cycle :
an (γ-L-glutamyl)-L-amino acid → an L-amino acid + 5-oxoproline


a peptide + H2O → an L-amino acid + a peptide
a peptide + H2O → a peptide + an L-amino acid
a N-methyl L-amino acid + oxygen + H2O → an L-amino acid + formaldehyde + hydrogen peroxide
a polypeptide + H2O → a polypeptide + an L-amino acid


an ester of aromatic amino acids + H2O → an aromatic amino acid + an aromatic amino acid
a peptide + H2O → a peptide + an aromatic amino acid


amino acids(n) + H2O → amino acids(n-1) + an α amino acid
an α amino acid ester + H2O → an alcohol + an α amino acid + H+
a protein + H2O → a protein + an α amino acid

Reactions known to both consume and produce the compound:

(S)-reticuline biosynthesis I , 4-hydroxybenzoate biosynthesis I (eukaryotes) , 4-hydroxyphenylpyruvate biosynthesis , atromentin biosynthesis , rosmarinic acid biosynthesis I , tyrosine biosynthesis I , tyrosine degradation I , tyrosine degradation II , tyrosine degradation IV (to 4-methylphenol) :
L-tyrosine + 2-oxoglutarate ↔ 4-hydroxyphenylpyruvate + L-glutamate

phenylalanine biosynthesis (cytosolic, plants) :
2-oxo-3-phenylpropanoate + L-tyrosine ↔ L-phenylalanine + 4-hydroxyphenylpyruvate

tyrosine degradation III :
L-tyrosine + 2-oxoglutarate ↔ 4-hydroxyphenylpyruvate + L-glutamate
L-tyrosine + pyruvate ↔ 4-hydroxyphenylpyruvate + L-alanine

asparagine degradation II :
a 2-oxo carboxylate + L-asparagine ↔ 2-oxosuccinamate + a standard α amino acid

dimethylsulfoniopropionate biosynthesis III (algae) , ethylene biosynthesis III (microbes) :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

glucosinolate biosynthesis from dihomomethionine :
2-oxo-6-methylthiohexanoate + a standard α amino acid ↔ L-dihomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from hexahomomethionine :
2-oxo-10-methylthiodecanoate + a standard α amino acid ↔ hexahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from pentahomomethionine :
2-oxo-9-methylthiononanoate + a standard α amino acid ↔ pentahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from tetrahomomethionine :
2-oxo-8-methylthiooctanoate + a standard α amino acid ↔ tetrahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from trihomomethionine :
2-oxo-7-methylthioheptanoate + a standard α amino acid ↔ trihomomethionine + a 2-oxo carboxylate

homomethionine biosynthesis :
2-oxo-5-methylthiopentanoate + a standard α amino acid ↔ L-homomethionine + a 2-oxo carboxylate
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

Not in pathways:
L-ornithine + a 2-oxo carboxylate ↔ a standard α amino acid + L-glutamate-5-semialdehyde


L-alanine + a 2-oxo carboxylate ↔ pyruvate + an L-amino acid


an aromatic amino acid + 2-oxoglutarate ↔ an aromatic oxo-acid + L-glutamate
glyoxylate + an aromatic amino acid ↔ glycine + an aromatic oxo-acid

In Reactions of unknown directionality:

Not in pathways:
L-arogenate + NAD(P)+ = L-tyrosine + CO2 + NAD(P)H
L-tyrosine + H2O = phenol + pyruvate + ammonium
L-tyrosine = phenol + 2-aminoprop-2-enoate + H+
dimethylallyl diphosphate + L-tyrosine = 4-O-dimethylallyl-L-tyrosine + diphosphate
L-tyrosine = β-tyrosine
L-tyrosine + H2O + oxygen = 4-hydroxyphenylpyruvate + ammonium + hydrogen peroxide


an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid


an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid


a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

In Transport reactions:
L-tyrosine[out]L-tyrosine[in] ,
L-tyrosine[periplasmic space] + H+[periplasmic space]L-tyrosine[cytosol] + H+[cytosol] ,
a polar amino acid[extracellular space] + ATP + H2O ↔ a polar amino acid[cytosol] + ADP + phosphate ,
an L-amino acid[cytosol]an L-amino acid[periplasmic space] ,
an aromatic amino acid[cytosol]an aromatic amino acid[periplasmic space]

Enzymes activated by L-tyrosine, sorted by the type of activation, are:

