MetaCyc Compound: UDP-α-D-xylose

Superclasses: a nucleic acid componenta base derivativea nucleotide sugaran NDP-sugara UDP-sugarUDP-D-xylose
all carbohydratesa carbohydratea glycana carbohydrate derivativea nucleotide sugaran NDP-sugara UDP-sugarUDP-D-xylose
an organic heterocyclic compoundan organonitrogen heterocyclic compounda diazinea pyrimidinea UDP-sugarUDP-D-xylose

Chemical Formula: C14H20N2O16P2

Molecular Weight: 534.26 Daltons

Monoisotopic Molecular Weight: 536.0444556901999 Daltons

UDP-α-D-xylose compound structure

SMILES: C3(OC(OP(=O)([O-])OP(=O)([O-])OCC1(OC(C(O)C(O)1)N2(C=CC(=O)NC(=O)2)))C(O)C(O)C(O)3)

InChI: InChI=1S/C14H22N2O16P2/c17-5-3-28-13(11(22)8(5)19)31-34(26,27)32-33(24,25)29-4-6-9(20)10(21)12(30-6)16-2-1-7(18)15-14(16)23/h1-2,5-6,8-13,17,19-22H,3-4H2,(H,24,25)(H,26,27)(H,15,18,23)/p-2/t5-,6-,8+,9-,10-,11-,12-,13-/m1/s1


Unification Links: CAS:3616-06-6, ChEBI:57632, ChemSpider:17600385, HMDB:HMDB01018, KEGG:C00190, MetaboLights:MTBLC57632, PubChem:16667349

Standard Gibbs Free Energy of Change Formation (ΔfG in kcal/mol): -549.1659Inferred by computational analysis [Latendresse13]

Reactions known to consume the compound:

acylated cyanidin galactoside biosynthesis :
UDP-α-D-xylose + cyanidin-3-O-β-D-galactoside → UDP + cyanidin 3-O-(β-D-xylosyl-(1→2)-β-D-galactoside) + H+

anthocyanidin acylglucoside and acylsambubioside biosynthesis :
pelargonidin-3-O-β-D-glucoside + UDP-α-D-xylose → pelargonidin 3-O-β-D-sambubioside + UDP + H+
cyanidin-3-O-β-D-glucoside + UDP-α-D-xylose → cyanidin 3-O-β-D-sambubioside + UDP + H+

anthocyanidin modification (Arabidopsis) :
cyanidin 3-O-β-D-p-coumaroylglucoside + UDP-α-D-xylose → cyanidin 3-O-β-D-(p-coumaroyl)-sambubioside + UDP
cyanidin-3-O-β-D-glucoside + UDP-α-D-xylose → cyanidin 3-O-β-D-sambubioside + UDP + H+

anthocyanidin sambubioside biosynthesis :
delphinidin-3-O-β-D-glucoside + UDP-α-D-xylose → delphinidin 3-O-β-D-sambubioside + UDP + H+
pelargonidin-3-O-β-D-glucoside + UDP-α-D-xylose → pelargonidin 3-O-β-D-sambubioside + UDP + H+
cyanidin-3-O-β-D-glucoside + UDP-α-D-xylose → cyanidin 3-O-β-D-sambubioside + UDP + H+

gentamicin biosynthesis :
paromamine + UDP-α-D-xylose → gentamicin A2 + UDP + H+

geranyl β-primeveroside biosynthesis :
geranyl β-D-glucopyranoside + UDP-α-D-xylose → geranyl 6-O-β-D-xylopyranosyl-β-D-glucopyranoside + UDP + H+

glycoaminoglycan-protein linkage region biosynthesis :
UDP-α-D-xylose + a core protein L-serine → O-β-D-xylosyl-[core protein] + UDP + H+

isovitexin glycosides biosynthesis :
isovitexin + UDP-α-D-xylose → isovitexin-7-O-xyloside + UDP

xylan biosynthesis :
UDP-α-D-xylose + [(1->4)-β-D-xylan](n) → UDP + [(1->4)-β-D-xylan](n+1)

xylogalacturonan biosynthesis :
a homogalacturonan + UDP-α-D-xylose → a xylogalacturonan + UDP + 4 H+

xyloglucan biosynthesis :
a 1,4-β-D-glucan + UDP-α-D-xylose → a GXGG xylogulcan + UDP
a GXGG xylogulcan + 2 UDP-α-D-xylose → an XXXG xylogulcan + 2 UDP + 2 H+

Not in pathways:
a UDP-sugar[periplasm] + H2O[periplasm] → UMP[periplasm] + an α-D-aldose 1-phosphate[periplasm] + 2 H+[periplasm]

Reactions known to produce the compound:

UDP-D-xylose biosynthesis :
UDP-α-D-glucuronate + H+UDP-α-D-xylose + CO2

Reactions known to both consume and produce the compound:

UDP-L-arabinose biosynthesis I (from UDP-xylose) :
UDP-β-L-arabinopyranose ↔ UDP-α-D-xylose

