Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites MAYBE down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites MAYBE down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites MAYBE down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites MAYBE down
12/28 - 12/31
for maintenance.
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
BioCyc websites MAYBE down
12/28 - 12/31
for maintenance.
twitter

MetaCyc Compound: L-tyrosine

Abbrev Name: tyr

Synonyms: Y, tyr, tyrosine, L-tyr

Superclasses: an amino acid or its derivative an amino acid a polar amino acid an uncharged polar amino acid
an amino acid or its derivative an amino acid an alpha amino acid a standard alpha amino acid
an amino acid or its derivative an amino acid an aromatic amino acid an aromatic L-amino acid
an amino acid or its derivative an amino acid an L-amino acid
an amino acid or its derivative an amino acid an L-amino acid an aromatic L-amino acid

Chemical Formula: C9H11NO3

Molecular Weight: 181.19 Daltons

Monoisotopic Molecular Weight: 181.0738932246 Daltons

SMILES: C(C(CC1(C=CC(O)=CC=1))[N+])(=O)[O-]

InChI: InChI=1S/C9H11NO3/c10-8(9(12)13)5-6-1-3-7(11)4-2-6/h1-4,8,11H,5,10H2,(H,12,13)/t8-/m0/s1

InChIKey: InChIKey=OUYCCCASQSFEME-QMMMGPOBSA-N

Unification Links: CAS:60-18-4 , ChEBI:58315 , HMDB:HMDB00158 , IAF1260:33785 , KEGG:C00082 , MetaboLights:MTBLC58315 , PubChem:6942100

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): 24.382322 Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

(S)-reticuline biosynthesis I :
L-tyrosine + 0.5 oxygen → L-dopa
L-tyrosine + H+ → CO2 + tyramine

(S)-reticuline biosynthesis II :
L-tyrosine + 0.5 oxygen → L-dopa
L-tyrosine + H+ → CO2 + tyramine

3-amino-4,7-dihydroxy-coumarin biosynthesis :
a NovH peptidyl-carrier protein + L-tyrosine + ATP → L-tyrosine-S-[NovH protein] + AMP + diphosphate

betacyanin biosynthesis , L-dopachrome biosynthesis :
L-tyrosine + oxygen → dopaquinone + H2O

betalamic acid biosynthesis , catecholamine biosynthesis , rosmarinic acid biosynthesis II :
tetrahydrobiopterin + L-tyrosine + oxygen → L-dopa + 4α-hydroxy-tetrahydrobiopterin

betaxanthin biosynthesis (via dopaxanthin) :
L-tyrosine + betalamate → portulacaxanthin II + H+ + H2O

coumarins biosynthesis (engineered) :
L-tyrosine + FADH2 + oxygen → L-dopa + FAD + H2O + H+
L-tyrosine → 4-coumarate + ammonium

dhurrin biosynthesis , taxiphyllin biosynthesis :
L-tyrosine + NADPH + oxygen → N-hydroxy-L-tyrosine + NADP+ + H2O

hydroxycinnamic acid tyramine amides biosynthesis , methanofuran biosynthesis , octopamine biosynthesis , salidroside biosynthesis :
L-tyrosine + H+ → CO2 + tyramine

lincomycin biosynthesis :
L-tyrosine + 0.5 oxygen → L-dopa

naringenin biosynthesis (engineered) :
L-tyrosine → 4-coumarate + ammonium

puromycin biosynthesis :
3'-amino-3'-deoxyadenosine + L-tyrosineN6,N6,O-tridemethylpuromycin + H2O

pyoverdine I biosynthesis :
L-glutamate + L-tyrosine + L-2,4-diaminobutanoate + 2 L-serine + L-arginine + 2 N5-formyl-N5-hydroxy-L-ornithine + L-lysine + 2 L-threonine → ferribactin + 2 H+ + 12 H2O

thiazole biosynthesis I (E. coli) :
L-tyrosine + S-adenosyl-L-methionine + NADPH → 2-iminoacetate + 4-methylphenol + 5'-deoxyadenosine + L-methionine + NADP+ + H+

tRNA charging :
tRNAtyr + L-tyrosine + ATP + H+ → L-tyrosyl-tRNAtyr + AMP + diphosphate

Not in pathways:
S-adenosyl-L-methionine + L-tyrosineS-adenosyl-L-homocysteine + 3-methyl-L-tyrosine + H+
L-tyrosine + 2 NADPH + 2 oxygen + 2 H+ → (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] + CO2 + 2 NADP+ + 3 H2O
indole-3-acetate + L-tyrosine + ATP → indole-3-acetyl-tyrosine + AMP + diphosphate + H+
ATP + detyrosinated α-tubulin + L-tyrosine → α-tubulin + ADP + phosphate
L-tyrosine + L-arginine + ATP → L-tyrosyl-L-arginine + AMP + diphosphate + H+