Activator (Allosteric) of: arogenate dehydratase [Jung86] , arogenate dehydratase [Jung86]

Activator (Mechanism unknown) of: glutamate dehydrogenase (NAD-dependent) [Bonete96] , arogenate dehydratase [Siehl88]

Enzymes inhibited by L-tyrosine, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: prephenate dehydrogenase [Hudson83] , 2-dehydro-3-deoxyphosphoheptonate aldolase [Schoner76] , 5,6-dihydroxyindole-2-carboxylate monooxygenase [JimenezCervante94] , 3-O-methyl-dopa transaminase [Maeda76] , arogenate dehydrogenase [Byng81] , L-phenylalanine:2-oxoglutarate aminotransferase [Weigent76] , arogenate dehydrogenase [Rippert02] , arogenate dehydrogenase [Rippert02] , o-aminophenol oxidase [Suzuki06c]

Inhibitor (Allosteric) of: arogenate dehydrogenase [Bonner04] , chorismate mutase [Mobley99] , chorismate mutase [Mobley99]

Inhibitor (Mechanism unknown) of: chorismate mutase [Hudson83] , phenylalanine aminotransferase [Collier72] , tyrosine aminotransferase [Collier72] , leucine aminotransferase [Collier72]


References

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Bonner04: Bonner CA, Jensen RA, Gander JE, Keyhani NO (2004). "A core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis." Biochem J 382(Pt 1);279-91. PMID: 15171683

Byng81: Byng, Graham, Whitaker, Robert, Flick, Christopher, Jensen, Roy A. "Enzymology of L-tyrosine biosynthesis in corn." Phytochemistry (1981) vol. 20 (6):1289-1292.

Collier72: Collier RH, Kohlhaw G (1972). "Nonidentity of the aspartate and the aromatic aminotransferase components of transaminase A in Escherichia coli." J Bacteriol 1972;112(1);365-71. PMID: 4404056

Hudson83: Hudson GS, Howlett GJ, Davidson BE (1983). "The binding of tyrosine and NAD+ to chorismate mutase/prephenate dehydrogenase from Escherichia coli K12 and the effects of these ligands on the activity and self-association of the enzyme. Analysis in terms of a model." J Biol Chem 1983;258(5);3114-20. PMID: 6338013

JimenezCervante94: Jimenez-Cervantes C, Solano F, Kobayashi T, Urabe K, Hearing VJ, Lozano JA, Garcia-Borron JC (1994). "A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1)." J Biol Chem 269(27);17993-8000. PMID: 8027058

Jung86: Jung E, Zamir LO, Jensen RA (1986). "Chloroplasts of higher plants synthesize L-phenylalanine via L-arogenate." Proc Natl Acad Sci U S A 83(19);7231-5. PMID: 3463961

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Maeda76: Maeda T, Shindo H (1976). "Metabolic pathway of L-3-methoxy,4-hydroxyphenylalanine (3-O-methylDOPA)-participation of tyrosine aminotransferase and lactate dehydrogenase." Chem Pharm Bull (Tokyo) 24(5);1104-6. PMID: 14789

Mobley99: Mobley EM, Kunkel BN, Keith B (1999). "Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana." Gene 240(1);115-23. PMID: 10564818

Rippert02: Rippert P, Matringe M (2002). "Purification and kinetic analysis of the two recombinant arogenate dehydrogenase isoforms of Arabidopsis thaliana." Eur J Biochem 269(19);4753-61. PMID: 12354106

Schoner76: Schoner R, Herrmann KM (1976). "3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase. Purification, properties, and kinetics of the tyrosine-sensitive isoenzyme from Escherichia coli." J Biol Chem 1976;251(18);5440-7. PMID: 9387

Siehl88: Siehl DL, Conn EE (1988). "Kinetic and regulatory properties of arogenate dehydratase in seedlings of Sorghum bicolor (L.) Moench." Arch Biochem Biophys 260(2);822-9. PMID: 3124763

Suzuki06c: Suzuki H, Furusho Y, Higashi T, Ohnishi Y, Horinouchi S (2006). "A novel o-aminophenol oxidase responsible for formation of the phenoxazinone chromophore of grixazone." J Biol Chem 281(2);824-33. PMID: 16282322

Weigent76: Weigent DA, Nester EW (1976). "Purification and properties of two aromatic aminotransferases in Bacillus subtilis." J Biol Chem 1976;251(22);6974-80. PMID: 11213


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Sat Nov 22, 2014, BIOCYC14A.