Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
Metabolic Modeling Tutorial
discounted EARLY registration ends Dec 31, 2014
twitter

MetaCyc Pathway: fatty acid α-oxidation I

Enzyme View:

Note: a dashed line (without arrowheads) between two compound names is meant to imply that the two names are just different instantiations of the same compound -- i.e. one may be a specific name and the other a general name, or they may both represent the same compound in different stages of a polymerization-type pathway. This view shows enzymes only for those organisms listed below, in the list of taxa known to possess the pathway. If an enzyme name is shown in bold, there is experimental evidence for this enzymatic activity.

Synonyms: fatty acid α-oxidation

Superclasses: Degradation/Utilization/Assimilation Fatty Acid and Lipids Degradation Fatty Acids Degradation

Some taxa known to possess this pathway include ? : Arabidopsis thaliana col , Cucumis sativus , Nicotiana tabacum , Pisum sativum , Solanum tuberosum

Expected Taxonomic Range: Embryophyta

Summary:
Although β-oxidation is the major route for fatty acid degradation, fatty acids can also be subject to α- and ω-oxidation. In α-oxidation, a fatty acid is oxidized at the α-position (C-2) to give rise to a 2-hydroperoxy fatty acid. 2-hydroperoxy fatty acids are chemically unstable and are quickly converted to chain-shortened (by one carbon) fatty aldehydes through decarboxylation, or to 2-hydroxy fatty acids. The chain-shortened fatty aldehydes are further oxidized to free fatty acids which can enter the next round of α-oxidation.

The conversion of the intermediate 2(R)-hydroperoxy fatty acids to 2(R)-hydroxy fatty acids may be spontaneous or catalyzed by a peroxidase [Hamberg02]. The 70 kDa subunit of pea α-dioxygenase was shown possess such a peroxidase activity [Saffert00]. Similarly, the conversion of the chain-shortened aldehydes to corresponding fatty acids may be spontaneous or catalyzed by a NAD+ oxidoreductase. The 50 kDa subunit of pea α-dioxygenase was shown to have an aldehyde dehydrogenase activity with NAD+. Both polysaturated and unsaturated fatty acids are effective substrates in the pathway. Among the tested ones are laurate, palmitate, stearate, oleate, linoleate, linolenate, and arachidonate.

In animal and human, α-oxidation is important to degrade β-methyl branched fatty acids which cannot be degraded through β-oxidation. The physiological role of fatty acid α-oxidation in plants is not clear. It is expected to be involved in chlorophyll/phytol degradation. It has also been suggested that the pathway may be related to seed germination (in the case of pea where α-dioxygenase is induced only during seed germination [Saffert00]) and plant response to wounding and plant-pathogen interactions (in the case of tobacco and Arabidopsis where α-dioxygenase is induced upon pathogen attack [Hamberg03][De02a]).

Citations: [Hamberg99]

Variants: 9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast) , 10-cis-heptadecenoyl-CoA degradation (yeast) , 10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast) , 10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast) , alkane oxidation , fatty acid α-oxidation II , fatty acid α-oxidation III , fatty acid β-oxidation (peroxisome, yeast) , fatty acid β-oxidation I , fatty acid β-oxidation II (peroxisome) , fatty acid β-oxidation III (unsaturated, odd number) , fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent) , fatty acid β-oxidation VI (peroxisome) , oleate β-oxidation , oleate β-oxidation (isomerase-dependent, yeast) , oleate β-oxidation (reductase-dependent, yeast) , oleate β-oxidation (thioesterase-dependent, yeast) , unsaturated, even numbered fatty acid β-oxidation

Unification Links: AraCyc:PWY-2501


References

De02a: De Leon IP, Sanz A, Hamberg M, Castresana C (2002). "Involvement of the Arabidopsis alpha-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death." Plant J 29(1);61-2. PMID: 12060227

Hamberg02: Hamberg M, Ponce de Leon I, Sanz A, Castresana C (2002). "Fatty acid alpha-dioxygenases." Prostaglandins Other Lipid Mediat 68-69;363-74. PMID: 12432929

Hamberg03: Hamberg M, Sanz A, Rodriguez MJ, Calvo AP, Castresana C (2003). "Activation of the fatty acid alpha-dioxygenase pathway during bacterial infection of tobacco leaves. Formation of oxylipins protecting against cell death." J Biol Chem 278(51);51796-805. PMID: 14522973

Hamberg99: Hamberg M, Sanz A, Castresana C (1999). "alpha-oxidation of fatty acids in higher plants. Identification of a pathogen-inducible oxygenase (piox) as an alpha-dioxygenase and biosynthesis of 2-hydroperoxylinolenic acid." J Biol Chem 274(35);24503-13. PMID: 10455113

Saffert00: Saffert A, Hartmann-Schreier J, Schon A, Schreier P (2000). "A dual function alpha-dioxygenase-peroxidase and NAD(+) oxidoreductase active enzyme from germinating pea rationalizing alpha-oxidation of fatty acids in plants." Plant Physiol 123(4);1545-52. PMID: 10938370

Other References Related to Enzymes, Genes, Subpathways, and Substrates of this Pathway

Latendresse13: Latendresse M. (2013). "Computing Gibbs Free Energy of Compounds and Reactions in MetaCyc."

Liu04b: Liu W, Rogge CE, Bambai B, Palmer G, Tsai AL, Kulmacz RJ (2004). "Characterization of the heme environment in Arabidopsis thaliana fatty acid alpha-dioxygenase-1." J Biol Chem 279(28);29805-15. PMID: 15100225


Report Errors or Provide Feedback
Please cite the following article in publications resulting from the use of MetaCyc: Caspi et al, Nucleic Acids Research 42:D459-D471 2014
Page generated by SRI International Pathway Tools version 18.5 on Fri Nov 28, 2014, biocyc13.