γ-glutamyl cycle :
glutathione + a standard α amino acid → L-cysteinyl-glycine + an (γ-L-glutamyl)-L-amino acid

leukotriene biosynthesis :
leukotriene-C4 + a standard α amino acid → an (γ-L-glutamyl)-L-amino acid + leukotriene-D4

methanofuran biosynthesis :
2-furaldehyde phosphate + a standard α amino acid → 2-methylamine-furan phosphate + a 2-oxo carboxylate


a standard α amino acid + oxygen + H2O → ammonium + hydrogen peroxide + a 2-oxo carboxylate

prodigiosin biosynthesis :
(S)-3-acetyloctanal + an L-amino acid → 2-methyl-3-n-amyl-dihydropyrrole + a 2-oxo acid + H2O

rhizocticin A and B biosynthesis :
2-keto-5-phosphono-3-cis-pentenoate + an L-amino acidL-2-amino-5-phosphono-3-cis-pentenoate + a 2-oxo carboxylate
2-keto-4-hydroxy-5-phosphonopentanoate + an L-amino acid → 2-amino-4-hydroxy-5-phosphonopentanoate + a 2-oxo carboxylate


ATP + 2 an L-amino acid → ADP + a dipeptide + phosphate + H+

Reactions known to produce the compound:

phenylalanine degradation I (aerobic) , tyrosine biosynthesis IV :
tetrahydrobiopterin + L-phenylalanine + oxygen → L-tyrosine + 4α-hydroxy-tetrahydrobiopterin

phenylalanine degradation V :
L-phenylalanine + an N10-formyl-tetrahydrofolate + oxygen → a 10-formyltetrahydrofolate-4a-carbinolamine + L-tyrosine

tyrosine biosynthesis II :
L-arogenate + NADP+L-tyrosine + CO2 + NADPH

tyrosine biosynthesis III :
L-arogenate + NAD+L-tyrosine + CO2 + NADH

Not in pathways:
tyrosinated tubulin + H2O → a tubulin + L-tyrosine
O-phospho-L-tyrosine[periplasmic space] + H2O[periplasmic space]L-tyrosine[periplasmic space] + phosphate[periplasmic space]
tetrahydrobiopterin + L-phenylalanine + oxygen → 6,7-dihydrobiopterin + L-tyrosine + H2O
L-tyrosine + 2 iodide + 2 NADP+ ← 3,5-diiodo-L-tyrosine + 2 NADPH + H+
L-tyrosine + iodide + NADP+ ← 3-iodo-L-tyrosine + NADPH

dimethylsulfoniopropionate biosynthesis I (Wollastonia) :
S-methyl-L-methionine + a 2-oxo carboxylate + H+ → 3-dimethylsulfoniopropionaldehyde + CO2 + a standard α amino acid

seed germination protein turnover , wound-induced proteolysis I :
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)


a dipeptide + H2O → 2 amino acids
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
β-aspartyl dipeptide + H2O → L-aspartate + a standard α amino acid
amino acids(n) + H2O → amino acids(n-1) + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → 2 a standard α amino acid
a peptide + H2O → a standard α amino acid + a peptide
a peptide + H2O → a peptide + a standard α amino acid
a peptide + H2O → a peptide + a standard α amino acid
an oligopeptide + H2O → a peptide + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a peptide + a standard α amino acid
a protein + H2O → a standard α amino acid + a peptide
a peptide + H2O → a standard α amino acid + a peptide
a protein + H2O → a standard α amino acid + a peptide
a tripeptide + H2O → a dipeptide + a standard α amino acid
a dipetide with L-aspartate at the N-terminal + H2O → L-aspartate + a standard α amino acid
a dipetide with L-histidine at the C-terminal + H2O → a standard α amino acid + L-histidine
a dipeptide with L-methionine at the N-terminal + H2O → a standard α amino acid + L-methionine
a dipeptide with proline at the C-terminal + H2O → L-proline + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
a dipeptide + H2O → a standard α amino acid + a standard α amino acid
amino acids(n) + H2O → a standard α amino acid + amino acids(n-1)

γ-glutamyl cycle :
an (γ-L-glutamyl)-L-amino acid → an L-amino acid + 5-oxoproline


a peptide + H2O → an L-amino acid + a peptide
a peptide + H2O → a peptide + an L-amino acid
a N-methyl L-amino acid + oxygen + H2O → an L-amino acid + formaldehyde + hydrogen peroxide
a polypeptide + H2O → a polypeptide + an L-amino acid


an ester of aromatic amino acids + H2O → an aromatic amino acid + an aromatic amino acid
a peptide + H2O → a peptide + an aromatic amino acid


amino acids(n) + H2O → amino acids(n-1) + an α amino acid
an α amino acid ester + H2O → an alcohol + an α amino acid + H+
a protein + H2O → a protein + an α amino acid