Not in pathways:
α-D-xylose 1-phosphate + UTP + H+UDP-α-D-xylose + diphosphate

Not in pathways:
UTP + a sugar 1-phosphate + H+a UDP-sugar + diphosphate

In Reactions of unknown directionality:

Not in pathways:
UDP-α-D-xylose + N4-{N-acetyl-β-D-glucosaminyl-(1,2)-α-D-mannosyl-(1,3)-[N-acetyl-β-D-glucosaminyl-(1,2)-α-D-mannosyl-(1,6)]-β-D-mannosyl-(1,4)-N-acetyl-β-D-glucosaminyl-(1,4)-N-acetyl-β-D-glucosaminyl}-protein-L-asparagine = an N4-{N-acetyl-β-D-glucosaminyl-(1,2)-α-D-mannosyl-(1,3)-[N-acetyl-β-D-glucosaminyl-(1,2)-α-D-mannosyl-(1,6)]-[β-D-xylosyl-(1,2)]-β-D-mannosyl-(1,4)-N-acetyl-β-D-glucosaminyl-(1,4)-N-acetyl-β-D-glucosaminyl}-L-asparagine-[protein] + UDP + H+
UDP-α-D-xylose + kaempferol = UDP + kaempferol 3-O-β-D-xyloside + H+
UDP-α-D-xylose + an anthocyanidin-3-O-β-D-glucoside = UDP + an anthocyanidin 3-O-β-D-sambubioside + H+
a flavonol 3-O-glycoside + UDP-α-D-xylose = a flavonol 3-[β-D-xylosyl-(1->2)-β-D-glycoside] + UDP + H+
α-D-mannopyranosyl-(1,3)-α-D-mannopyranose + UDP-α-D-xylose = 3-O-(6-O-α-D-xylosylphospho-α-D-mannopyranosyl)-α-D-mannopyranose + UMP + H+
UDP-α-D-xylose + Glc-β-EGF-like domain = UDP + Xyl-α(1-3)-Glc-β-EGF-like domain
a dolichyl phosphate + UDP-α-D-xylose = dolichyl D-xylosyl phosphate + UDP
trans-zeatin + UDP-α-D-xylose = O-β-D-xylosylzeatin + UDP + H+

Enzymes inhibited by UDP-α-D-xylose, sorted by the type of inhibition, are:

Inhibitor (Competitive) of: UDP-glucose dehydrogenase [Stewart99] Inhibitor (Mechanism unknown) of: UDP-glucuronate 4-epimerase [Munoz99], UDP-glucuronate decarboxylase [Pattathil05], UDP-glucuronate decarboxylase [Harper02], UDP-D-glucose/UDP-D-galactose 4-epimerase [Barber06], UDP-D-glucuronic acid 4-epimerase [Gu04], UDP-D-xylose synthase [Baron72], UDP-D-apiose synthase [Baron72], UDP-D-apiose synthase [Molhoj03], UDP-D-xylose synthase [Molhoj03]


Barber06: Barber C, Rosti J, Rawat A, Findlay K, Roberts K, Seifert GJ (2006). "Distinct properties of the five UDP-D-glucose/UDP-D-galactose 4-epimerase isoforms of arabidopsis thaliana." J Biol Chem. PMID: 16644739

Baron72: Baron D, Wellmann E, Grisebach H (1972). "Purification and properties of an enzyme from cell suspension cultures of parsley catalyzing the synthesis of UDP-apiose and UDP-D-xylose from UDP-D-glucuronic acid." Biochim Biophys Acta 258(1);310-8. PMID: 4333589

Gu04: Gu X, Bar-Peled M (2004). "The biosynthesis of UDP-galacturonic acid in plants. Functional cloning and characterization of Arabidopsis UDP-D-glucuronic acid 4-epimerase." Plant Physiol 136(4);4256-64. PMID: 15563616

Harper02: Harper AD, Bar-Peled M (2002). "Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms." Plant Physiol 130(4);2188-98. PMID: 12481102

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Molhoj03: Molhoj M, Verma R, Reiter WD (2003). "The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis." Plant J 35(6);693-703. PMID: 12969423

Munoz99: Munoz R, Lopez R, de Frutos M, Garcia E (1999). "First molecular characterization of a uridine diphosphate galacturonate 4-epimerase: an enzyme required for capsular biosynthesis in Streptococcus pneumoniae type 1." Mol Microbiol 31(2);703-13. PMID: 10027985

Pattathil05: Pattathil S, Harper AD, Bar-Peled M (2005). "Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2." Planta 221(4);538-48. PMID: 15655675

Stewart99: Stewart D.C., Copeland L. "Kinetic properties of UDP-glucose dehydrogenase from soybean nodules." Plant Science (1999) 147:119-125.

Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by Pathway Tools version 19.5 (software by SRI International) on Tue Dec 1, 2015, biocyc13.