Reactions known to both consume and produce the compound:

(S)-reticuline biosynthesis I , 4-hydroxybenzoate biosynthesis I (eukaryotes) , 4-hydroxyphenylpyruvate biosynthesis , atromentin biosynthesis , rosmarinic acid biosynthesis I , tyrosine biosynthesis I , tyrosine degradation I , tyrosine degradation II , tyrosine degradation IV (to 4-methylphenol) :
L-tyrosine + 2-oxoglutarate ↔ 4-hydroxyphenylpyruvate + L-glutamate

phenylalanine biosynthesis (cytosolic, plants) :
2-oxo-3-phenylpropanoate + L-tyrosine ↔ L-phenylalanine + 4-hydroxyphenylpyruvate

tyrosine degradation III :
L-tyrosine + 2-oxoglutarate ↔ 4-hydroxyphenylpyruvate + L-glutamate
L-tyrosine + pyruvate ↔ 4-hydroxyphenylpyruvate + L-alanine

asparagine degradation II :
a 2-oxo carboxylate + L-asparagine ↔ 2-oxosuccinamate + a standard α amino acid

dimethylsulfoniopropionate biosynthesis III (algae) , ethylene biosynthesis III (microbes) :
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

glucosinolate biosynthesis from dihomomethionine :
2-oxo-6-methylthiohexanoate + a standard α amino acid ↔ L-dihomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from hexahomomethionine :
2-oxo-10-methylthiodecanoate + a standard α amino acid ↔ hexahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from pentahomomethionine :
2-oxo-9-methylthiononanoate + a standard α amino acid ↔ pentahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from tetrahomomethionine :
2-oxo-8-methylthiooctanoate + a standard α amino acid ↔ tetrahomomethionine + a 2-oxo carboxylate

glucosinolate biosynthesis from trihomomethionine :
2-oxo-7-methylthioheptanoate + a standard α amino acid ↔ trihomomethionine + a 2-oxo carboxylate

homomethionine biosynthesis :
2-oxo-5-methylthiopentanoate + a standard α amino acid ↔ L-homomethionine + a 2-oxo carboxylate
L-methionine + a 2-oxo carboxylate ↔ 2-oxo-4-methylthiobutanoate + a standard α amino acid

Not in pathways:
L-ornithine + a 2-oxo carboxylate ↔ a standard α amino acid + L-glutamate-5-semialdehyde


L-alanine + a 2-oxo carboxylate ↔ pyruvate + an L-amino acid


an aromatic amino acid + 2-oxoglutarate ↔ an aromatic oxo-acid + L-glutamate
glyoxylate + an aromatic amino acid ↔ glycine + an aromatic oxo-acid

In Reactions of unknown directionality:

Not in pathways:
L-arogenate + NAD(P)+ = L-tyrosine + CO2 + NAD(P)H
L-tyrosine + H2O = phenol + pyruvate + ammonium
L-tyrosine = phenol + 2-aminoprop-2-enoate + H+
dimethylallyl diphosphate + L-tyrosine = 4-O-dimethylallyl-L-tyrosine + diphosphate
L-tyrosine = β-tyrosine
L-tyrosine + H2O + oxygen = 4-hydroxyphenylpyruvate + ammonium + hydrogen peroxide


an N-acylated aromatic-L-amino acid + H2O = a carboxylate + an aromatic L-amino acid


an L-amino acid = a D-amino acid
an L-amino acid + NAD+ + H2O = a 2-oxo carboxylate + ammonium + NADH + H+
an N-carbamoyl-L-amino acid + H2O + 2 H+ = an L-amino acid + ammonium + CO2
S-ureidoglycine + a 2-oxo carboxylate = oxalurate + an L-amino acid


a 5-L-glutamyl-[peptide] + an amino acid = a 5-L-glutamyl-amino acid + a peptide

In Transport reactions:
L-tyrosine[out]L-tyrosine[in] ,
L-tyrosine[periplasmic space] + H+[periplasmic space]L-tyrosine[cytosol] + H+[cytosol] ,
a polar amino acid[extracellular space] + ATP + H2O ↔ a polar amino acid[cytosol] + ADP + phosphate ,
an L-amino acid[cytosol]an L-amino acid[periplasmic space] ,
an aromatic amino acid[cytosol]an aromatic amino acid[periplasmic space]

Enzymes activated by L-tyrosine, sorted by the type of activation, are:

Activator (Allosteric) of: arogenate dehydratase [Jung86] , arogenate dehydratase [Jung86]

Activator (Mechanism unknown) of: glutamate dehydrogenase (NAD-dependent) [Bonete96] , arogenate dehydratase [Siehl88]

Enzymes inhibited by L-tyrosine, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: prephenate dehydrogenase [Hudson83] , 2-dehydro-3-deoxyphosphoheptonate aldolase [Schoner76] , 5,6-dihydroxyindole-2-carboxylate monooxygenase [JimenezCervante94] , 3-O-methyl-dopa transaminase [Maeda76] , arogenate dehydrogenase [Byng81] , L-phenylalanine:2-oxoglutarate aminotransferase [Weigent76] , arogenate dehydrogenase [Rippert02] , arogenate dehydrogenase [Rippert02] , o-aminophenol oxidase [Suzuki06]

Inhibitor (Allosteric) of: arogenate dehydrogenase [Bonner04] , chorismate mutase [Mobley99] , chorismate mutase [Mobley99]

Inhibitor (Mechanism unknown) of: chorismate mutase [Hudson83] , phenylalanine aminotransferase [Collier72] , tyrosine aminotransferase [Collier72] , leucine aminotransferase [Collier72]


References

Bonete96: Bonete MJ, Perez-Pomares F, Ferrer J, Camacho ML (1996). "NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids." Biochim Biophys Acta 1996;1289(1);14-24. PMID: 8605224

Bonner04: Bonner CA, Jensen RA, Gander JE, Keyhani NO (2004). "A core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis." Biochem J 382(Pt 1);279-91. PMID: 15171683

Byng81: Byng, Graham, Whitaker, Robert, Flick, Christopher, Jensen, Roy A. "Enzymology of L-tyrosine biosynthesis in corn." Phytochemistry (1981) vol. 20 (6):1289-1292.

Collier72: Collier RH, Kohlhaw G (1972). "Nonidentity of the aspartate and the aromatic aminotransferase components of transaminase A in Escherichia coli." J Bacteriol 1972;112(1);365-71. PMID: 4404056

Hudson83: Hudson GS, Howlett GJ, Davidson BE (1983). "The binding of tyrosine and NAD+ to chorismate mutase/prephenate dehydrogenase from Escherichia coli K12 and the effects of these ligands on the activity and self-association of the enzyme. Analysis in terms of a model." J Biol Chem 1983;258(5);3114-20. PMID: 6338013

JimenezCervante94: Jimenez-Cervantes C, Solano F, Kobayashi T, Urabe K, Hearing VJ, Lozano JA, Garcia-Borron JC (1994). "A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1)." J Biol Chem 269(27);17993-8000. PMID: 8027058

Jung86: Jung E, Zamir LO, Jensen RA (1986). "Chloroplasts of higher plants synthesize L-phenylalanine via L-arogenate." Proc Natl Acad Sci U S A 83(19);7231-5. PMID: 3463961

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Maeda76: Maeda T, Shindo H (1976). "Metabolic pathway of L-3-methoxy,4-hydroxyphenylalanine (3-O-methylDOPA)-participation of tyrosine aminotransferase and lactate dehydrogenase." Chem Pharm Bull (Tokyo) 24(5);1104-6. PMID: 14789

Mobley99: Mobley EM, Kunkel BN, Keith B (1999). "Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana." Gene 240(1);115-23. PMID: 10564818

Rippert02: Rippert P, Matringe M (2002). "Purification and kinetic analysis of the two recombinant arogenate dehydrogenase isoforms of Arabidopsis thaliana." Eur J Biochem 269(19);4753-61. PMID: 12354106

Schoner76: Schoner R, Herrmann KM (1976). "3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase. Purification, properties, and kinetics of the tyrosine-sensitive isoenzyme from Escherichia coli." J Biol Chem 1976;251(18);5440-7. PMID: 9387

Siehl88: Siehl DL, Conn EE (1988). "Kinetic and regulatory properties of arogenate dehydratase in seedlings of Sorghum bicolor (L.) Moench." Arch Biochem Biophys 260(2);822-9. PMID: 3124763

Suzuki06: Suzuki H, Furusho Y, Higashi T, Ohnishi Y, Horinouchi S (2006). "A novel o-aminophenol oxidase responsible for formation of the phenoxazinone chromophore of grixazone." J Biol Chem 281(2);824-33. PMID: 16282322

Weigent76: Weigent DA, Nester EW (1976). "Purification and properties of two aromatic aminotransferases in Bacillus subtilis." J Biol Chem 1976;251(22);6974-80. PMID: 11213


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Thu Dec 25, 2014, BIOCYC14B.